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In this paper, fixed point theorems for semigroups of self-
mappings on a metric space (X, d) subject to conditions on
the size of the orbits are considered.

The concepts of diminishing orbital diameters (d.o.d.) for
semigroups of mappings on a metric space and that of
convex diminishing orbital diameters (c.d.o.d.) for semigroups
of mappings on a convex subset of a normed linear space
are introduced. Also discussed are the concepts of linearly
ordered semigroups and in particular those that are Archime-
dean at some of its members. Certain results of Belluce and
Kirk concerning a single mapping satisfying d.o.d. are gener-
alized. Also included are results on semigroups of self-mapp-
ings on a weakly compact, convex subset of a Banach space.

l The concept of "diminishing orbital diameters" of a single
self-mapping / on a metric space (X, d) was first introduced by Belluce
and Kirk in their paper [1]. For any point xeX, let O(x) =
{x, f(x), f2(x), •••} and d[O(x)] denote the diameters of 0{x). It is
clear that the sequence {δ[O(fn(x))\: n = 1, 2, •} is nonincreasing
Let r(x) = inf {δ[O(fn(x))\: n = 1, 2, •}, then r(x) ̂  0 for every xeX.
The mapping / is said to have diminishing orbital diameters (d.o.d.)
on X if and only if for every xe X, the condition r{x) < §[0(#)] holds
whenever <5[0(#)] > 0.

In this paper, we consider semigroups J?~ of self-mappings with
identity. Let ^~(x) = {f(x): fe JT) and &~f{x) = {gf(x): ge jT~}.
Suppose δ\^(x)\ denotes the diameter of ^~(x), and r(x) —
inf {δ[^f(x)\: f e ^~} for every x e X. ^ is said to have diminish-
ing orbital diameters (d.o.d.) on X, if and only if for every x e l ,
we have δ\^(x)\ < °o and the conditions r(x) < δ[^(x)] holds when-
ever δ[^(x)] > 0. It is clear that if ^ is generated by a single
mapping /, then ^ has d.o.d. implies that / has d.o.d. and vice
versa. When ^~ is a group, it clearly fails to have d.o.d.

If ^~ satisfies d.o.d., then for every xeX, d[^(x)] > 0 implies
that there exists ge^ such that δ[^g(x)] < d[^(x)], i.e. there
exists pe^(x) such that δ[^(p)\ < δ\j^(x)\. A requirement on
J?" weaker than d.o.d., when X is a convex subset of a normed linear
space, is motivated by the above observation and the next example.

EXAMPLE. Let X — E2 with the sup norm metric, and / : X—* X
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defined by f(a,b) = (|6|, - 6) for every (a, b)eX.
The mapping / can be easily shown to be nonexpansive. Let

be the semigroup generated by / and the identity. For z — (1, 1),
since δ\^(z)\ > 0 and ^r\J?r(z) is a family of isometries, ^ fails
to have d.o.d. However, the point p = (1, 1/2) in co ̂ ~(z) satisfies

— 1 < 2 = δ\^r{z)\. In fact, every point pe co ̂ {z) satisfies

Let X be a convex subset of a normed linear space and "j^~\ X—* X
a semigroup of self-mappings. j ^ ~ is said to have convex diminishing
orbital diameters (c.d.o.d.) on X if and only if for every x e l ,
δ[j^~~{x)\ < c° and the condition d[J^(x)] > 0 implies that there exists
pe c o ^ ) such that δ[^~(p)] < δ[^(x)].

We introduce next the concept of a linearly ordered semigroup.
This is motivated by the observation of certain properties possessed
by a flow (see [4]). Let {fs:seS} be a set of continuous self-map-
pings of a subset X of a Banach space B, where S (written additively)
is a commutative topological semigroup with identity element ό such
that f-0{x) = x for all x e B, and f.(ft(x)) = /*(/.(«)) = /«+.(&) for all a? e B
and s, te S, and satisfying the continuity condition that for each t e S,
sup {|| /,(&) - /.(») II : ^ β } - ^ 0 , as s —> ί. Then {/,: seS} is called a
S-semigroup of operators on X. In the case when S = R+, the non-
negative real numbers with the usual topology, the semigroup
{fs: se R+} is called a flow.

The following two properties are satisfied by a flow:

(1) Let ^ 7 = J^X = {fa: a e R+ + t). For s < t, we have
Hence, the linear ordering of R+ induces a linear ordering in ^ in
an obvious fashion.

(2) Let f89ft e ^ ^ , with s ^ ί. Suppose s Φ 0, then there is an
integer n such that n s^t. Hence, we have <^(/ e )

n S-^ r /f
In general, let (X, d) be a metric space and J^ a semigroup of

self-mappings on X. ^ will be called linearly ordered if it satisfies
the condition that for every f,ge ^ , either ^ J g ^ or ^g^^f.
In the case when ^fSs^g,- we say that / follows g and denote this
fact by / ^ g. Let j ^ ~ be a linearly ordered semigroup. ^ is said to
be Archimedean at g e ^ with g Φ Id (the identity mapping) if for
every / e J?~* with g ^ /, there exists a positive integer n such that
#% ^ /. The semigroup J^ is said to be linearly ordered, Archime-
dean, if J^ is Archimedean at each ge ^ where g Φ Id.

Clearly a flow and also any semigroup with a single generator
are linearly ordered, Archimedean semigroups.

2* In this section, results of Belluce and Kirk [1], [5], concern-
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ing mappings satisfying diminishing orbital diameters (d.o.d.) are
generalized.

For a single mapping / on a metric space, Belluce and Kirk [1]
showed that the condition that the mapping / satisfies d.o.d. is suf-
ficient for it to have a fixed point if / is furthermore nonexpansive
and possesses a /-closure point. It was shown later by Kirk [5] that
for a compact metric space, this condition guarantees a fixed point
when nonexpansiveness of / is replaced by continuity.

We generalize the above results on a single mapping on a metric
space to the case of a commutative semigroup of self-mappings having
d.o.d. While in the nonexpansive case a result of Edelstein [2] is
used by Belluce and Kirk to prove their result for a single mapping,
the following proposition uses a result of Holmes and Narayanaswami
[3] concerning commutative asymptotically-nonexpansive semigroups
of self-mappings.

A semigroup ^~\ (X, d) —> (X, d) is called asymptotically-nonexpan-
sive iff for every x, y e X, there exists g e ^ such that d[fg(x), fg(y)] ^
d(x, y) for all / e &~.

The set {ze X: there exists xe X such that for every / e ^",
ε > 0, there exists ge JF~ with d[fg(x), z] < ε} is called the ^-closure
of X and is denoted by X .

LEMMA 2.1. (Proposition 2 in [3]). Let (X, d) be a commutative
semigroup of continuous asymptotically-nonexpansive mappings on X.
If ze X^, then J?~ \ J?"(z) is a family of isometries.

PROPOSITION 1. Let X be a metric space, J^ a commutative
semigroup of continuous asymptotically-nonexpansive self-mappings
on X. If J^ has diminishing orbital diameters (d.o.d.) and there
exists z G X^9 then z is a common fixed points of

Proof. By the preceding lemma, J?r\J?~'(z) is a family of iso-
metries. Hence, we have

δ[JTf(z)] = sup {d[gf(z), g'f(z)]: g, g' e

- sup {d[fg(z), fg'(z)\: g, g> e

= sup {d[g(z), g'(z)]: g, g' e JF

Since the above is true for all / e j ^ ~ , we have

r(z) - inf {δ[^f(z)]ι f

As J^ has d.o.d., we have 8[^(z)] = 0, showing that z is a common
fixed point of
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The following corollary is immediate.

COROLLARY. Let X and ^ be as in Proposition 1 and replace
the condition that J^ has d.o.d. by the condition that J?" is noniso-
metric on the orbit of some point z e X^ (i.e. there exists g e J?~ and
points x, y in the orbit of some point z in X^ such that d[g(x), g(y)] Φ
d(x, y)). Then z is a common fixed point of

THEOREM 2.2. Let X be a compact metric space, ^:X-+Xa
commutative semigroup of continuous mappings with d.o.d. Then
for every xeX, there exists ze[\feJrJ?~f(x) such that z is a common
fixed point of ^ .

Proof. For every xe X, by the commutativity of ^~ and the
compactness of X, Γ\fe^^~f{χ) ^ 0 L e t A = f | / e ^ ^ 7 W T h e n

A is a nonempty closed (and hence compact) subset which is invariant
under J^.

By Zorn's lemma, there is a nonempty, minimal closed subset K
of A which is invariant under ^ . Suppose δ[K] > 0. Let z e K,
then j^iz) is a closed subset of A which is invariant under t_^r. Hence

Since ^ has d.o.d., we have r(z) = inf {δ[^f(z)]ι fe
] = δ[K]. Hence, there exists hej^ such that δ[J?~h(z)] <
\ which shows that δ\^~h{z)\ < δ\^(z)\. Consequently,

is a proper closed subset of K which is invariant under J?~, which
is impossible. This contradiction shows that δ[K] = δ[^(z)\ = 0.
Hence, z is a common fixed point of

3* In the case when X is a weakly compact subset of a Banach
space, the following is known (cf. Corollary 2 to Theorem 2 in [1]):-

Let X be a nonempty, convex, weakly compact subset of a Banach
space and / a nonexpansive self-mapping on X. Suppose/has d.o.d.,
then / has a fixed point in X.

The assumption of convexity of X was removed later by Kirk in
[6] where he proved the following:—

PROPOSITION 2 (Theorem 5 in [6]). Suppose X is a nonempty,
weakly compact subset of a Banach space. If f: X-+ X is nonexpan-
sive and has d.o.d., then f has a fixed point in X.

We proceed to prove a related result for semigroups of self-
mappings.

LEMMA 3.1. Let (X, d) be a metric space and ^\ X-+X a line-
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arly ordered semigroup of mappings. Suppose j^~ has d.o.d. and
there exists age J?~ with g Φ Id such that

(i) g has a fixed point
(ii) j^~ is Archimedean at g.

Then ^ has a common fixed point.

Proof. Let ze X be a fixed point of g. If ^~{z) is a singleton,
then z is a common fixed point of ^ . Suppose δ[^(z)\ > 0. Since
&~ has d.o.d., inf {δ[^~f(z)]ι fe J Π < δ[^(z)]. This implies that
there exists a mapping hej?" such that δ[^"h{z)\ < δ[^~(z)]. How-
ever, by (ii), there exists an integer n such that gn >̂ h, i.e. J^~gn<^j^~h.
Hence, we obtain ^~gn(z) £ ^h{z) £ ^(z) = JΓgn(z), showing that

— ά?~h{z), which is a contradiction.

THEOREM 3. Let X be a nonempty weakly compact subset of a
Banach space and J^~\X—>X be a linearly ordered semigroup of
mappings. Suppose J^~ has d.o.d. and there exists age J?" with
g Φ Id such that

(i) g is a nonexpansive mapping with d.o.d.
(ii) ^ is Archimedean at g.

Then ^ has a common fixed point.

Proof. By Proposition 2, the mapping g has a fixed point in X.
By the preceding lemma, ^ has a common fixed point.

COROLLARY. Let X be as in Theorem 3. Suppose ^iX-^X is
a flow having d.o.d. If there exists a mapping g e j ^ with g Φ Id
such that g has a fixed point, then J^ has a common fixed point.

Proof. Since a flow is a linearly ordered, Archimedean semigroup,
the result is immediate from the lemma.

3.2. The weaker hypothesis of c.d.o.d. is used in the next result.
We proceed by first proving a lemma.

LEMMA. Let X be a nonempty, convex, weakly compact subset of
a Banach space. Suppose ^ \ X—> X is a commutative lineary order-
ed semigroup of nonexpansive mappings with J^" having c.d.o.d. If
for every weakly closed ^-invariant subset Ko of X there exists a
member gQ e J^ with gQ Φ Id such that

(i) g0 has a fixed point in Ko

(ii) j ^ ~ is Archimedean at g0, then J?~ has a common fixed point.
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Proof. Let K be a nonempty convex subset which is minimal
with respect to being weakly closed and invariant under j ^ ~ . If
δ[K] = 0, we immediately obtain a common fixed point of j ^ ~ .

Suppose d[K] > 0. By the hypotheses of the lemma, there exists
a mapping g0 e ^~ with g0 Φ Id, such that ^ is Archimedean at gQ,
and a point ze K such that go(z) = z. Suppose z is not a common
fixed point of ^~, then δ[^{z)\ > 0. Since j ^ ~ has c.d.o.d., there
exists a point £>eΐo ̂ ( 2 ) ϋ i f such that δ\j^~(p)\ < δ[^~(z)]. Hence
there exists r > 0 such that δ[^~{p)\ < r < δ[^~(z)].

Let C » = Π/ε^5(/flr(3)), r) and ?7 = U,e^-Cg(p). Since for each
ge^~, the set C,(p) contains ^""(p), we have Uφ 0 . We proceed
to show that Ϊ7 is convex and invariant under j ^ ~ .

(1) Each Cg(p) is clearly convex. Since j ^ is linearly ordered,
the collection {Cg(p):ge^} is nested. Hence, U is convex as the
union of a nested family of convex subsets.

(2) Let x e U, then x e Cg(p), for some g e ^", i.e. 11 x — /^(^) 11 ^ r,
for all f e j ^ ~ . Since each tej^~ is nonexpansive, we have

for all / e . ^ . Hence,

showing that U is invariant under ^ .
Consequently, (1) and (2) imply that Ό is closed, convex and in-

variant under ^~.
Since 17 Π KS^~(p), and iΓ is invariant under ^~. U f] K is a

nonempty, closed, convex, weakly compact subset in K which is in-
variant under j ^ ~ . By the minimality of K we have K Π U = K,
which implies that KξΞ=U.

Next, we proceed to show that f\qe^{z)B(q, r) Φ 0 . Let q e ^(z),
then qe KξΞ= ϋ. For any ε > 0, there is q' e Usuch that ||q — g'|| < ε.
Now q' e U implies that q' e Che(p), for some hε e ^ . This shows
that IIq* - fhε(p)\\ ^ r for all / e j r \ Hence, \\q - fhe(p)\\ < r + ε,
for all fej^~, which implies that B(z, r + ε ) 3 ^ Ά ε ( p ) . This shows
that B(z, r + ε) 3 c o ^ £ ( | ) ) . Now, for each g e ^~, the set co ^g{p)
is a closed, convex subset of the weakly compact set K and is there-
fore itself weakly compact. By the commutativity of j ^ ~ , the collec-
tion {co ^~g(p): g e ^) has f.i.p. Hence, f\gejr co ̂ ~g{p) Φ 0 . Con-
sequently, we obtain B(q, r + ε) Ξ2 co ̂ he(p) ^_[\geJΓ co ̂ ~g{p). Since
the above result holds for every ε > 0, we have B(q, r) 2 Π ^ ^ c
As # is arbitrarily chosen from ^{z) we obtain

As n ^ e ^ c o ^ " ^ ( p ) E ^ the set A = Γl?e^u)[5(g, r) Π if] is nonempty.
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That A is a proper, convex, weakly closed, ^-invariant subset
of K can be shown as follows:—

( i ) Since r < δ[^~(z)], A is a proper subset of K.
(ii) Since each B(q, r) Π K (where qe J^iz)) is weakly closed, A

is weakly closed.
(iii) To show that A is invariant under J^, it suffices to show

that ΓUe ̂ (z)B(q, r) is invariant under ^ .
Now, for any xe f\qe^{z)B(q, r), we have \\x — q\\ ^ r for all

q e ^~(z). Let h e J?". For any q e J?~(z), we have q = f(z) for some

(a) For the case when J^~ f £ J^~: h—
Since / = f'h for some / ' e J^~ we have

\\h{%) - q\\ = \\h(x) - / ( a ) 11 = \\h(x) - hf'(z)\\ sg \\x - f'{z)\\ ^ r .

(b) For the case when
Since z is a fixed point of g0, we have q = f(z) = fg%(z) for any

neN.
(1) Suppose j ^ fg^^h. As in (a), we obtain

- ? I I = \\h(x)-fgo(z)\\^r.

( 2) Suppose J^fgo 2 ^^^, then ^g0 2 ^"A, i.e. ^0 <̂  A. Since
r̂0 ̂  Id and ^ ^ is Archimedean at gQ9 there exists an integer j such

that ^ ^ A. This shows that ^~g{ £ ^"/i, or ^ y ^ ' £ ^^Λ. Hence
/^o = f"h for some / " e ^ " , which implies that

||Λ(») - <zll = I|A(») - fgi(*)\\ ^ \\h(x) - f"h(z)\\ ^ r .

Hence, \\h(x) — q\\ ̂  r for all qej^~(z) in either case (a) or (b),
i.e. h(x) e [\qeJr{z)B(q, r), showing that A is invariant under ^" '

However, results (i)—(iii) contradict the minimality of K, which
shows that K is necessarily a singleton, i.e. a common fixed point.

THEOREM 4. Let X he a nonempty, convex, weakly compact sub-
set of a Banach space. Let J^: X —> X be a commutative, linearly
ordered semigroup of nonexpansive mappings such that j^~ has c.d.o.d.
Suppose J^ is Archimedean at g0 e J^~ with g0 Φ Id such that g0 has
d.o.d. Then J^ has a common fixed point in X.

Proof. Let K be a nonempty convex subset in X which is min-
imal with respect to being weakly closed and invariant under
Since a mapping having d.o.d. on X also has d.o.d. on every
invariant subset of X, g0 has d.o.d. on K. By Proposition 2, g0 has
a fixed point in K since K is weakly compact. By the preceding lemma,

has a common fixed point in X.
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COROLLARY. Let X be a nonempty, convex, weakly compact subset
of a Banach space. Suppose J^: X—> X is a flow of nonexpansive
mappings with c.d.o.d. If there exists g0 e J?" with g0 Φ Id such that
gQ has d.o.d., then j ^ has a common fixed point.

Proof. Since a flow is a commutative, linearly ordered, Archime-
dean semigroup, the result is immediate from Theorem 4.

4* Examples of commutative semigroups with diminishing orbital
diameters can be easily constructed. The following is an example of
such a semigroup.

EXAMPLE. Let

Suppose {/„: n = 0,1, •} is a family of mappings defined by:

fn(x, y) = (o, - | Γ ) , where y > - 1 -

•H0' ~ F ) = ("2="' " F / '

/.(J_, _L) = (o, -L) and

fn(x, V) = (», V) where y < -A- .

Since {fn: n — 0, 1, •} is a commutative family, the semigroup
generated by it and the identity mapping is commutative. Each

fn is nonexpansive and fails to have d.o.d. while ^~ clearly satisfies
d.o.d. Indeed, for each point p — (x, y) with δ[J^(p)] > 0, since
y = 1/2* where n e {0, 1, •} we have δ[^fm(p)] < δ[J^{p)\ for
m > n.
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