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A ring R is strongly harmonic provided that if M,, M,
are a pair of distinct maximal modular ideals of R, then there
exist ideals % and £Z such that % Z M,, <& £ M; and
S # =0. Let .#Z(R) be the maximal modular ideal space of
R. If Me _#Z(R),1let OM) = {rec R | for some y& M, rzy =0
for every wxcR}. Define Z(R)= U (R/OM)|Me #(R).
If R is a strongly harmonic ring with 1, then R is isomorphic
to the ring of global sections of the sheaf of local rings
H(R) over . #(R). Let I'l#Z(R), #(R)) be the ring of
global sections of <Z(R) over .Z(R). For every unitary
(right) R-module A, let Ay = {ac A|aRx = 0 for some ¢ M)
and let A = U{A/Ay | Me _#Z(R)}. Define 4(M)=a + Ay and
M) =1r+ OM) for every ac A, r¢ R and me _#Z(R). Then
the mapping &4 ¢+— 4 is a semi-linear isomorphism of A
onto I'(_#Z(R)), ZP(R))—module I'(_#(R), A) in the sense
that £, is a group isomorphism satisfying &(ar) = 47 for
every a€ A and rc R.

1. If R is a ring with 1, R is called harmonic (or regular) if
the maximal modular ideal space, say . (R), with the hull-kernel
topology, is a Hausdorff space (refer [5]). A ring R is strongly
harmonic provided that for any pair of distinct maximal modular
ideals M,, M, there exist ideals .o/, <& in R such that & & M,
B LM, and &< = 0. For any nonempty subset S of a ring R
define (S)* = {reR|sr = 0 for every se S} and if ac R let aR, be
the principal right ideal generated by «. If M is a prime ideal of
a ring R let OM)={reR|(rR)* £ M}. An ideal .o of a ring R
is called M-primary for some maximal modular ideal M of R provided
that M/.o” is the unique maximal modular ideal of R/.&” and if
&7’ is an ideal of R such that &’ & & and %' == &% then R/.7’
is no longer a local ring (here by a local ring we mean a ring with
the unique maximal modular ideal). The principal results in this
paper are as follows: Let R be a ring such that if R/S is a local
ring for some ideal S of R then R/S has a unit. Then R is strongly
harmonic if and only if O(M) is M-primary for every maximal
modular ideal M of R. If R is a strongly harmonic ring with 1
then R is isomorphic to I'(_#(R), ZZ(R)) the ring of global sections
of the sheaf of local rings Z(R) = U {R/OM)|Mec _#(R)} over
A (R) and if A is a unitary right R-module then the mapping
§,ia— 4 is a semi-linear isomorphism of A onto I'(_#(R), #(R))—
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module I'(_# (R), A) in the sense that &, is a group isomorphism
satisfying &,(ar) = a7 for a€ A, r€ R where (M) =a+ Ay, #(M) =
r + OM) for Me #(R) and A = U {4/A, | Me _# (R)}, the disjoint
union of the family of right R-modules A/A,) indexed by _Z(R),
and Ay = {acA|(@R)* £ M}. If R is a ring with 1 such that it
contains no nonzero nilpotent elements then R is biregular (see [2:
p. 104] for definition) if and only if every prime ideal of R is a
maximal ideal. Our results here generalize S. Teleman’s result
that in case 1le R, a strongly semi-simple harmoniec ring or a von
Neumann algebra can be represented as a ring of global sections of
the sheaf of local algebras over its maximal modular ideal space
(refer [5], [6] and [7]). The author wishes to express his gratitude
to Professors K. H. Hofmann and S. Teleman for their many in-
valuable suggestions for the preparation of this paper.

2. Let R be aring and A be a right BR-module. For each prime
ideal M of R, define A, = {ac A | (aR)* £ M} where aR, is the sub-
module of A which is generated by the element a and (aR)* =
{re R|aRyr = 0}.

ProrosiTiON 2.1. A, s a submodule of A.

Proof. Leta,beAy. Then (a—b)R, SaR,+bR, and (c—b)R)* 2
(@R, +bR)* = (aR)* N (bR)* 2 (aR)*(bR)*. Henceif a —b¢ A, then
(aR)*(bR)* < M and either (aR)* & M or (bR)* & M since M is a
prime ideal of R. Hence either a ¢ A, or b¢ A,,. This is impossible.
Thus o« —beAd,. Now if reR and ac A, then arR, = aR, and
(arR)* 2 (aR)*. Since (aR)* £ M, (erR)* £ M and arec A,.

COROLLARY 2.2. If A is R, whose module multiplication is given
by the ring multiplication, then A, is an ideal of R which is con-
tained in M for any prime ideal M of R. In this case, we denote
A, by O(M).

Proof. O(M) is already a right ideal of R by 2.2. Let re¢ R
and a € O(M). Then (raR)* 2 (aR)*. Since (@R)* & M, (raR)* & M
and ra e O(M).

ProprosiTION 2.3. If A s a right R-module for some ring R
then AOM) < Ay for any prime ideal M of R.

Proof. Since A, is a submodule of A, it suffices to show that if
a€ A and € O(M) then axe A,. But this is immediate since (axR)* 2
(xR)* and (xR)* £ M.
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THEOREM 2.4. Let R be a ring such that tf < 18 a proper
ideal of R thenm there is a maximal modular ideal M in R such that
P < M. Let A be a right R-module such that if aR = 0 for some
ac A then a =0. Then N{Ay|M is a mazimal modular ideal of
R} s zero.

Proof. Let ae {4, | M is a maximal modular ideal of R} such
that ¢ = 0. Then (aR)* # R, for if (aR)* = R then aR =0 and
a = 0. Since (aR)* # R, (aR)* is a proper ideal of R. Hence there
is a maximal modular ideal M in R such that (e¢R)* & M. This
means that a¢ 4, and a¢ {4, | M is a maximal modular ideal of
R}. This is a contradiction.

COROLLARY 2.5. If R 1s a ring with 1 and A is a wunitary
right R-module, then (M {AOM)| M is a maximal ideal of R} is zero.

Proof. By 2.4, M{4,| M is a maximal ideal of R} = 0. Since
AO(M) < A, for any prime ideal of R by 2.3, the conclusion now
follows.

DEFINITION 2.6. We say that a ring R is strong harmonic
provided that for any pair of distinet maximal modular ideals M,
M, there exist ideals .o, <& in R such that & &£ 7, & & _+#,
and <% = 0.

PropoSITION 2.7. If R is strongly harmonie, then _Z(R) ts
Hausdorff.

Proof. If M,, M, are distinet maximal modular ideals of R, then,
by definition, there exist ideals .o and <& such that & & M,
B L M,and &7 # =0. Therefore, two open sets {Me #Z(R) | . & M}
and {Me #Z(R)| <Z & M} are disjoint.

ExampLE 2.8. Let R be a strongly semi-simple ring, that is a
ring in which the intersection of maximal modular ideals is zero.
If the maximal modular ideal space, .#(R) with the hull-kernel
topology, is a Hausdorff space, then R is strongly harmonic.

ExampLE 2.9. If R is a ring with 1 such that it is strongly
harmonic then it is harmonic. However, if 1¢ R then a strongly
harmonic ring may not be harmonic. For example, let R be the
algebra of sequences (a,),s, of 2 X 2-matrices over the field of complex

numbers C, such that an—><3 8) for n— o for some e C. Then
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the intersection of the maximal modular ideals of R is zero and
A (R) is Hausdorff. Hence R is strongly harmonic; however, it is
not harmonic.

ExaMPLE 2.10. Let R be a von Neumann algebra. Then for
any distinet pair of maximal ideals M,, M, there exist central
idempotents e,, ¢, in R such that e, ¢ M,, e, ¢ M, and such that e,-¢,=0.
Hence R is strongly harmonic.

ExampLE 2.11. Let @ be the field of rational numbers and let
Dy, Dy, P, be a finite number of distinct prime numbers. Let
R ={m/ne@Q|n is not divisible by any »,1 =<7 =1{}. Then #Z(R)
consist of [ points and it is a Hausdorff space. However, since R is
an integral domain, R is not strongly harmonic if 7 > 1.

DEeFINITION 2.12. Let R be a ring and M be a maximal modular
ideal of R. An ideal ¢ in R is said to be M-primary, for some
maximal modular ideal M of R, provided that ©~# S M, R/ is a
ring with a unique maximal modular ideal M/~”, and if P is an
ideal of R such that P< ¢« and P+ ¢, then R/P is not a local
ring. Here, by a local ring we mean a ring with a unique maximal
modular ideal.

ProrosiTION 2.13. Let R be a ring and M be a maximal modular
ideal of R. If am M-primary ideal, say 7, exists, then it is unique.

Proof. Let & be a M-primary ideal of R. If either & & &
or 7 <& . then, by definition, & = ¢. So assume & N & is
properly contained in ¢ or <. Then the ideal ~°& is properly
contained in ¢ and R/ is not a local ring. Hence there is a
maximal modular ideal N in R such that N+ M and &< & N.
Since N is a prime ideal, this means that either & & N or & & N.
In either case, this means that < or & is not M-primary. This
is a contradiction.

ProrosiTION 2.14. Let R be a ring such that if R/ is a local
ring for some ideal & in R, then R/ has a unit. If R/OM) is a
local ring for some maximal modular ideal M in R, then O(M) s
M-primary.

Proof. Observe that O(M) & M. Hence M/O(M) is the unique
maximal modular ideal of the local ring R/O(M). Let & be an
ideal of R such that & < OM), & + O(M) and R/<” is a local
ring. Let te O(M) such that t¢ &% Then (tR)*Z M. If & +(tR)*+#
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R then there is 2 maximal modular ideal N in R such that &7 +(tR)‘'S
N, since R/<7 has a unit. Since (tR)* & M, this means that M= N.
This is impossible. Hence R = & + (tR)*. Let e+ & be the
identity of R/&” for some ec R. Then ¢ = p + s for some pe P
and se(tR)*. Hence te =tp and t —te =t — tpe &2 This means
that te.&” and this is a contradiction. Thus O(M) must be M-
primary.

THEOREM 2.15. Let R be a ring such that if R/ is a local
ring for some ideal 7, then it has o wunit. Then R s strongly
harmonic if, and only if, O(M) is M-primary for every maximal
modular ideal M in R.

Proof. Assume R is strongly harmonic. By 2.14, it suffices to
show that R/O(M) is a local ring for each maximal modular ideal M
of R. If R/O(M) is not a local ring for some maximal modular
ideal M, then there is a maximal modular ideal N in R such that
N+ M and O(M) = N. Since R is strongly harmonie, there exist
ideals . and <& such that & £ N, &# £ M and <% = 0. This
means that .o < O(M). Since O(M) & N, % < N. This is a con-
tradiction. Conversely, assume O(M) is M-primary for each maximal
modular ideal M of R. Let M,, M, be two distinct maximal modular
ideals or R. Then OM,) & M, and O(M,) £ M,. Hence there exist
aec O(M) such that a¢ M, and be O(M,) such that b¢ M,. Then (b),
the ideal generated by b, is not contained in M. Let & = (b) and
let <# = (bR)*. Then & £ M,, &Z &£ M, and ¥ <Z = 0.

REMARK 2.16. If R is a strongly semi-simple ring with 1 such
that _#(R), the maximal modular ideal space of R, is a Hausdorff
space, then by [5: Theorem 6.5] and [5: Theorem 6.15], the M-primary
ideal exists for each maximal modular ideal M in R. In this case, the
M-primary ideal p(M) is given by the set {xe R |supp (RzR) N {M} =
¢}, where supp(RzR) ={Me #(R)|RxRZ M} by [5: Theorem
6.14].

3. If & is an ideal of a ring R, let

supp (.&7) = {Me Z(R)| & £ M}, MA) = _#Z(R)\supp (),
k(F) = N {Me_#(R) [MeF}.

THEOREM 3.1. Let R be a ring and let
Z(R) = U{R/O(M) | Me #(R)},
the disjoint union of a family of rings {R/OM)| Me _#(R)}). For
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each re R define 7 to be the function from _#(R) into Z(R) such
that #(M) = r + O(M) for each Me #(R). Let = = {#(U)|re R and
U is an open set in _#(R)}. Let p be a family of sets comsisting
of arbitrary wunions of the members of . Then (Z(R), 0) is a
topological space and each point #(M) of F#(R), rc€ R and Me _#(R),
18 contained tn an open set which is homeomorphic to an open set
of _# (R) under the canonical projection: ¥(M)|— M, that is, 2 (R)
is a sheaf of rings over _#(R).

Proof. In ne?(U)N7,(V) for some 7, r.€¢ R and some open
sets U, V in _~(R) then there is M e UN V such that », — r,€ O(M).
Hence ((r, — r)R)* £ M. Let W= Un VN supp ((r,—1)R)"). Then
MeW and ne? (W) S 7 (U) N 7(V). Since W is an open set of
#(R), ¥(W)et and hence (#Z(R), p) is a topological space. In
view of [1: 2.2 p. 151], it suffices to show that if #(M) = 0 for some
reR and Me _(R) then there exists an open set U of M such
that #(U) = 0. But this is immediate since if #(M) = 0 then e O(M)
and (»R)* < M. Therefore, if we let U = supp (rR)*) then #(U) =0
gince re N {O(M)| Me U}.

THEOREM 3.2. Let R be a strongly harmonic ring. If F is a
compact subset of _#Z(R) and M,¢ F for some M,e _(R) then there
exist ideals &7 and & such that &7 <F = O, M,csupp (&) and
F < supp (£2).

Proof. Since R is strongly harmonic, for any Mec F' there exist
ideals .&7’, #' in R such that M, e supp (."), Mesupp (£Z’) and
' #' = 0. Since F is compact, there exist a finite number of
ideals, say .57, %%, *++, %7, B, B, +++, B, such that

M, & () Supp (.7}) = SUpp (.84.5% + + » ¥7)

and F < U7, supp (&) = supp 3.1, <&, such that 4<%, = 0 for all
1=1,2 +«+,m, and (4% -+ V), &) = 0.

THEOREM 3.3. Let R be a strongly harmonic ring. If F 1is a
compact subset of _#(R) then F = (O {O(M)| Me F}).

Proof. Since Nyer OM) S k(F), F < h(Ny.r O(M)). Suppose
there is M,e W({Nyer O(M)) such that M,¢ F. Then by 3.2 there
exist ideals .o, < in R such that M,esupp (%), F < supp (%)
and W =0. Hence if McF then <& & M and & = O(M).
Thus A & Nyer OM). Since M, h(Ny-» O(M)), this means that
&7 & M, and this is a contradiction.
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THEOREM 3.4. Let R be a strongly harmonic ring with 1 and
let . F#(R) be the sheaf of local rings over _.Z(R), which is described
in 3.1. If F, is a compact subset of _Z(R) and 0 is a section from
F, into #(R), then there is re R such that |, = 0.

Proof. If M,e F, then there exists an open set U in _~Z(R)
which contains M, and e R such that if Me UNF, then o(M) =
(M). Let U,= _~Z(R\F, Since _.Z(R) is Hausdorff by 2.7, F, is
a closed set. Hence U, is an open subset of _(R). There exist a
finite number of points M, M,, --+, M, in F,, open sets U,, U,, ---, U,
such that M;e U;,, 1 =1,2, ---, n, and », 7, --+, 7, in R such that
o(M) =#,(M) for every Mec U; N F, for every 1 =1, 2, --+, n. Further-
more, F,eUr, U; and _Z(R) = Ur, U,. Let F,= _~Z(R)\U; and
let I, = Nyer OM) for each ¢ =0,1,2, ---, n. Since F; is a closed
subset of a compact space, it is compact. Hence F'; = h(l;) for each
t= 0, 1, 2, e, m by 3.3. Since ¢ = n:&fo F;, = n?:o h(L) = h(Z:L:o L)y
R=3" I and 1= >,¢ for some e¢cl, 1=0,1,2 +--, n. If
MecF,NF, then #(M)é,(M)= OM) =oc(M)é,(M). If Me U;NF,,
then 7,(M)é,(M)=o(M)é,(M). Hence, for every Me F,, 7#;,(M)é,(M) =
g(M)e,(M). Thus if we let r = ¢, + >\7,7¢;,, then for every

Me F,#(M) = é,(M) + ; #(M)&,(M)
= o(M)2,(M) + 3, o(M)2,(M)
= o(M)(X &) = o(M) -

COROLLARY 3.5. If R s a strongly harmonic ring with 1 then
R = I(_Z(R), #R)).

Proof. By 2.5, r+— 7 is a monomorphism from R into I'(_#(R),
Z#(R)). Since _Z(R) is a compact space, by 3.4 if e I'(Z(R),
“#(R)) then there is re R such that ¢ = #. Thus r+— # is an iso-
morphism of R onto I'(_Z'(R), Z#(R)).

DEFINITION 3.6. We say that a sheaf .<# over the space X is
soft provided that if F' is a compact subset of X and oge I'(F, &)
then there is ¢ ¢ I'(X, &) such that 7|, = g.

THEOREM 3.7." Let R be a strongly harmonic ring with 1. Then
the sheaf Z(R) of local rings which 1is constructed in 3.1 s soft.
Conversely, if 2 1s a soft sheaf of local rings over a Hausdorf
compact space _., then I'(_Z, ) is a strongly harmonic ring.

I The author is indebted to Professor S. Teleman for this theorem.
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Proof. By 3.4, ZZ(R) is soft if R is a strongly harmonie ring
with 1. Suppose now that <# is a soft sheaf of local rings over a.
Hausdorff compact space _#. Let R = I'(_#, ). By Theorem 11
of [6: p. 712], . # is homeomorphic to _# (R). Hence we may take
R =I(#(R), &#). Since _# is Hausdorft, if M, M,e _#(R) such
that M, = M, then there exist open sets U;, 1 =1, 2, in _#(R) such
that M,e U,, M,e U, and U, N U, = ¢. If o0e R, define

lo| ={Me _7Z(R)|o(M) =+ 0} .

Let A, ={oeR||lo|S U}, i =1,2. Clearly, A, A, are ideals of R
and 4,4, = 0 = A,A, since U, N U, = ¢. There exists compact sets
K, K, such that M;e K; and K, S U;, i = 1,2. Let F;, = _Z(R\U..
Since .&# is soft there exist o, in I'(_#(R), &) such that ¢(K,) =1
and o;(F;) =0, ¢t=1,2. Hence A4, M; for +=1,2. Thus R is
strongly harmonie.

RemMARK 3.8. Let R be a ring and A be a right R-module. We
will associate with A a sheaf if .#(R)-modules over _#(R) (refer
[4] for definition). For Me _# (R), denote A=U{4/A, | Me _7(R),
the disjoint union of a family of R-modules A/A4, indexed by _#(R).
Let 7 Ar _#(R) be given by (M) = AJA,. For acA and
Me _#(R), let t (M) be the image of «, under the natural homo-
morphism of A onto A/A,. Topologize A by taking all sets t,(U),
with ac 4, U is an open set in _# (R), as a basis for the open sets.
Then A4 becomes a sheaf of .z (R)-modules over .~ (R). The justi-
fication of this statement and proof of this result require only slight
modifications of 3.1.

THEOREM 38.9. Let R be a strongly harmonic ring with 1 and
let A be a unitary right R-module. Then the mapping &, a1, 1s a
semi-linear isomorphism of A onto the I'(_Z(R), F#(R))-module
I'(_#(R), A) in the sense that &, is « group isomorphism satisfying
Efary = t,-7 forac A, re R where t,(M) = a + A, forall me _#Z(R).

Proof. We omit the proof because it is only a variant of the
proof of 3.4. However, it is worth noting that the full strength of
2.4 is needed here to prove that &, is an injection.

4, A ring is called biregular if every principal ideal of the ring
is generated by a central idempotent. In [2], Dauns and Hofmann
proved that if R is a ring with 1 then R is biregular if and only
if R is isomorphic to the ring of all global sections of a sheaf of
simple rings over a Boolean space. By applying this theorem, we
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will show that if R is a ring with 1 such that it contains no nonzero
nilpotent elements then R is biregular if, and only if, every prime
ideal of R is a maximal ideal of R.

PROPOSTION 4.1. If R is a biregular ring then every prime ideal
M of R is a maximal ideal of R.

Proof. If R is biregular then so is the ring R/M for any ideal
M of R. Hence if M is a prime ideal then R/M is a prime biregular
ring. Therefore, R/M contains no proper principal ideal for if R/M
contains a proper principal ideal, then R/M would have two nonzero
ideals whose product is zero. Thus R/M is a simple ring and M is
a maximal ideal of R.

PROPOSITION 4.2. Let R be a ring and M be a prime ideal of
R. Define Oy = {xeR|xy =0 for some y¢ M}. If R contains mo
nonzero nilpotent elements then O, = O(M).

Proof. Clearly O(M) € Oy. If z, y are elements of R such that
2y = 0 then yx is zero sinece yryxr = 0 and R contains no nonzero
nilpotent elements. Furthermore, if »e R, xry = 0 since zry xry = 0.
Thus O(M) = O,.

ProrosiTiON 4.3. Let R be a ring without mnilpotent elements.
If every prime ideal of R is maximal, then M = O(M) for every
prime wdeal M of R.

Proof. If every prime ideal of R is maximal, then every prime
ideal is a maximal prime ideal. Hence by [3: 2.4], M = O, for each
prime ideal M of R. Thus by 4.2 M = O(M).

ProrosiTioN 4.4. If R is a ring with 1 such that R contains no
nonzero nilpotent elements and if every prime ideal of R is maximal,
then _#(R) 1s a Boolean space.

Proof. This is a direct consequence of [3: 2.5].

THEOREM 4.5. Let R be a ring with 1 such that it contains no
nonzero mnilpotent elements. Then R is biregular if, every prime
ideal of R 1s maximal.

Proof. If R is biregular then by 4.1, every prime ideal is
maximal. Conversely, suppose that every prime ideal of R is maximal.
Since R is a ring without nilpotent elements, the intersection of



468 KWANGIL KOH

prime ideals of R is zero. Since _#(R) is a Hausdorff space by 4.4,
if M,, M, are two distinct elements in _#(R), then there exist ideals
. and <# such that &% &€ M,, <# £ M, and <% = 0. Hence
O(M) is M-primary for every Me _#(R) by 2.13 and thus R =
r'(#R), #(R)) by 38.5. Since _#(R) is a Boolean space by 4.4
and M = O(M) by 4.3, R is a biregular ring by [2: 2.19, p. 108].
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