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It is the purpose of this paper to study multidimensional
nonlinear integral equations of Volterra type of a rather
general form with unknowns in one of the function spaces
C, Li, Leo or LP9 1 < p < + oo. In analogy with the theory
of differential equations, global existence and uniqueness
theorems as well as continuous dependence on initial values,
are established for such integral equations. The hypotheses
on integrands in this paper are less demanding than normally
found in the literature and are .motivated by applications,
particularly to boundary value problems found in optimal
control theory.

Since the literature on multidimensional integral equations of
Volterra type is very extensive (see N. V. Kasatkina [5], W. Walter
[10], Arthur Wouk [11] for partial surveys), we shall incorporate below
certain relevant remarks on these equations and also briefly describe
the general form of the integral equations studied in this paper.

The integral equation

(1.1) z(x, y) = Φ(x) + f{y) - Φ(0) + Γ Γ f(a, β, z, zx, zy)dadβ
Jo Jo

is well-known since it corresponds to the classical Darboux problem

Zχv{®, y) = /(α, V, s, s«, Sy), (®, y) e [0, h] x [0, k] ,

with boundary data

z(x, 0) - φ(x); z(0, y) = f{y)) 0(0) =

The above equation is clearly with two independent variables x and y.
For the the multidimensional (m > 2) equations, several forms have

been proposed in the past. One such form, studied by W. Walter
[10], is

n ox uv{x) = gv{x) + \ kv(x, ξ, u(ξ))(dξ)κ

u = (ul9 u2, , un), v = 1, 2, , n, x e BaEm ,

where Hv(x) c B(x) = {ξ e B\ξi ^ xi9 i = 1, 2, n}. Precisely, Hu(x) is
assumed by Walter to be contained in a ^^-dimensional hyperplane,
1 ^ Vv ^ ?ft> parallel to the coordinate axes-i.e., in a translate of the
linear manifold generated by pv of the basis vectors (1,0, •••, 0), (0,
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1, 0 0), (0, 0, 0, 1) in Em. W. Walter gave theorems for the
existence of continuous solutions for such systems.

One is now directed naturally to equations where the set Hv need
not be in a p^-dimensional hyperplane (with nonzero measure). In
other words, one may consider equations where Hv may consist of
several sets, each of which belongs to a hyperplane of different dimen-
sion. An example of such an equation would be

S x

A(x, y, s)φ(s, y)ds
0

+ Γ B(x, y, t)φ(x, t)dt + \* \V C(x, y, s, t)φ(s, t)dsdt
Jo Jo Jo

(1.3)

which is not of the form (1.2) [see T. H. Gronwall [3]].
N. V. Kasatkina [5] in the lines of R. H. J. Germay [12], has

studied the following more general integral equation for local uniqueness
of continuous solutions:

(1.4) ^ = ^ Σ Ϊa ' " ' C ^l-'Λ*' 8*l-<* '

x(t19 U ti^l9 sil9 th+1, . tik_l9 sik, . tn))dsh dsik + f(t)

where t = (t19 t2 tn)9 sh...ik = (s^, s*2 sίjfc). His method involves diffe-
rential inequalities and the results hold locally.

The integral equations studied in this paper are of the same general
form as (1.4), but with unknowns in spaces Lp, 1 ^ p ^ oo, and not
necessarily in C, as is usual. Besides, we require less demanding
hypotheses on the integrands.

The canonical form, emphasized in the present discussion, seems
to be the most general since it is found that many equations considered
in the past can be put into this form. The theorems we obtain are
global and not local. Further, an analogy with the usual theory of
differential equations is maintained as far as possible.

The proofs in the present paper are based on fixed point theorems—
precisely, on an extension of Banach's contraction theorem. Indeed,
the equations under consideration—being of Volterra type—give rise to
an operator T which is not necessarily a contraction by itself; but
suitable powers of T are so. It is seen that still, there exists a fixed
point for T, by a remark of F. F. Bonsall [1]. This fact allows us
to relax the hypotheses.

Essentially, the same argument applies to the space C of con-
tinuous functions, as well as to the spaces Lp of the ptΆ summable
functions, for 1 ^ p ^ oo, and in each of all these cases, we assume
a different set of hypotheses. If the equations are assumed to be
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linear, with analytic coefficients, then existence of analytic solutions
is obtained by applying the argument to a space of analytic functions.

The results of this paper are used in—and the present paper has
been motivated by—problems of optimal control monitored by nonlinear
system (1.1) (and corresponding Darboux data), particularly since the
controls are known to be only measurable, and hence the integrands—
which contain the controls—may be assumed, at best, to be in some
Lp-space, 1 ^ p^ oo. Besides, the corresponding Pontryagin-type mul-
tipliers are known to satisfy linear Volterra-type integral equations
of the same form (1.4), but again with integrands in an Z^-space.

In §2 we develop suitable notations, in §3 we summarize basic
statements, in particular BonsalΓs remark, in §4 we discuss the
problem under consideration in class C, in § 5 we show that analogous
results and essentially same proofs using BonsalΓs remark hold in
LP9 1 ̂  p ̂  ô in § 6 we consider the linear case and show the existence
of analytic solutions, in harmony with classical results. Applications
to control problems will be given elsewhere. The special case of the
classical Darboux problem (1.1) is discussed in the appendix.

2* Notations* Let En denote the ^-dimensional Euclidean space.
Let G = {t e En\ t = (t19 t2, tn)9 at ^ U ̂  α, + hi9 i = 1, 2 . n). Let
a denote the multiindex (al9 a29 - an) with arbitrary nonnegative
integers ai9 i = 1, 2 n. As usual, \a\ = ax + a2 + •••«», and
al = at\a2\ ••• aj. Given any a9 let βs denote the index of the j t Ά

nonzero element of the sequence (a19 a2 an). Let us consider the
multiindex β = (β19 β29 •••,£*); k being some integer with ISk^n,
determined by a. We shall say that β corresponds to a. Thus, for
example, (2, 5) corresponds to (0, 1, 0, 0, 2); (1, 3, 6, 7) corresponds to
(1, 0, 1, 0, 0, 1, 1), etc. For t e En, let tβ denote {th, th . tβj) and let
t'β = (t19 t2 tβl-l9 tβl+l9 tβk-l9 tβk+19 , tn). In part icular let t- =
(ίi, U U-l9 ti+l9 tn). Let Gβ = {sβ eEk\sβ= (sh, sh, , sβj)9 α< ̂  s< ^

ai + hi', i = β19 β2 βk} Let π(θ) = π(θl9 θ2 θ n) = Σ i ^ i α i ^ ^ α denote
a polynomial of degree N in θ with no constant term. Here θa denotes
O^u^ on

n

Let C(G) denote as usual the space of functions continuous on G,
with supnorm and let LP(G) be the space of the pth summable functions
for 1 <£ p < co and L^G) be the space of all essentially bounded
measurable functions on G. For m ̂ > 1 and X = C{G), LP(G) or L^G),
let Xm = X x X - - - X(m t i m e s ) a n d f o r φ = (φl9 φ 2 - - - φm) i n Xm l e t
ll^ll = ΣΠ^i ll^ill We shall denote by | | ^ | | c , H^ld, and \\φ\\^ the norms
in [C{G)\\ [Lp(G)\m and [LJβ)\m

9 respectively.

For i = 1, 2 n, let Ti be an operator defined on Xm (with X —

C(G)9 LP(G) or Lco(G)) as follows:
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•i, s)ds, φ e Xm .

We define the product TiTό as composition, so that Tξφ = T{(TrlcP),
r ^ 1 and T-φ — φ; φ e Xm. By using Holder's inequality, it is seen
that

(2.1) || Tίφ\\p ^ \\<P\\Mrl PTlίP, 1 ^ V < ~

and

(2.2) \\Tίφ\U

Also,

(2.3) \\Tlφ\\cZ

For any multiindex a = (a19 a2 αΛ) as in the beginning of this
section, we shall denote by Ta the operator T"1 T%n) and given any
polynomial π{θ) = Σ λ«^α of degree N, we shall denote by π(T) the
U p e i c i t U l x j / v ^ y -Z. = ^ j A » ( α α . . . α ) J L i x JL 2 ••• ± n

n

In this paper we shall consider the following (canonic) form of
multidimensional integral equations of Volterra type:

x(t) = f{t) + (πiT)oF)(x)it)

^ ' Σ λαT«Fα(£, Sβ, Xit'h 8β))

where f(t) e Xm and for each a, with 1 <Z \a\ ^ N, the function 2^(2,
ŝ , x) = (F«, Fl iC) is defined on G x Gβ x Em and here /S is the
multiindex corresponding to a, as described earlier. Specific assump-
tions on / and Fa will be made later.

3* Preliminaries* In the sequel, we shall need a few preliminary
statements. They are given below:

If F: X—• Y is a mapping of a metric space (X, p) into another metric
space (Y, σ) and there is a constant c > 0 such that σ(Fxl9 Fx2) fg
cp^i, ojg) for all x19 x2 e X, then we denote by v{F) the number sup

,, Fx2)/ρ(xly x2): x19 x2eX, xγ Φ x2}.

(3. i) (An extension of Banach's contraction mapping theorem)
(see F. F. Bonsall [1]): Let F: X—>X be a complete metric space
(X, p) into itself. Let F1 = F and Fn = F{Fn~ι) for n > 1. Let us
assume that y(i^) < + oo for every n and that Σ~=i ̂ (J77*1) < °° Then
F has a unique fixed point xQ e X.

(3. ii) (F. F. Bonsall, [1]): If F: X-+X is any continuous map of
a complete metric space (X, p) into itself such that for some integer
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N ^ 1, FN is a contraction on X, then F has a unique fixed point x0

in X.

(3. iii) Let G = {ί e £?Λ| ί = &, ί2 ίn), a{ ^ ί< ̂  α< + hi9 i = 1, 2
w} as in §2 and let (?; = {s e Eι\ a{ ^ s ^ a{ + h^ i = 1, 2 n. Let
<£> = φ(tf s) be a real valued function defined on G x G{ such that

(a) Iφ(t, s)I ^ cm{s) for all (t, s)eG x Gi where c is a constant
and m(s) is integrable on G>

(b) <p is continuous in t for each fixed s e G{.
(c) 9> is measurable in s for each fixed t e G.

φ(t, s)ds is continuous on G.
ai

Following the notation of §2, if Tiy i = 1, 2 n are the operators
defined there, if a = (al9 a2 an) is any multiindex, Ta = T"1 T%n

and β is the multiindex corresponding to a, then Taφ(t, sβ) e [C{G)]m,
provided

(a) \φ(t, sβ)I ^ cm(sβ) for all (ί, sβ)eG x Gβ.
(b) φ is continuous in ί for each fixed sβeGβ.
(c) φ is measurable in ^ for each fixed t e G.

(3. iv) Let a = (aί9 a2 an) be any multiindex and let β = (β19

β* ••• /5fc) correspond to α: as in §2. Let φ(t, sβ) be any real valued
function on G x Gβ which is continuous in tβ for almost all (t'h sβ) e G
and belongs to L^G) for each fixed tβ e Gβ. Let there exist a constant
B ^ 0 and a function m(t'β, sβ) in LJJJ) such that for (t, sβ) eG x Gβ

we have \φ(t, sβ) \ ̂  5m(iJ, sβ). Then the function Φ(ί) defined by Φ(t) =
Taφ(t, sβ), is measurable on G.

Let J5X be a measurable subset of E% and let g{(x, y), ί = 1, 2
m be realvalued measurable functions on Bx x E\ Let ^ and p2 be
two real numbers with 1 ^ pu p2 < °° Let us consider the following
condition:

(H) There exist m functions a^x), i = 1, 2 m, in LH(B^) and
a constant 6 ^ 0 such that for each i = 1, 2 m, we have

(3-1) l0 ί(a,2/)l^α ί(®) + δ|2/r i / p*.

(3. v) (see M. A. Krasnoselskii, [6]) Let BL be a measurable subset
of En and let ^(x, y), i = 1, 2 m be real valued functions on J5i x
Er such that for each ί, g^x, y) is continuous on Er with respect to
y for almost all x in JB1? and measurable in x for each fixed y in i?7*.
Let J^ — (Jxz, J2z, Jmz) with J^(x) = g^x, z(x)). Then Ja; is meas-
urable whenever z is measurable. Furthermore, the operator / maps
[L^B^Y into [L^iBdY1 if and only if condition (H) holds.

Following the terminology of R. C. Gunning and H. Rossi [4], a
complex valued function / defined on an open subset BaCn (the n-
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dimensional complex vector space) is called "holomorphic" in B if each
point we B has an open neighborhood U, we Uc B, such that the
function / has a power series expansion f(z) = Σ v Γ . ^ = o V 2 \ fe —
WiY1 * {%n — wnY

n which converges absolutely for all ze U. A function
/ is said to be holomorphic on a closed set D c Cn, if / is holomorphic
on an open set containing D. For functions of several real variables,
the same definition above holds, with the word "analytic" being used
instead of "holomorphic." The set of all functions holomorphic on D
will be denoted by O(D).

If D denotes the rectangle {ζ e Cn | | ζ* | ^ Hu i = 1, 2 n} c C",
then we can define a norm on O(D) as:

INI = Σ \aa\H« where α? = Σ aaζ
ae0(D) .

| α | = 0 | α | = 0

(3. vi) The set O(D) with the above norm is a Banach space.

4* Continuous solutions* In this section we shall discuss the
existence and uniqueness of continuous solutions (as well as the depen-
dence of solutions on the "initial" values) of the canonical system:

(2.4) x(t) = f(t) + Σ KT*Fa(t, sβ, x(t'β, sβ)) .

Theorem 1 below shows the existence of continuous solutions of (2.4)
under the assumption that the Fa are merely continuous in x, and
not necessarily linear. In this situation, the modulus of continuity is
required to be "small" and suitable bounds are given for the λα.

If all Fa are known to be Lipschitzian in x, the condition of "small
modulus of continuity" can be removed due to the fact that the equation
(2.4) is of Volterra type, and the λα are then arbitrary. Besides, the
solutions are unique in this case. Precise formulations are found in
Theorem 2. If Fa are linear in x, with analytic coefficients Aaί then
solutions can be found which are analytic—not merely continuous.
This is in harmony with classical results. This case is studied in §6.

In order to state a theorem on the existence of continuous solutions
of the integral equation (2.4), we shall need the following set of
hypotheses:

(HJ: Let f(t) be a given element of [C(G)]m, and let Mγ > 0 be
such that I f(t) \ ̂  M1 for t e G. Let M2 > M1 and SM2 denote {ζ | ζ e Em,

(H2): Let Fa(t, sβ, x) = (Fί, F2

a F™) be functions defined on G x
Gβ x S3ί2 where β = (βl9 β2, βdj corresponds to a, as described in
§2. Let

(a) Fa(t, sβ, x) be measurable in sβ for fixed (t, x);
(b) there exist functions kla(sβ) integrable on Gβ such that on G x
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Gβ x SM2 we have \Fa(t, sβ, x)\ ^ kla(sβ).

(H3): There exist monotone nondecreasing continuous functions
wia with wia(0) = 0, i = 1, 2 and functions £2α(^) integrable on G^ such
that for (t\ xλ)9 (t2, x2) in G x S ^ and sβeGβ, we have

(4.1) I ^ ( ί 1 , *„ α j - Fa(f, sβ, x2) I ̂  £ 2 » [ w l β ( | ί1 - f I) + w ίβ(| xγ - xt\)] .

It is to be noted that if we take Ha(t, sβ, x) = (tβ - s^-1 ((β - I)!)" 1

F«(t, sβ, x), then we have TβHa = Tβι- Th Tβda(Ha) = TaFa. Further-
more, as a consequence of the condition (H3) above, there exist functions
Jc2a(sβ) integrable in Gβ such that

\Ha(t\8βfxd-Ha(f98βfx2)\

^ ha(sβ)[wla(\V -f\) + w^Qx, - x2\)]

for (t\ xL), (t\ x2) in G x SM2 and sβ e Fβ. This is what we shall need
in the sequel.

Let Dβ. denote the product of intervals [a3, a3- + hj] for j = 1,
2 i — 1, i + 1, da where da is the number of nonzero elements
in a — (au a2 an). Let us consider the functions Kia(tβ.) defined on
[aβ., aβ. + hβ.] as follows:

(4.2) J Γ ^ ) = J (ί, - s , ) ^ 1 ^ - l)ir%a(8β)d8β

where the integration is performed over the set [aβ., tβ.] x Dβ, and
kla(sβ) are the functions found in (H2). Since kla(sβ) are L-integrable in
Gβ, it follows that the functions Kia are continuous in [aβ., aβ. + hβ.].
Also, by (H:), the function / is continuous on G. Thus, there exist
monotone nondecreasing functions v( ), oia{ ) such that v(ϋ) = 0,
(7<β(0) = 0, and

l ^ ί ^ ) - Kia(fβi)\ ^ σia(\fβi - %\)

Let kia - f kia(8β)dsβ, i = 1, 2; 1 ^ | α | ^ iSΓ.

(H4): Let there exist real numbers Xa such that

(H5): Let there exist monotone nondecreasing, continuous functions
Ύ](.) vanishing at zero such that
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where

and
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ζ(θ) = v(θ) Σ σia(\θβi\

(4.4) θ = (θl9 θ2 θn) with θt e [0, ΛJ, i = 1, 2 . . . n .

THEOREM 1. Let the above hypotheses Hx — Hδ hold. Let K denote
{x e [C(G)]m: \ x{t) | ^ M2 and | aft1) - α;(f) | ^ 3?(| έ1 - ί21) for t\ t2eG}. Let
T be an operator defined on [C(G)]m by

τx{t) = f(t) KT«Fa(t, 8β, x(t'β9 sβ)) .

Then, there exists at least one xe K with x = TX.

Proof. The set K defined above is a nonempty compact convex
subset of the normed space [C{G)]m. Let us prove that r maps K into
K and that τ is continuous.

For xeK, t\ feG with t\ ^ t\, i = 1, 2 w we have

Σ ?Jfi, sβ, x(t\ sβ)) - T"FJfi, a,, x{f, 8,))\ I

Σ \K[TβHa(t\ sβ, x(t\ sβ)) - TβHa(f, 8β, x(f, 8f))]\
a

da Γ

a Σ \ ((β — 1)!(£J3 — sβ))~%a(Sβ)dsβ

a{Sβ)w1βt1 - t\) + w2a(\x(t\ sβ) - x(f, sβ)\)}dsβ

by (H5). (Here, as in (H3), Ei denotes [Q., t2

β.] x Dβ.). This shows in
particular that TX is continuous on G. Also, for xe K,

ra (ί) I s* I/(ί) I + Σ I λ . Γ Ή ί ί , β,, *(fίf s,)) I
a

^ My + Σ |λ β | I Γ ^ ί ί , s,, a?(ίj, sβ))\
a

Mι + Σ I

Thus, τ maps K into iΓ.

Now, let xx and ^2 be any two elements of K.
Then,
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Iτxtf) - τx2(t)\ ^ Σ \K[T«Fa(t, 8f, Xy)
a

- T"Fa(t, sβ, x,)]\ ^ Σ Iλ.lA^w^dl^ - *2||)
a

where

IK - x2\\ = sup{|^(0 - x2(t)\: teG} .

Hence for

(4.5) x19 x2eK,\\τx1-τx2\\^Σ I K \k2aw2(x(\\x1 - x2\\)
a

This shows τ maps K continuously into it itself.
Now, by Schauder's fixed point theorem there exists at least one

xe K with TX = x. This concludes the proof of Theorem 1. [Note:
Details of above calculations for n — 2, may be found in [8]].

REMARK. Concerning the hypothesis (H5) of above theorem, let
us consider the case where Fa are Lipschitzian with constants Aa in
x. Then w2jy) = Aav (see (4.1)). If

ΣIAΛΛΊ< 1
a

then

yields

and hence by choosing this function as η in (H5), it follows by Theorem
1 that there exists at least one xe K satisfying (2.4). Further, in
this case, i.e., if Σ« \AaXah

a\ < 1 then the solution of (2.4) are unique.
Indeed, if x1 and x2 are solutions then x1 = τx1 and x2 = τx2. Now with
w2a{v) = Aav, the inequality (4.5) will reduce to

\ \ x ι — x211 — i i τ x γ — τ x 2 \ \ ^ 2-ι\^a^a^ \ \\Xι — ^211
a

<C \\Xι X211

which is impossible if xL Φ x2.
This proves uniqueness.
On the other hand, if Fa are known to be Lipschitzian, then by

a completely different argument one can prove the existence and
uniqueness of continuous solutions of (2.4)—without the further con-
dition Σ« I AaXah

a I < 1. Precise formulations follow. We shall omit
the proof here, since it is the same as for I^-solutions which will be dis-
cussed in the next section.
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THEOREM 2. Hypotheses: For each a,l^\a\^N, let Fa(t, sβ,
x) = (Fa, Fl Fa) be defined on G x Gb x Em where β corresponds
to a. Let Fa be continuous in (tβ, t'β) and be measurable in sβ. Let
there exist constants Ma ^ 0 and functions Aa(sβ) in Lλ(Gβ) such that
for all (t, sβ) eG x Gβ and x19 x2 in Em, we have

\Fa(t, sβ, x,) - Fa(t, sβ, x2) I ^ Ma\xx - x2\

and \Fa(t, sβ, 0)\ ̂  Aa(sβ). Given a sequence of real numbers
{λα |l ^ \a\ ^ N} and a positive r, let dr denote Σμ.a.h

a(a\)~1 where
summation extends over s ^ \a\ ^ rN and μa is the coefficient of θa in
the binomial expansion of (Σi^ι«ι^ \^>a\Maθ

a)r. It is seen that d =
ΣΓ=o δ r < oo. Let R ^ 1 be such that δR < 1. Let M > 0 be any real
number such that

(4.6) M>δ(l- ^Γdl/Hc + Σi^i^llλαAJK

where f is a given element of [C(G)]m.

Conclusion. Given fe [C(G)]m, Xa real, l^\a\^N, and M > 0

satisfying (4.6), there exists a unique xe [C(G)]m with ||aj|| ^ M such that
τx — x where, as in Theorem 1,

(4.7) τx{t) - f{t) + Σ KTaFa(t, sβ, x(t'β, sβ)) .

Further, if f1 and f2 are any two elements of [C(G)]m and if xu x2 are
the corresponding solution of τx — x, then

(4.8) l | α i - a ? 2 l l ^ ( l - δ Λ ) - Ί I / i - / 2 l | .

Thus, the solutions depend continuously on the "initial" values.

REMARK. The inequality (4.8) is readily obtained by repeated
application of the following

|αi(ί) - »8(ί)| = \Ut) - Ut) + ΣXaT«[Fa(t, Sβ, xL)

- Fa(t, sβ, x2)\tί |Λ(ί) - Ut)\ + Σ |λ β | TaMa\x,

Thus, for each r

\\%i-%2\\ ^ δ H Λ - Λ H + ^ 1 1 ^ - ^ 1 1

so that

where R is such that δR < 1.
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5* Lp-Solutions (1 ^ p ^ °o)φ It is of interest to observe that
Theorem 2 with slight changes yields unique Lp-solution for the equation
(2.4). The changes needed are made clear by the following.

THEOREM 3. Hypotheses: Let Fa be as before defined on G x Gβ x
Em; where β corresponds to a. Let Fa be continuous in tβ and be
measurable (t'β, sβ). Let there exist constants Ma ^ 0 and functions
Aa(t'β, sβ) in [LP(G)]9 1 ^ p ^ °°, such that for all (ί, sβ) eG x Gβ and

xl9 x2 in Em

(5.1) \Fa(t, sh xL) - Fa(t, sβ9 x2)\ ^ Malx, - x2\

and

(5.2) |F β ( ί , s , ,0) | ^Aa(t'β,8β).

Given a sequence of real numbers {Xa | 1 :£ | a \ ̂  N} and a positive
integer r, let dr denote Σr^w^rN μah

a(ctlpa)~Up (with p — 1 in case of
Loo) where μa is the coefficient of θa in the binomial expansion of
(Σjis\^N\K\Maθ

a)r. It is seen that δ == ΣΓ=i Sr < oo. Let R^l be such
that dR < 1. Let M > 0 be any real number such that

(5.3) M>δ(l-dBr
ί(\\f\\p+ Σ \\XaAa\\Λa(alpTllp)

where f is a given element of [Lp(G)]m. (In the case of L^G), p is
taken as 1 in (5.3)).

Conclusion. Given / in [Lp(G)]m, K real, 1 ^ \a\ ^ N and ikf > 0
satisfying (5.3), there exists a unique xe [Lp(G)]m with ||ίc||p ^ ikf such
that τα; = x, where τ is defined as in Theorem 2, by

τx(t) = f(t) + Σ KTaFa(t, sh x{tf

h sβ)) .

Further, if fx and f2 are any two elements [Lp(G)]m, and .τ1? tτ2 are
the corresponding solutions oίτx = x, then 11 xγ — x2 \ | p ^ (1 — d^δ \ \ fι —

Proof. Let us observe from (5.1) and (5.2) that

Λί, s,, a?) I ̂  |Fβ(ί, s,, x) - Fa(t, sβ, 0)| + \Fa(t, sβ, 0)

^ Ma\x\ +Aa(t'β,sβ).

As a consequence of the assumption on Fa and the inequalities (5.4),
it follows (see 3. v in §3) that Fa(t, sβ, x(t'β, sβ)) for fixed tβ is in [Lp(G)]m.
Hence TaFa(t, sβ, x(tβf sβ)) is in [Lp(G)]m and consequently r maps [Lp(G)]m

into itself.
Let us now show that for xly x2 in [Lp(G)]m and any integer r ^ 1,

we have
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(5.5) \\trxι-^x2\\9^δr\\x1-x2\\p.

Indeed,

τx,(t) — τx2(t) I

= I ΣKTaFa(t, sβ, xtfβ, sβ)) - ΣKTaFa(t, 8β, x2(t'β, sβ))\

^Σi\K\T°Ma\xι-xi\(t'β,8β)

and

\τrXi(t) _ τrxz(t)\ ^ Σ |λβ | TaMa\τr~% - τr~%\(t'β, sβ)

It follows now by induction that

|τ%(ί) - τrx2(t)\ ^ ( Σ iKlT'MaΠx, - x2\(t'β, sβ) .

Now, it follows by using the inequalities (2.1) that

I j τ ju1 — 6 Λ>2112? ^ or 11 ̂ ! — Λ>211 p

The concludes the proof of the inequality (5.5). As a consequence, it
is seen that τ — τ1 is continuous on [Lp(G)]m. Further, since δr —• 0
as r —> co, there is an JS ^ 1 such that δR < 1. The corresponding
operator τR is a contraction on [Lp(G)]m.

As a further consequence of (5.5), we have

W τ ^ x - τ*x\\ ̂ δtWτx- x\\, xe[Lp(G)]m i = 1 , 2 - . .

Hence, for r ^ 1,

| i ;

For α; = 0, this inequality yields

(5.6) ||

Hence, by (5.5)

(5.7)

But, since

it follows by the inequality (2.1) that

l|r(0)|| 1̂1/11 + l S ] Σ J | λ

Thus, by (5.7),
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Let us consider the set

XM = {xe[Lp{G)V\\\x\\p^ M) .

This set is mapped into itself by τR. Indeed it follows from (5.8) that
for x e XM

\\τRx\\ ^ MδR + Λf(l - δR) = M.

Now, since τR is a contraction on [Lp(G)]m, it is so on XM. Further,
since XM is a closed subspace of the Banach space [Lp(G)]m, and thus
itself is a Banach space, it follows that there is a unique x e XM with
τrx = x. But since τ is a continuous operator on [Lp{G)]m it follows
(see 3. ii in §3) that τx = x. This concludes the proof of existence
and uniqueness.

Let Λ and f2 be any two elements of [Lp(G)]m and let xγ and x2

be the corresponding solutions of (2.4). Let / = \f1 — f2\ and x —
xι — x2\. It is seen that

x(t) ^ f{t) + (Σ |λβ | TaMa)xit)

Applying the inequality again, we get

xit) ^ fit) + Σ |λβ | T*Ma(f(t) + (Σ |λβ | TaMMt))

= (1 + Σ \K\ TaMa)fit) + (Σ |λβ | T«Maγxit) .

In general for r ^ 1,

But then

If i? is such that 3R < 1, then

thus,

i.e.,

This concludes the proof of the theorem.
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6* General Remarks* A. The arguments of the previous sections,
when applied to a space of analytic functions yield a unique analytic
solution of (2.4) provided the function Fa are assumed linear in x with
analytic coefficients. Precise formulations follow:

THEOREM 4. Let G = {t e En \ \ U | ^ hi9 i = 1, 2 . . . n) and let /(ί),

Aa(t), 1 ^ \a\ ^ JV be functions analytic on an open rectangle Rx =
{£ e En I I ί» I < if/, i = 1, 2 n) containing G. Then there exists a
unique function x{t) analytic on G and satisfying

(6.1) x(t) = f(t) + Σ KTa(Aax)(t'β, sβ) .

Proof. Let R = {t e En\ | ίf| ^ Hi9 i = 1, 2 . . n] be such that G c
i?CLR,. Let D - {ζ e Cn\ | ζ<| ̂  fli, i = 1, 2 w} c Cw, where C denotes
as usual, the set of complex numbers. Let O(D) denote the set of all
functions holomorphic in D. Then O(D) is a Banach space with the
norm given by

INI = Σ |α«lHa for x = Σ «Xα (see 3. vi)
|α| = 0 |αi=0

Let /(ζ) and Aα(ζ) be natural holomorphic extensions in D, of
and Aa(t) respectively. Let r be operator defined on O(D) by

τx(ζ) = /(ζ) + ^ Σ γ K?a(Άax)(ζ'β9 ξβ)

where Ta = TC1 f^ is analogous to Ta; for example,

It is to be noted that for xeO(D), the integral defining fiy does not
depend on the path.

It is clear that τ maps O(D) into itself. Further, for any positive
integer r and any xu x2e O(D), we have

\\zrxι — τrx2\\ < Y\ uaH
a(a\)~ι\\x — x II

where μa is the coefficient of θa in the binomial expansion of

(Σisiαistf IKI Aaθ
a)r—here, A, - Sup {| Aa{ζ) \:ζeD}. [To obtain the above

inequality, we observe tha t if

then
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It follows that | | τ % - τ % | ^ δr ||α?ι - α?2|| where δr = Σrswsr* ^ " ( α ! ) " 1 .
Since this is true for any xl9 x2e O(D) and ΣΓ=i r̂ < °°—(it is majorised
by an exponential function)—and since 0{D) is a Banach space, it
follows by statement (3. i) that τ has a unique fixed point in O(D). If
x(Q denotes this fixed point, and if x{t) denotes the restriction of x(ζ)
for ζ real, it is clear that x(t) is the unique analytic solution of (6.1).

B. The canonical form suggested in this paper is very similar to
the form studied by Kasatkina [5]. It is to be noted, however, that
the notation proposed here simplifies the exposition. Further, it takes
care of repeated itegrals also, in a natural way. Of course, a repeated
integral can be transformed into a single integral and the author
found that it made no difference in the estimates obtained here.
The arguments remain the same too.

C. A function v e LP(G) will be said to be the generalized partial
derivatives of order a — (a1 an) of a function u e LP(G), or v = Dau,
in the usual sense (C. B. Morrey [7], S. L. Sobolev [9]). We mention
here that generalized partial derivatives of order one, have a
simple characterization. A function xt.eLp(G) is the generalized
partial derivative of x e LP(G) with respect to ti if and only if for
almost all closed rectangles Ra G, R = {t\Ci ̂  t{ 5* di9 i = 1, 2 n},
we have

xtdt = [x(di9 s) - x(ci9 s)]ds
JR Jo';

where c\ and d\ are defined as usual, by c = (ci9 cj) and d = (di9 d[).
Here the expression "for almost all rectangles R = [c, d\" means that
the set of all (c, d) has the same measure as G x G.

It is not difficult to verify that if x e LP(G) then T{x possesses
generalized partial derivative with respect to ti9 i — 1, 2 n. Conse-
quently, if x is an L^-solution of an equation of the form

α(ί) - f(t) + TiΣXaT
aFa(t9 s, x(t, s))

for a given ί, i = 1, 2 n, and if / possesses generalized partial
derivative with respect to ti9 then x also possesses generalized partial
derivative with respect to ίί# An example of such a situation is the
equivalent of Darboux Problem,
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Φ , y) = Γ Γ F(a, β, z{a, β))dadβ .
Jo Jo

Any Lp-solution of this equation possesses generalized partials with
respect to both x and y.

Appendix* We shall discuss now the application of our existence
theorems to the special case of the classical Darboux problem in a
rectangle G = [α, a + h] x [6, b + k]aE2:

ziy = Fi(x, y , z, zx, z y ) , (x, y)eG ,

( A . 1) z\x9 b) = φ\x); z*(a, y) = r(y); φ\d) = r(b) ,

z = (z\z\ ••• zn); ί=l,2---n

The precise results which will be stated below as corollaries of
our Theorem 3 of § 5 will be applied in the optimal control problem
mentioned in the introduction. We shall need the following hypothesis
on (A. 1) to be able to apply Theorem 3, §5 and obtain solutions of
(A. 1) belonging to a Sobolev class (see [2]).

(HJ: The functions φ(x) = (φ\ φ\ φn), and ψ{y) = (ψ\ ψ\ •
ψn) are defined and absolutely continuous on [a, a + h] and [6, b + k]
respectively. The derivatives φx and ψy which exist almost everywhere,
belong to Lp([a, a + h]) and Lp([b, b + k\) respectively; here 1 ^ p ^ oo,
Further φ(a) = ψ{b).

(H2): F - F(x, y, z, r, ί) - (Fl9 F2, . . . , Fn) is defined for all (x,

y)eG and (z, r, t) e ΈZn. For each i, F{ is measurable in (x, y) for

fixed (z, r, t) e Ez\

(H3): There exists a constant K > 0 such t h a t for (x, y)eG and

(Zi, n , ί θ , fe, r2, ί2) G £ r 3% we have

\F(x, y, zu r19 ίx) - F f e y, «2, r2, ί2) | ^ ΛΓ(|^ - z2\ + I n - r2\ + | ί t - ί 2 | ) .

(H4): Let F(.τ, y, 0, 0, 0) e [LP(G)]\

R E M A R K . One may assume, instead of (H3) t h a t , there exist con-

s tants K13, K2h K3j > 0 wi th j = 1, 2, , n, such t h a t ,

\Fi(x, y, zl9 n , tλ) - Fi(x9 y, z2, r2, t2)\

^ Σ K i l « ί - «ί I + K2j\r( - ri\ + Ktsltl - t>\]
5 = 1

But with no loss of generality we may set K13 = K2j = Kdj = K1 > 0
and iΓ = nKι so that the above inequality reduces to (H3).
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Let WP(G) denote the Sobolev space of all z e LP(G) with first order
generalized partial derivatives (see §6) zx, zy belonging to LP(G). Let
P l l = IMIP + II*UIP + \\Zy\\p denote the norm in [Wι

p{G)]n.

THEOREM 5. Let the hypotheses ίZΊ — H4 hold. Then, there exists
a unique ze [Wp(G)]n

9 1 ^ p ^ oo (same as in (HJ), such that (i) the
generalized partial derivative zxy(x, y) exists and equals F€(x9 y, z, zx, zy)
a.e. in G and (ii) z(x, b) = φ(x); z(a, y) = ψ(y).

Further,

(A 2) " * " - ( 1

where s(x, y) = F(x, y, 0, 0, 0); δ = ΣΓ=i Kl on - [n/2]~1pn with p = (2K +
1) x (p~llP)(hp + kp)llp if 1 < p < oo and p = (k + 2~ι){h + k) if p = 1
or p = co. The number k here is same as in (H3) and the number
R in (A. 2) is that positive integer for which δR < 1.

If (9>i, -fi) «^^ {Φ* Ψ2) are any two pairs of functions satisfying
(HJ and if zl9 z2 are the corresponding solutions of (A. 1) then

(A.3) \\z\\^(l-δRrίδ[k

where

z = z1 — z2; φ = 9̂1 — ^ 2; Ψ = ψi - fi\

δ's are as above.

Proof. Let us consider the integral equation

z(x, y) = φ{x) + f{y) - φ(a)
(A. 4) f . [y

+ F(a, β, z(a, β), zx(a, β), zy(a, β))dadβ
J a : b

where zx and zy are understood as generalized partials of z. Clearly,
any solution of (A. 4) (which is necessarily continuous on G and hence
in [LP(G)Y) has, indeed, generalized partials zX9 zy which satisfy the
following

w,{x, y) = 2~ι{φ{x) + ψ{y)) + 2~ι Γ w2{a, y)da + 2~ι[y w*(x, β)dβ

(A. 5) w2(x, y) = φx(x) + Γ 0. da + Γ F(x, β, w(x, β))dβ
Ja Jb

S x Γy

F(a, y, w(a, y))da + I 0. dβ .
a Jb

Where
(A. 6) wγ = z; w2 = zx; wz = zy; w = (wl9 w2, w9) .
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Further, zxy exists and equals F(x, y, z, zx, zy) a.e. in G. Thus, every
[ Wp(G)]n solution of (A. 4) (and hence of (A. 1)) corresponds in a unique
manner (as in (A. 6)) to a [Lp(G)fn solution w = (wl9 w2, w3) of (A. 5).
Now, the system of equations (A. 5) is exactly in the canonical form
(2.4). Since the hypotheses Hx — ϋΓ4 guarantee the assumptions in
Theorem 3, §5, existence of a unique solution we[Lp(G)Yn and hence
of the corresponding z e [ Wp(G)]n is concluded.

The norm bound (A. 2) for the solution z follows from the inequality
(5.3) with the observation that in the present case, \\w\\p = \\z\\;
N = 1; Aa(x, y) = F(x, y, 0, 0, 0); λβ = 1; / = (2'1(φ + f), φx, ψy)\ a =
(1, 0) or (0, 1). It is to be noted that | | . || in (5.3) denotes the norm in
LP(G) while \\φ\\ in (A. 2) denotes the norm of φ{x) in Lp([a, a + h]),
and so on.

The same observation leads us from the conclusion of Theorem 3,
§5 to the inequality (A. 3). This concludes the proof of Theorem 5.

Special cases: (i) If F of (H2) does not depend on r and ί, then
(A. 4) is itself in the canonical form (2.4). In this case, the norm bound
for the solution z is given by

where

δr = {τ\)-\Khk)r if p = 1 or p = oo and

3r = (r! pr)~2lp(khk)r if 1 < p < oo and

<5 = Σ n̂> as before.
n = l

(ii) Let ί/c Em and let Γ be any set of measurable functions v: G—> C7.
Let / = f(x, y, z, r, t, u) be defined on G x EZn xU and let / be
measurable in {x, y), continuous in u, and Lipschitzian (as in (H3)) in
(z, r, t). Let for each ve Γ, the function f(x, y, 0, 0, 0, v(x, y)) belong
to [Lp(G)]n. For a given veΓ, define

(A. 7) F(x, y, z, r, t) = f(x, y, z, r, ί, v(x, y)) .

Then F satisfies H2, H3, H4. By applying Theorem 5, to this F we
obtain a unique solution z of (A. 1) corresponding to the data φ, ψ and
v (which defines F). The inequality (A. 2) gives the norm-bound on
z, as before. If vι and v2 are any two elements of Γ, (φ19 fλ) and
(Φ29 Ψd satisfy (HJ and if Zi is the solution of (A. 1) corresponding to
the data (φif ψi9 Vi), i = 1, 2 then z = zx — z2 satisfies the inequality
(A. 2) with φ = φγ — φ2; ψ = ψλ — ψ2 and
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(A. 8) s(x, y) = \f(x, y, zu zlx, zly, v,) - f(x, y, zlf zlx, zly, v2) \ .

Pointwise estimates: Since any solution z of (A. 1) satisfies the
integral equation (A. 4), it is absolutely continuous in the sense of
Tonelli. Hence, there is a set EaG, with meas E=0 such that
for (x0, yo)eG — E, we have in view of (H3),

I zx(xQ, 2/0) I ^ I <Px(x0) + \ [s + k(\ z I
(A. 9) ^

where s(x, y) denotes \F(x, y, 0, 0, 0) |. Similar inequality holds for zy(x0,

S x Γy

zx(a, y)da = φ{x) + zy(x, β)dβ. Using
a )b

these facts along with the repeated application of GronwalΓs lemma
one finds that

\z(x, y)\ £ 2->[\\φ\\c + | | ^ | | β + e™+ f c )Jj s(α, β)dadβ

(A. 10) + Aδ(Ah + Ak + e

κιk+k))]

where

zx(x, y)\ ̂  θ^+AAi and \zy(x, y)\ ̂  Θ2(y) + AA5

Γb + k

Θ&) = eKk[\φx(x) \+Kk\φ(x)I + s(x, β)dβ]

Θ2(y) = eKh[\iry(y)\ + Kk\ψ(y)\ + \'+h s(a, y)da]

A 5 = \\φx\\Ph
ιl« + WψyWk1" + (\\φ\\e + \\ψ\\0)Khk+

and A is a constant depending only on K, h and k. In the above | | . | | β

denotes the supremum norm.

Dependence on data: Let z{ denote, as before, the solution of
(A. 1), corresponding to the data (φi9 ψi9 Vi), ί — 1,2. (F being given by
(A. 7).) It is seen then that zx = zlx — z2x and zy — zly — z2y satisfy
the inequalities (A. 9) and hence pointwise estimates for z — z1 — z2

and its derivatives are also given by (A. 10) where z, φ, ψ and s are
understood as follows:

z = zι — z2; φ — φγ — φ2\ ψ = -̂ 1 - Ψ2

Φ, v) = i / ( » , y9 ZIX, zίVy Vi) - f(χ, v, « i , z ^ zy*,v*) i
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