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ON THE ZEROS OF A POLYNOMIAL AND
ITS DERIVATIVE

Q. I. RAHEMAN

Let all the zeros of a polynomial p(z) of degree » lie in
iz] £1. Given a complex number ¢ what is the radius of
the smallest disk centred at a containing at least one zero
of the polynomial (z—a)p(2))’? According to Theorem 1 the
answer is (Ja |+ 1)/(n+1) if |a| > (n+2)/n. Theorem 2 which
states that if both the zeros of the quadratic polynomial
p() He in |2] =<1 and | a| <2 then ((z—a) p(z)) has at least
one zero in

l2—a| £ {8la|+ 12-3]a|?)V2}/6

completely settles the case n = 2.

For |a| =1 the question is equivalent to a problem in [1, (see
problem 4.5)] which reads as follows: Is it true that if all the zeros
%, %y v+, 2, of the polynomial »{z) = ¢ [[°.,(r—=z,) lie in the disk
[z] =1 then p'(z) has at least one zero in each of the disks
l2—2, | =1, v=1,2 --., 2?7 It has been shown by Rubinstein [2]
that if all the zeros of the polynomial p(z) lie in |2]| <1 and p(1) =0
then at least one zero of p’(2) lies in the disk {z—1]| < 1. On the
other hand, the example 2" — 1 shows that a disk of radius less than
1 may not contain a zero of (). Thus when |a| =1 the answer
to our question is 1.

If a is arbitrary the problem is trivial for » = 1 and the answer
to the question is (e |+1)/2 = (ja|+1)/(n+1).

For polynomials of arbitrary degree n we prove

THEOREM 1. If all the zeros of a polynomial p(z) of degree n lie
. the closed unit disk then ((z—a)pz)) has one and only one zero
| z—a|l = (la]+ 1/(n+1) provided | a|> (n+2)/n. The remaining
n—1 zeros of (z—a)p(r)) liein |z|<1. The example p(z) = (z+¢e')"
where ¢ = arg a shows that the result is best possible.

The disk [z—a| = (Ja]| + 1)/(n+1) may contain more than one
zero of ((z—a)p(z)) if |a| = (n+2)/n. That it contains at least one
follows from the fact that the zeros of ((z—a)n(z))’ are continuous
functions of a.

The next theorem gives a solution of the problem when
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la] = (n+2)/n and n =2,

THEOREM 2. If both the zeros of the quadratic polymomial p(z)
liein |2| =<1 and {a| = 2 then ((z—a)p(?)) has at least one zero in

lz—a| = {8]a]| + (12-8|a)"}/6 .
The example
() = 22 — 2[{8—a(12—-8a?)"}/{8a —(12—3a®)¥}]z + 1,0 a = 2

shows that the result is best possible.

For the proof of Theorem 2 we shall need the following lemma
[3, p. 36].

LEMMA. If both the zeros of the polynomial
2
Az) = a, + <1> 0,2 + a2
lie in | 2| = » and those of
2
B(z) = b, + (1)1)12 + b,2*
lie in | 2| > s then both the zeros of the polymomial
2
C(2) = azb, + (1>a1blz + a,b,2°

lie in | 2| > rs.
Proof of Theorem 1. Let
@) = ¢ I (:—2)

where by hypothesis |2, | <1, v=12, +-., n. For a given z, with
|2, > 1 the transformation 1/(z,—z) maps the closed unit disk onto
some disk D(z,) in the finite plane. Thus all the numbers 1/(z,—2),
1/(z,—2,), -+, 1/(2,—2,) belong to D(z) and hence so does their
arithmetic mean p¢(z,). But there exists a unique point ¢(z,) in the
disk |z| =1 such that p(z,) = 1/(z,—¢(z,)). Consequently

P'(2)/p(2) = n/(2,—6(20)) -

Since z, in an arbitrary point outside the unit disk we get the
representation
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P'(2)/p(z) = n/(z2—$(2))

where ¢(z) = z—n {p(2)/p’(2)} is holomorphic and of absolute value at
most 1 in |z| > 1.
If Ja| > 1 then

P'(2)[p(z) = ny(2)[{(z—a)yr(z) — 1}
where () = 1/(¢(2) —a) is holomorphic in [z]| > 1 and
(1) lel+D =iy @I =1(al-1).
Since
{(z—a)p'(2) + p(2)}/p(2) = {(n+1)(z—a)y(z) —1}{(z—a)y(z) — 1)

the zeros of ((z—a)p(z))" are the same as the zeros of (n +1)(z—a)yr(z) —1.
Now if |a| > ®n+2)/n and (Ja|+1)/(n+1) <|z—a|<|a|—1 then
from (1)

[ (n+D—a)y() | > 1.

Hence by Rouché’s theorem (n+1)(z—a)y(2) —1, (n+1)(z—a)y(2) have
the same number of zeros in |[z—a| = (lal+1)/(n+1), namely 1.
Given é&efz:|z| =21} Uz |z—a| = (Ja|+1)/(n+1)} we can draw a
contour C such that {z: |z—a| < (Ja|+1)/(n+1)} and the point & lie
in C; (the bounded domain determined by C) whereas {z: |z | < 1} lies
in C, (the unbounded domain determined by C). According to the
above reasoning ((z—a)p(z))’ has one and only one zero in C,. Since
we know that the zero lies in |z—ea| =< (a|+1)/(n+1) the point ¢&
cannot be a zero of ((z—a)p(z))’. Hence the remaining n — 1 zeros
of (z—a)p(z)) lie in |2z| < 1.

REMARK. Theorem 1 may be vrefined by observing that
n+1DE—a)viE) —1= @+ DE— a)s(z) — a)™ — 1 can vanish only
if z —na/(n +1) = ¢(z)/(n +1). Hence in fact ((z — a)p(z)) has one
and only one zero in D = {z:|z — na/(n + 1)| £ 1/(n + 1)}. By con-
sidering p(z) = (z — 2,)* with an appropriate z, in the closed unit disk
we see that any given point of D can be a zero of ((z — a)p(z)).

Proof of Theorem 2. Without loss of generality we may suppose
0=a=2. Let

() = @, + a2z + a2
and put

f(z) = (z—a)p(z)) = (a,—aa,)) + 2(a,—aa)z + 3a2*,
s = {3a + (12—3a%)"}/6 .
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We wish to prove that f(z) must vanish is |z—a | =< s. If not, both
the zeros of

2
B(z) = f(z+a) = a, + aa, + @’a; + (1)(a1+2aa2)z + 3w

lie in 2] >s. Since both the zeros of
2
AR =1+ (1><1/2>z - (132

lie on {z| = V'3 the lemma implies that both the zeros of the poly-
nomial

C(z) = a, + aa, + da, + (a,+20a,)2 + 0,2 = p(z+a)

lie in |2|>1'38s, i.e., the polynomial p(z) does not vanish in
[z2—a| =1 3s. We can therefore find a positive number ¢ such that
the disk |2 — (@—2s) | < s — ¢ contains both the zeros of »(z). Now
it can be easily deduced from Theorem 1 that ((z—a)p(2))’ has one
and only one zero in |z—a| < s — ¢/3. This completes the proof of
Theorem 2.
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