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INTERPOLATION SETS FOR ANALYTIC FUNCTIONS
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Let U be a bounded open subset ef the complex plane C.
Criteria are obtained for a subset E of U to be an interpola-
tion set for the algebra of all bounded analytic functions on
U extending comtinuously to E.

In the case where U is the open unit disc 4, this problem was
treated by Détraz [3]. She showed that if E is a subset of the unit
circle T then every bounded continuous function on E is the restriction
of a bounded analytic function on 4, extending continuously to E U
(T/E), if and only if E has measure zero. We extend this result to
any U with connected complement, replacing linear measure on T by
harmonie measure (Theorem 1). For the general case the same method
yields a criterion in terms of representing measures for A(U) (Theorem
2). Finally in Theorem 8 we use a localization argument to sharpen
Theorem 1 and also treat the case where K contains points of U as
well as oU.

NoTAaTION. If S is a plane set then S denotes its closure and S
its boundary. A(U) denotes the algebra of all continuous functions
on U, analytic on U; H=(U) denotes the algebra of all bounded analytic
functions on U; Hy(U) denotes the algebra of all bounded continuous
functions on UU E which are analytic on U. If ye U, a representing
measure for y with respect to A(U) is a positive borel measure ¢ on
U such that f(y) = gfd)u for all fe A(U). We denote by || /|| the
supremum of the function f over its domain of definition. 4(z, )
denotes the disc with center 2z and radius 4.

We say that a set SSUU E is an interpolation set for Hy(U)
if for any bounded continuous f on S we can find ge Hy(U) with
glS = f. We say S is a peak interpolation set for Hy(U) if for any
bounded continuous f on S, and open set V2 S, and any ¢ > 0, we
can find ge H(U) with ¢|S = £, llgll £ |f]l, and |g| < e on U\V.

THEOREM 1. Suppose C\U is connected. Let F be a subset of 6U

with zero harmonic measure for each point of U (with respect to U).
Then F is a peak interpolation set for Hy(U).

The proof follows from the following lemma.

LEMMA. With U and F as in the theorem, let X be a compact
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subset of U, W a meighborhood of X, and ¢ > 0. Then we can find
SeHr with ||f||=£2,|1— f|<eon FNX, and |f| <€ on U\W.

Proof. We can find a positive harmonic function ¢ on U such
that 0({) — «~ as { —2,{e U, for each ze F. Let 7 be a harmonic
conjugate to o on U, and let § = ¢ + 47, an analytic function on U.
Put » =6/(6 + 1). Since 6 has positive real part, he H=(U) with
[[R]| < 1. Moreover () — 1 as { —z,{e U, for each z€ F; hence we
can regard h as an element of Hy(U), with h =1 on F.

Now let @ be a continuously differentiable function which is 1 on
a neighborhood of X and zero outside W, with [[®|| = 1. Then the
function

7.(0) = PO Q) + }_g 2@ 9P gz
Tlvz — { 0%

is in Hy(U). (See [4], p. 210.) Moreover

1
z—C

The last term is bounded by a constant depending only on U, and
[|h*]|;s— 0 as m— oo since |k| <1 in U. Choose » so that |/g, —
®h*|| < ¢ and put f = g,. Then f satisfies the requirements of the
lemma.

Theorem 1 follows from the lemma in exactly the same way as
Theorem 1 follows from Lemma 2 in [2]. (For an alternative approach
see the proof of Theorem 4.3 of [3]).

We observe that if A(U) is pointwise boundedly dense in H=(U)
then using Theorem 2.1 of [5] we can modify the function f in the
lemma so that it is in H7,;n7(U). Then we can prove that F is a
peak interpolation set for Hyy,oum(U).

In the general situation (where C\U need not be connected) the
same method yields the following result. If ye U we denote by M,
the set of all (positive) representing measures for y with respect to
A(U) on U. We assume U is connected.

19, — @1l £ L] 2217 s |

L3\21)

THEOREM 2. Let yec Uand F S oU. Suppose there is a decreasing
sequence {V,} of open sets containing F, such that p(V,) — 0 uniformly
Sor peM,.

Then F is a peak interpolation set for Hy(U).

Proof. We may suppose p(V,) < 27" for each pre M,. For each
n let {g..} be an increasing sequence of nonnegative continuous functions

converging to the characteristic function of V,. Then S Oudp < 27
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for e M, and so by Theorem II 2.1 of [4], we can find h,. e A(U)
with Re %, = g on U, Re h,(y) <2, and we can also suppose
Im#h,.(y) = 0. Passing to a subsequence we have h,, — h, as k— oo,
pointwise in U, where k, is analytic in U with Reh, =1 on V, N U
and |k, (y)] = 2™ Reh, = 0on U, Im A, = 0. By Harnack’s inequalities
the series 37, h, converges pointwise on U to an analytic function A
such that Re2 =0 on U and Re () —» ~ as {—=2,{e U, for each
LekF.

The rest of the proof follows Theorem 1.

Again we observe that if A(U) is pointwise boundedly dense
in H=(U) then the interpolation can be achieved by functions in
Hyyoom(U). Moreover under the same assumption the converse to
Theorem 2 holds, for if f is as in the definition of peak interpolation
set, with V chosen so that y¢ V, and g =1, then we can choose a
neighborhood W of F so that |1 — f| <¢ on UN W; by Theorem 5.1
of [1] we can approximate f to within ¢ on compact subsets of W by
a sequence {f,} in A(U) with || f,}| £1, so that #(W) is small for all
rEeM,.

The question naturally arises: suppose p(F) =0 for all xe M,.
Must there exist open sets V, 2 F such that ¢(V,) — 0 uniformly for
peM,? This is easily verified if F' is o-compact (in this case the
conclusion of Theorem 2 can be deduced from the fact that each
compact subset of F' is a peak interpolation set for A(U)). We have
no information of the general case.

LEMMA 2. Let F be a subset of U such that for each z € F' there
exists 0 > 0 such that F, = F N {w: |w — z| < 6/2} is a peak interpolation
set for Hina.n(UN 4(z,0)), then F is a peak interpolation set for
Hz (D).

Proof. First we show that F, is a peak interpolation set for
H7(U). Let g be a bounded continuous function on F,, let & > 0,
and let V be an open neighborhood of F,. Choose fe HZ ,..,(UN
4(z, 0)) such that f =g on F, |||l =llgll, and |f| < e outside VN
{w: |w — 2| < 3d/4}.

Choose a continuously differentiable function @ such that ¢ =1
in a neighborhood of {w:|w — z| < 8d/4} and supp @ = {w: |w — z| <
d}. Define

fiw) = fype) + | LU SCgmg

vnaeen § — w L — w
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where f(w) is defined to be zero outside (FFU U)N4(z, 6). Then f,e
Hz(U) and given ¢ > 0 we can choose ¢ >0 so that ||/, — f|l < &
Moreover || f,|] < Al f]|, where A is an absolute constant. (See [4],
p. 210.) Then we have |f, — fi{<eon F, and |f,|<e on U\V. It
now follows by a standard argument (see e.g. [2], Theorem 1), that
F, is a peak interpolation set for H(U).

Now let V be an open set containing F. Shrinking V if necessary we
may suppose that V is contained in the union of the discs 4(z, 0), z¢ F,
constructed above. This implies that for any compact set K =V, we
have KN F & UL, F,, for some z, ---,2,€F, which easily implies
that KN F is a peak interpolation set for Hy(U). The lemma now
follows by the argument used to deduce Theorem 1 from Lemma 3
in [2].

We say that U is locally simple connected at a point zeolU if
there exists ¢ > 0 such that C\(U N 4(z, 9)) is connected. For example,
if the diameters of the components of C\U are bounded away from
zero then U is locally simply connected at each point of dU. (Note
that U N 4(z, 6) is not required to be connected; we only require that
each component be simply connected.)

THEOREM 3. Let S be a subset of U such that U is locally simply
connected at each point of SNoU. Then S is an interpolation set
for Ho(U) of and only if:

(i) UNS is an interpolating sequence for H(U),

(i) SNoU has zero harmonic measure for each point of U, with
respect to U.

Proof. Assume first that S is an interpolation set for Hg,,(U).
A simple normal family argument shows that (i) holds.

Now let ye U and choose f € Hhy(U) such that || f|| <1, f =0
on SNoU, and f(y) =« 0. Then — log | f|is a positive superharmonic
function on U, tending to <o at each point of SN oU, and finite at
y. Thus SN oU has zero harmonic measure for y with respect to U
which proves (ii).

Now assume (i) and (ii) hold, and let f be a bounded continuous
function on S with || f|| £ 1. By Lemma 2 and Theorem 1, 6UNS
is a peak interpolation set for H;y.s(U) so we can find h e Hyyns(U) with
(Rl<1and h=f on 0UNS. Let g, = f —h on S, then g, = 0 on
aU N S so that for any ¢ > 0 we can find F'e H;;,5(U) so that F =0
on dUNS, |1 - F|<eon {ze8S:|g.2)] >¢},||F|| £2. Then |Fyg, —
9.l £3¢ on S. Choose Ge H*(U) so that ||G]| < M{lg,ll £ 2M and
G =g, on SN U, where M is the interpolation constant of S N U; then
FGe Hgos and satisfies |FG — g,/ <8¢ on S. Let f = FG + he
H;;os(U), then |f — f| <3¢ on S and ||f|] < 4M + 1, so the theorem
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follows by choosing ¢ with 3¢ < 1.
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