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A semigroup V is an (ideal) extension of a semigroup T
by a semigroup S with zero if T is an ideal of V and S is
isomorphic to the Rees quotient VIT. Considered here are
those semigroups which can be constructed as an extension of
a group by a O-categorical regular semigroup. The multipli-
cation in such a semigroup is determined, along with an ab-
stract characterization of the semigroup.

Let G be a group and S a O-categorical regular semigroup. The
problem of finding all extensions of G by S is essentially that of
determining the associative multiplications on the set V = G\J (S\0)
which make G an ideal of V. Such multiplications are characterized
here completely in so far as semigroups are concerned. This descrip-
tion is made possible by a new use of the minimal primitive congru-
ence on S as defined by T. E. Hall in [3].

Finally, having made such extensions, we give a characterization
of those semigroups which can be constructed in this manner, that
is, as an extension of a group by a O-categorical regular semigroup.

1, Preliminary remarks* For a semigroup S with zero, let 5*
denote S\0, and Es be the set of idempotents of S Letting T be any
semigroup, a function θ: S* —* T satisfying the condition

(aθ){bθ) = (ab)θ if ab Φ 0 in S

is called a partial homomorphίsm of S into T.

By Theorem 4.19 of [2], every extension of a group by an arbi-
trary semigroup S with zero is completely determined by a partial
homomorphism of S into the group. It is our task here to characterize
all such functions in the case that S is a O-categorical regular semi-
group.

A subset A of a semigroup S is called categorical if for α, 6, c in
S, abc e A implies that ab e A or be e A. If S has a zero and {0} is a
categorical subset of S, then S is called O-categorical or categorical
at 0.

Examples of O-categorical semigroups include Rees matrix semi-
groups, primitive regular semigroups, ω-regular semigroups (see [1]),
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and of course, any semigroups having 0 as a prime ideal. For the
class of primitive regular semigroups, Theorems 6.39 and 4.22 of [2]
can be combined to characterize all partial homomorphisms of any
primitive regular semigroup into a group. In the next section, the
general problem will be reduced to just this particular case.

2* Construction of extensions* In this section, we let S be a
regular semigroup which is categorical at 0. Define p0 on S* by

apQb if ea = eb Φ 0, α/ = bf Φ 0 for some e, f eEs .

Let Pί be the equivalence relation on S generated by p0. Define p2

on S by

ap2b if a = xcy, b = xdy, for some cρ$ .

Finally, define p on S by

apb if aρ2al9 aφ2a2, , anρ2b ,

for some al9 α2, •••, aneS. Then T. E. Hall has shown in [3] that p
is a O-restricted congruence on S, that is, {0} is a class of p, and,
more importantly, that S/p is a primitive regular semigroup.

A partial congruence σ is an equivalence relation on S* satisfying
the property: for a, be £>*, aσb implies that axσbx whenever ax, bx Φ 0,
and xaσxb whenever xa, xb Φ 0.

Clearly, every partial homomorphism of S into a group G induces
a partial congruence on S*. In fact, since G is cancellative, the partial
congruence σ is cancellative, that is, if axσbx or xaσxb, then aσb.

Let ^* = p\S*.

LEMMA. The partial congruence p* is contained in every cancel-
lative partial congruence on S*.

Proof. The proof follows easily from cancellativity of the partial
congruence and the fact that p is O-restricted.

THEOREM. Every extension of a group G by a ̂ -categorical regular
semigroup S is uniquely determined by a partial homomorphism of
the primitive regular semigroup S/p into G.

In particular, a function θ: S* —• G is a partial homomorphism if
and only if θ — ηψ, where η: S —> S/p is the canonical homomorphism,
and ψ\ (S/p)* —>G is a partial homomorphism.

Proof. Let θ: S* —»G be a partial homomorphism. Define σ on
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S* by aσb if aθ = bθ. Then σ is a cancellative partial congruence
on S*. Further, let η:S—+S/ρ be the canonical homomorphism and
define ψ: (S/p)* —> G by aψ = aθ if arj — a. By the preceding lemma,
we see that ψ is well-defined, and since θ is a partial homomorphism,
so is ψ. Finally, for ae S* we have α^ ̂  0 and α ^ = (aη)ψ = aθ.

The converse follows since ,o is O-restricted and the two functions
rj and ψ are partial homomorphisms.

3* Characterization of the resultant semigroups* Now that all
extensions of a group by a 0-categorieal regular semigroup have been
determined, it is natural to ask what semigroups can be constructed
in this manner.

THEOREM. A semigroup V is an extension of a group by a (0-
categorical) regular semigroup if and only if V is a regular semi-
group which contains a (categorical) minimal left ideal which is also
a minimal right ideal.

Proof. The direct part is clear since a group contains no proper
left or right ideals. Conversely, let V be a regular semigroup with a
minimal left ideal L which is also a minimal right ideal. By regularity,
L contains an idempotent; moreover, L contains exactly one idem-
potent. For, if e and / are both idempotents in L, then Vf = fV =
L and there exist x, y in V so that e — xf — fy. From this it follows
that ef — xf = e and fe=fy — e. By symmetry, / = fe = ef, and
thus, e = /.

Since L is an ideal of V, L is a regular semigroup with exactly one
idempotent, that is, L is a group.

COROLLARY. A semigroup V is an extension of a group by a
(^-categorical) inverse semigroup if and only if V is an inverse semi-
group containing a (categorical) minimal left ideal.

Proof. The first part follows from the previous theorem and the
fact that an extension of one inverse semigroup by another is again
an inverse semigroup.

To prove the converse, it is sufficient to show that in an inverse
semigroup V, a minimal left ideal L is also a minimal right ideal.
Since V is an inverse semigroup, L is generated by a unique idem-
potent, and since L is minimal, this is the only idempotent in L. By
commutativity of idempotents, it is easy to show that L must be the
only minimal left ideal of V.

Now L is a right ideal, since, for se V, Ls is a minimal left ideal
(see Theorem 2.32 of [2]), and thus Ls = L. Because L has exactly
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one idempotent, L must be a minimal right ideal.
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