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This paper extends several of the classical oscillation
criteria for the Sturm-Liouville equation (au')r + cu = 0 to
selfadjoint elliptic equations of the form

Σ JL(a, ĵίttX
— 0 .

Oscillation criteria for selfadjoint second order elliptic equations
have been established by several authors [6], [3], and [4], generalizing
the classical theory for Sturm-Liouville equations. The specific oscil-
lation criteria of these studies have been stated in terms of functions
which are poίntwise majorants and minorants of the coefficients of an
elliptic equation which arise naturally by separation of variables in
various coordinate systems. Thus, for example, while Swanson and
Headley [3] establish oscillation criteria of "limit type" and "integral
type", the limit and integral tests must be applied to pointwise
majorants and minorants which may not accurately reflect the limit
or integral behavior of the coefficients of the equation under study.

In the present paper we establish oscillation criteria for elliptic
equations in terms of majorants and minorants obtained by an averaging
process. Specifically, in §2 an ordinary differential equation is derived
which, if oscillatory at °o, implies oscillatory behavior for An + c(x)u —
0 in En. Applying an integral oscillation criterion to this ordinary
differential equation leads to results such as the following

(THEOREM 3.1): if \\ c(x, y)dx dy = oo, then Δu + cu = 0 is nod-

ally oscillatory in E2.
The elliptic equations under study will be of the form

(1.1) ±J
i,3=l OX

where c(x) is continuous and the aί3{x) are of class C 1 in En. Points

in En are denoted by x = (xί9 , xn), and \x\ = Vx\ + + xl. We

define ER = {xeEn: \x\ > R}, and if G is a domain in En, then GR =

Gf)ER.
The elliptic equation (1.1) is said to be nodally oscillatory in En

if for every R > 0 there is a domain G (zER such that G is a nodal
domain for a solution of (1.1). By the Sturmian comparison theorem
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for elliptic equations (see for example [7]), if (1.1) is nodally oscillatory
in En, then any global solution of (1.1) has a zero in every ER.

Our basic tool, Theorem 2.2, is established in §2 below. In §3
we apply this Theorem to Δu + cu — 0 in the case n = 2 by exploiting
known oscillation criteria for Sturm-Liouville equations of the form

l/(p(x))dx = oo. In case n > 2 we are led
to Sturm-Liouville equations for which 1 l/(p(x))dx < oo, and this case

is considered in §4. More general elliptic equations of the form (1.1)
and (1.2) are considered in §5, while §6 is devoted to oscillation criteria
for Δu + cu = 0 in unbounded domains,

2* The related ordinary differential equation* Our principal
tool is based on a special case of a theorem due to D. 0. Banks [1].
Considering a nonnegative real valued function φ(x) which is defined
and measurable on a domain G c En, we define

G(y) = {x: φ(x) ^ y} .

Theorem 1 of [1] then implies the following

THEOREM (Banks) 2.1. // f(x) is continuous in G and satisfies

\ f(x) dx ^ 0
JG(y)

for all ye[O, co), then

\ f(x)φ(x) dx ^ 0 .
JG

REMARK. While Banks proved Theorem 1 of [1] in E2, his method
of proof works equally well in En.

Consider now the equation

(2.1) Δu + c(x)u = 0 in En

where c(x) is continuous in En. Letting (r, Θ) denote hyperspherical
coordinates for En, volume integrals over annular regions can be
written in the form

where Ω denotes the full range of the angular coordinates. Letting

Σ . = ί dθ
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denote the area of the unit sphere in En

9 we define

7(r) = J L f φ , θ)dθ .

It follows readily from this definition that

(2.2) ( [c(r, θ) - τ(r)] dθ = 0

for 0 ^ r < oo. Our principal tool is the following.

THEOREM 2.2. If the ordinary differential equation

(2.3)
dr

is oscillatory at r = oo, then (2.1) is nodally oscillatory in En.

Proof. Consider the equation

(2.4) Av + j(r)v = 0 -

where Ί{r) is defined as above. Equation (2.4) has solutions v(r) which
are independent of θ, and these can be found by solving (2.3). If (2.3)
is oscillatory, then there exists a function v^r) which satisfies (2.4)
and has a sequence of annular nodal domains determined by the zeros
of vjj), rλ < r2 < ••• where lim^^ rk — oo. In each annular nodal
domain G{k) = {(r, θ): rk_γ < r < rk), the function vλ(r) is the first eigen-
function of

Av + j(r)v + μv = 0 in G{k)

v{r, θ) = 0 on dGik)

corresponding to μλ = 0. Furthermore the level curves (surfaces) of
v\ are circles (spheres). Therefore if φ(x) = v\(x) in Theorem 2.1 and

G{k)(y) = {.τ: ^(a?) ^ 2/}

then by (2.2)

[ [c(r, θ) - 7(r)]da; = 0

for all y ^ 0. Therefore by Theorem 2.1

\ cv\dx — \
J G(k) J C

for k = 1, 2, . . . .
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Consider now the eigenvalue problem

(2.6)
Au + c(x)u + Xu = 0 in G{k)

u = 0 on dGik) .

By the standard variational characterization of Xx we have

(\Fu\2 - cu2)dx \ (\Vvγ\
2 - cv^dx

u2dx \ v\dx
G(k) JG{k)

( | F ^ | 2 - yvl)dx
G{k) -

L*
where Φ denotes t h e class of "admiss ib le" functions for (2.6). There-
fore λx ^ 0 and, by classical var iat ional techniques, for each G{k) t h e r e
exists a subdomain G\k) £ G(fc) for which t h e eigenvalue problem

zίu + en + λ '^ = 0 in G[k)

u ~ 0 on dG'fc)

satisfies λ( = 0. This completes t h e proof.
An application of t h e S t u r m i a n comparison theorem for elliptic

equations [7] yields t h e following resu l t .

COROLLARY 2.3. If (2.3) is oscillatory at r = oo and n(x) is a
solution of (2.1), then u(x) has a zero in ER for every R > 0.

3. T h e case n = 2. In case n = 2 equation (2.3) becomes

(3.1)

and the Leighton oscillation criterion [8] asserts that (3.1) is oscillatory
at r = oo if

(3.2) \~rγ(r)dr = + oo .
Jo

Recalling the definition of τ(r) we have

(3.3) \~ry(r)dr = -L[ΎPc(r, β)dθ\r dr - - U ( c(.
Jo 2ττJoLJo J 27rJJ^2

These observations t o g e t h e r w i t h Theorem 2.2 yield

T H E O R E M 3.1. / /
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I I c(x, y)dxdy = + oo
} JE2

then Δu + cu — 0 is nodally oscillatory in E2.

The transformation t = In r transforms equation (3.1) into

(3.4) *L1 + β"7(β'M*) = 0

and leaves oscillation invariant. A result of Hille [5] asserts that

(3.4) is oscillatory if

(3.5) 1 . < lim inf t\° e2sΊ{es)ds .

Using the change of variables s = In r and equation (3.3) we obtain

THEOREM 3.2. / /

— < lim inf (In r)\ \c{x, y)dxdy
2 r->co jErJ

then An + cu — 0 is nodally oscillatory in E2.
Nehari [9] shows that if j(r) ^ 0 and

S o*

e2sΊ{es)ds — co
t

then

4 ^ + λe7(e)v(ί) = 0
dt2

is oscillatory for all positive λ. Using Nehari's result, the change of
variables s — In r, and Theorem 2.2, we obtain

THEOREM 3.3. If c{x, y) ^ 0 and

limsup(lnr)\ \c(x, y)dxdy — oo
r—>oo j E J

then Δu + Xc(x, y)u = 0 is nodally oscillatory for all positive λ.

4* The case n > 2* In the case w > 2 equation (2.3) does not
satisfy the conditions of the Leighton oscillation criterion [8]. However
this difficulty can be overcome by making the oscillation-preserving
transformation <p(r) = r{n~ί)l2v(r). Equation (2.3) then becomes

(4,1) φ" + [7(r) - (n - l)(n - 3)/4r2]cp = 0 .
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The Leighton oscillation criterion applied to (4.1) together with Theorem
2.2 yields

THEOREM 4.1. / /

S oo

y(r)dr = co

then Δu + cu = 0 is nodally oscillatory in En.

THEOREM 4.2. If

(4.2) ^ ~ 2 ) 2 < lim inf r2j(r)
4

then Δu + cu = 0 is nodally oscillatory in En.

Proof. Condition (4.2) implies that there exist constants r0 and
k such that

^ "~ 2 ) 2 < k < r2τ(r) for r0 < r .
4

Thus the Euler equation (rn~ιvr)r + krn~3v = 0 is oscillatory and (2.3)
is oscillatory by Sturm's comparison theorem.

Theorem 4.2 improves similar results by Glazman [2] and Headley
[4]. We shall now extend Theorem 3.2 to the case n > 2. A simple
application of Hille's classical result (3.4) to equation (4.1), together
with Theorem 2.2, yields

THEOREM 4.3. If

(n - 2)2

4
< lim inf r\ y(r)dr

then Δu + cu = 0 is nodally oscillatory in En.

Theorem 4.3 improves a result of Swanson [10].
Using (3.5) and equation (4.1) we obtain

THEOREM 4.4. If

lim sup r\ j(r)dr =
r->oo J r

then Δu + Xcu = 0 is nodally oscillatory in En for all positive λ.

5* A more general equation* In this section we shall sketch
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the proof of oscillation criteria for the more general elliptic equation

(1.1) Σ 4-{^i^)^) + °(Φ = 0

in En. We denote by N(r, θ) the largest eigenvalue of the matrix
A(x) = (cLij(x)) at x — (r, θ) and define

v(r) = y-\QN(r, θ)dθ .

By classical variational principles the first eigenvalue of

Σ ^-(au^-) + c(x)u + \u = 0 in G
i ύX\ όX(5.1)

u = 0 on dG

is no larger than the first eigenvalue of

V (N(r, θ)Vu) + c(r, θ)u + λ^ = 0 in G
( 5 ' 2 ) w = 0 on 3G .

Thus to show that (5.1) is nodally oscillatory in En it is sufficient to
show that (5.2) is nodally oscillatory. To that end, consider the
eigenvalue problem

/ κ o\ P-(v(r)Fv) + y(r)v + μv = 0 in G

v = 0 on dG

and the related elliptic equation

(5.4) F-(v(r)Pv) + j(r)v = 0

where τ(τ) is defined as in §2. Equation (5.4) has solutions v(r) which
are independent of θ and can be found by solving the ordinary
differential equation

(5.5) Afr^vir)—) + r^iiφ - 0 .
dr\ dr/

THEOREM 5.1. If the ordinary differential equation (5.5) is oscil-
latory at r = o°, then (1.1) is nodally oscillatory in En.

Proof. As in the proof of Theorem 2.2 let rι < r2 < be the
zeros of a solution v^r) and consider the domain

Gιk) = {(r, θ): rk<r< rk+ί} .

Then vSx) is an eigenfunction of (5.3) corresponding to μγ = 0. Since
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the level curves (surfaces) of v1 and of Fv1 = dv/dr are circles (spheres)
it follows as before that

I yiήdx = \ cv\dx

and

\ N\Vv,\2 dx = \ v\Vvγ\
2 dx

JG(k) JG(k)

for k = 1, 2, . The first eigenvalue of (5.2) is given by

f (NI Vn |2 - cu2)dx ( (N\ Vvx |
2 - cvl)dx

λx = min — — — g G{k)

u2dx v\dx
* G{k) J G(k)

\ (^l^^il2 — Ίvf)dx
(&) — = μ, - 0 .

S 'vfcίa;

Therefore Xί ^ 0, and the remainder of the proof follows as in
Theorem 2.2.

6* Unbounded domains* In this section we shall study the
oscillatory behavior of solutions of Vu + cu = 0 in unbounded domains
G. For the sake of simplicity we shall restrict our attention to
the case n = 2, even though some of the results clearly generalize
to En.

Consider first a conical domain

G - {(r, θ) eE2:a<θ< β)

and suppose that c(x) is continuous in G. Defining

7(r) = — t — c(r, θ)dθ ,
β - a)«

we shall obtain oscillation criteria for certain solutions of Au + cu = 0
in G. If the ordinary differential equation

(6.1) 4Ίrτ

dr\ dr

is oscillatory at r = ©o, then v(τ) is also a solution of

(6.2) Av + Ί{r)v = 0 in G

satisfying dv/dv = 0 on dG, where dv/dv denotes the exterior normal
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derivative. Furthermore if v^r) is a solution of (6.1) with zeros at
rx< r2< , lim*..^ rk — oo, then vjj) defines a sequence of domains

G(/o = {(r, θ): rk<r< rk+1; a < θ < β)

in which the first eigenvalue of

Δv + y(r)v + μv = 0 in G{k)

(6.3) v = 0 on 3G(fc) Π {r: r = rk or r = rw+1}

— = 0 on 5G(fc) Π {#: 0 = α or θ = β}
dv

satisfies μγ = 0 for k = 1, 2, .
By an argument analogous to that used in Theorem 2.2 one

concludes that the first eigenvalue of

Δu + c(x)u + Xu = 0 in G{k)

(6.4) w = 0 on 3(z(Jfc, Π {r: r = rk or r = rk+ι}

— = 0 on 3G(fc, Π {̂ : θ = a or 5 = β)

satisfies X, ^ 0 for k = 1, 2, . An application of the Sturmian com-
parison theorem of [7] yields the following result.

THEOREM 6.1. If u(x) is a solution of ju + cu in the cone G
satisfying du/dv = 0 on BG, and if (6.1) is oscillatory at r — oo, then
u(x) has a zero in GR for every R > 0.

THEOREM 6.2. // u(x) is a solution of /ju + cu = 0 in the cone
G satisfying du/dv = 0 on dG, and if

c(x, y)dxdy = + oo ,
J JG

then u(x) has a zero in GR for every R > 0.

Proof. From the definition of τ(r),

\ rj(r)dr = \ \ c(r, θ)dθ \r dr = \ I c(x, y)dx dy .
Jo β — a ) Q \ _ ) a J β — a))G

By the Leighton oscillation criterion [8], the fact t h a t ! n(r)dr = + oo
Jo

implies that (6.1) is oscillatory at r = oo. An application of Theorem
6.1 now completes the proof.

In E2 we can establish oscillation criteria in more general domains
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by means of conformal mapping. As an example of such results,
suppose Γ is an unbounded domain in E2 and that

ξ = ξ(x, y); η = η{x, y)

defines a conformal map of Γ onto the cone G. Assuming that the
Jacobian J(ξ, η/x, y) is bounded assures that the singularity at co is
preserved under such a map. Furthermore, solutions of

uxx + uvy + c(x, y)n = 0 in Γ

(6.5) du n
^— = 0 on dΓ
dv

are transformed into solutions of

uξξ + uηη + C(ξ, rj)j(^Λ) = 0 in G

where C(f, 37) = c(x(ξ, η), y{ζ, η)). Since

ίί φ , ί/)ώ % = if C(ξ, V)j(^y.)dξ dη ,

the condition

\ 1 c(x, y)dx dy = + cκ>

assures that solutions of

An + cu = 0 in Γ

^- = 0 on dΓ
dv

will have zeros in ΓR for all R > 0.

Added in revision. The authors have learned of some recent
work of E. Noussair, to appear in the Journal of Differential Equations,
which establishes related results for elliptic equations of even order.
In particular, our Theorem 3.1 is a special case of Noussair's results.
We note, however, that Noussair's techniques are different, requiring
substantial machinery of a variational nature, and that our techniques
can also be extended to deal with the case of even order elliptic
equations.
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Added in Proof. Noussair's paper has since appeared in the J.
Differential Equations, 10 (1971), 100-111. C. A. Swanson has also
shown us a shorter proof of Theorem 2.2 based on a paper by Swanson
and Headley in the Pacific Journal of Mathematics, 27 (1968), 501-
506. This proof will appear in the Canadian Mathematical Bulletin.
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