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The usual duality for finite dimensional vector spaces
induces a duality F' on the category of torsion free quotient
divisible abelian groups of finite rank with quasi-homo-
morphisms as morphisms. This duality preserves rank, is
exact, hence preserves quasi-direct sums, sends free groups
to divisible groups and conversely, and has the property that
for all primes p, p-rank FA =rank A — p-rank A.

A torsion free abelian group is quotient divisible if A has a free
subgroup B such that A/B is the direct sum of a torsion divisible
group and a group of bounded order. Let & be the category of
quotient divisible abelian groups of finite rank (rank A is the cardi-
nality of a maximal independent subset of A) with morphism sets
Q@ X ,Hom (A, B), where @ is the field of rational numbers. Morphisms
in & are quasi-homomorphisms of groups.

THEOREM A: There is a contravariant exact functor F: & — &
such that F? is naturally equivalent to the identity functor on &,
rank A = rank FA and A is free iff FA is divisible.

Let R, = {m/neQ|(p, n) = 1} be the localization of Z at a prime
pand ¥,={4,=R,Q®,A|Ac &} be a category with morphism sets
Q @z, Hom (4,, B,). The duality F induces a duality on &, which
coincides with the duality given in [1].

For Ae %, p-rank A is the Z/pZ dimension of A/pA.

COROLLARY B: For all primes p, p-rank FA = rank A — p-rank A.

Notation is established in 1 and the relevant results of Beaumont-
Pierce [2] are summarized in a series of lemmas. The proofs of
Theorem A and Corollary B are contained in 2. Section 3 includes
some easy consequences of the properties of the duality F.

1. Preliminaries. The ring of p-adic integers, p a prime, is
denoted by R} and Q; is the quotient field of R, i.e., the p-adic
completion of Q. There are subring inclusions Zc R, Cc Q C Q* and
R,cR;cQj; such that R¥’NQ = R,, N {&,|p a prime} = Z.

Each finite dimensional Q-vector space V' may be regarded as a
Q-subspace of V7 = QF @V by identifying v with 1®v». If X is a
subset of ¥V and R a subring of @} then RX = {3, r;|r;c R, x;¢ X}
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is an E-submodule of V. Hence ZXCc R, XCc@QXCVand B, XCR:XC
Vi. Further, if A is a subgroup of V such that V/A4 is torsion then
RV =V;=QiQA = QA and rank A = @Q-dimension of V = Q-
dimension of V} = R}-rank of R}A .

For the remainder of this note, V is a finite dimensional @-vector
space, X is a basis of V and 4§, is a @Q)-subspace of VF. Define (X,
V,0) = VN(N{R:X + d,|p is a prime}).

LEMMA 1. Let A = (X, V,0) for some X, V and 9.

(@) R,A=VNWE:IX+ d,);

by RiA=R;X+ 0, and 0, = N{p(RfA)|i=1,2, «--};

(¢) Ae% and ZX 1is a free subgroup of A with AJ/ZX torsion
divisible;

(d) If Y is another basis of V and B = (Y, V, d) then there are
nonzero integers m and n with mA C B and nBC A.

Proof. Beaumont-Pierce [2], §5.
LEMMA 2. Every Ac % s an (X, V,d) for some X, V and 0.

Proof. Choose V such that ACV, V/A torsion; let X be a maximal
Z-independent subset of A with A/ZX torsion divisible and let 6, =N
{pi(R;A)|t=1,2, +++}. Then R}A =R;X + 0, and R,A=R:ANV
for all primes p. Hence A = N{R,A|p prime} = {X, V, d}.

Note that if 4 = (X, V, 0) then p-rank A = rank A—(Q?-dimension
of d,).

Let A and B be torsion free abelian groups. Call ¢: A — B a
quasi-homomorphism if there is 0 == n e Z with ng € Hom (4, B). Ob-
serve that {¢|¢: A — B is a quasi-homomorphism} may be identified
with @ ®,Hom (4, B). The groups A and B are quasi-isomorphic
(A ~ B) if there are monomorphisms f:A - B, g: B— A such that
B/f(A) and A/g(B; are bounded.

Assume that A = (X, V,06) and B = (Y, U, 0) are objects of &
and that ¢:4-— B is a quasi-homomorphism. Then ¢ induces a
unique @-linear transformation \: V' — U since V/A and U/B are torsion.
Define ¢, = 1@ N\: V) — U}, a Q-linear transformation extending X,
hence ¢. There is an integer » such that ng, (R A)C RiB so that
6,(0,) C g, for all primes p.

Conversely if 6: V—U is a Q-linear transformation such that
0,(0,) Co, (where 0, =1 0: Vi —V}) for all primes p, then 6: A —
B is a quasi-homomorphism. Observe that if W is a basis of U with
(X)W then 6(A)c D = (W, U,o0). By Lemma 1.d, there is 0 ==
ne Z with w0(A)cnDcC B = (Y, U, o).

Note that a quasi-homomorphism ¢: A — B is a quasi-isomorphism
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iff »: V—U is an isomorphism and ¢,(d,) = o, for all primes p, where
) is the unique extension of ¢ and ¢, = 1 ® A.

We summarize some of the categorical properties of &, as given
by Walker [4]. Assume that ¢: A — B is a quasi-homomorphism and
that f = ngc Hom (4, B): ¢ is epic in & iff B/f(A) is bounded; ¢ is
monic in & iff f is monic and 0—>A—»B—ﬂ» C— 0 is exact in & iff
¢ is monie, 6 is epic and (im f + ker g)/(im f) N (ker g) is bounded,
where g = m6 € Hom (B, C). The direct sum in & is the quasi-direct
sum of groups, A@ B, where M = A& B iff there are non-zero
integers m and % with mMcA@P B and n(APH B)c M. A group
Ac % is strongly indecomposable if A is indecomposable in <, i.e.,
A = B® C implies that B= 0 or C = 0.

LEMMA 3 Suppose that A; = (X;, Vi, 5)6%’ 1=1,2,8. Then

0—>A Ag—aA—»Ozsexactm(gzﬁ‘O—»V——»V—+V3—+Ozsanemct
sequence of Q-vector spaces where \; 1s the unique extension of ¢;, 1 =
1, 2.

Proof. Observe that ¢, monic iff A, monic; ¢, epic iff A, epic and
(ker f, + im f))/(ker f,) N (im f,) is bounded iff ker r, = im X, where
fi=ng,c Hom (A4;, A;.)) for 0t n,cZ, i =1, 2.

2. A Duality for . Let 77 denote the category of finite
dimensional @-vector spaces with @-linear transformations as morphisms.
Define G: 7" — 7" by G(V) = V' = Homy(V, Q); and for feHom, (V,
U), G(f) = f" is an element of Hom, (U’, V') defined by f'(a) = af.
It is well-known that G is a contravariant exact functor naturally
equivalent to the identity functor on 77, i.e., (fg) = ¢'f"; if O——>U~f;>
V—%W—»O is an exact sequence of @-vector spaces then 0—W’ L

V’f—»U’——>0 is exact; and for each Ve 7 there is a Q-isomorphism
hy: V—V" such that if feHom,(V, U), hyf = f"hy. If {2, <+, x,}
is a basis for V then {z], ---, #,} is a basis for V' where «; is defined
by i(x;) = 0;;, the Kronecker delta.

Proof of Theorem A.
(@) DEFINITION of F. If A = (X, V,d)e % then there is a Q-
exact sequence

0 — Hom (V;/3,, Q%) — Hom (V, @3) —— Hom (3,, Q}) — 0

induced by the canonical Q}-exact sequence
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Define F(A) = (X', V', 6), where V' = Hom (V, @), X' = {#'|x ¢ X} and
0, = 7. (Hom (V}/6,, Q%). Note that j, may be regarded as a subspace
of (V’); since Hom (V}, Q) is naturally isomorphic to QF @ V' = (V’)}.

(b) F is a contravariant fumctor. Let B= (Y, U, 0),0: A— B
a quasi-homomorphism, »: V—U the unigue extension of § and 4, =
1QN: VF—U}. Define F(0) = \' € Hom, (U’, V’). Then F(0): F(B) —
F(4A) is a quasi-homomorphism if for all primes p, F(6),(,) C d,, where
F(6), = 1LQ N (U"); — (V');.

Since 6,(0,) C o, there is a canonical homomorphism ¢,: V;/6, —
U}/o, such that ¢,j, = j,0,. Thus 7.¢, = 6,5%. It now follows that
F(6),(G, o, since ¢, = (1®\) is identified with 1 ® N\ = F(6), by
the natural isomorphism of (a).

It is now clear that F is a contravariant functor in &, since G
is a contravariant functor in U.

(¢) F* is naturally equivalent to the identity. For A = (X, V,
8)e &, define g: A— F*A = (X", V", 0) to be the restriction of the
Q-isomorphism #,: V—-V"”. It follows that ¢, is a quasi-isomorphism
since (9,), = 1 ® hy: V¥ — (V")¥ has the property that (9.),(8,) = &,

Let 0: A— B = (X, U, 0) be a quasi-homomorphism. Then g0 =
F¥0)g, since hyn = \'h,, where ) is the unique extension of 4, »: V— U.
Therefore, F* is naturally equivalent to the identity functor on & .

(d) Fisexact. Assume 0— A, 2 A, fi A,—0 is an exact sequence

in . By Lemma 3,0—+Vlil»V2£>V3—~>O is exact hence 0——»1/'3’52»
2 . . F F
Vv, 5 V! —0 is exact. Again by Lemma 3, 0— F(4,) ﬁz—l F(A,) —9—%

F(A))— 0 is exact. Consequently, F' is an exact functor.

(e) A is free iff FA 1is divisible. Observe that A = (X, V, 9) is
free iff 0, =0 for all primes p and divisible iff §, = RfA for all
primes p.

Proof of Corollary B. A consequence of the definition of F and
Lemma 3.

Note that A is strongly indecomposable iff F'A is strongly inde-
composable.

3. Examples and applications. If A is a rank 1 quotient
divisible group with type (k;), then k; = 0 or o. It is easy to see
that FA is a rank 1 quotient divisible group with type (I;) where
lLi=01if k;= o and I, = « if k; = 0.
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A torsion free abelian group A is locally free if R,A is a free
R,-module for all primes p. The only locally free quotient divisible
modules of finite rank are free, since if A is such a group FA is
divisible (R,FA is divisible for all primes p) hence A is free.

For Ae %, let E(A) be the quasi-endomorphism ring of A. Then
F induces a ring anti-isomorphism from E(A) to E(F'A) which is an
isomorphism if E(A) is commutative.

Beaumont-Pierce [3], Corollary 4.6, prove that a torsion free group
A, of finite rank, is isomorphic to the additive group of a full subring
of a semi-simple rational algebra (i.e., has semi-simple algebra type)
iff A is quotient divisibleand A ~ B,® .-+ @ B,, B; strongly indecom-
posable, and each FE(B;) is an algebraic number field, whose dimension
over @ is the rank of B;. It follows that A has semi-simple algebra
type iff FA does.

One can show, as in [1], that if rank A = » + 1 and p-rank 4 =
n for all primes p, F(A) = A"A, the wnth exterior power of A. A
module theoretic characterization of F, in general, is unknown to the
author.
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