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A NOTE ON H-EQUIVALENCES

DoNALD W. KAHN

If X is a space, with base point, the set of homotopy
classes of based self-equivalent maps, from X to itself, forms
a group, which has been studied by many authors. In this
note, we study a related group, in the case where X is an
H-space. The main result is that all such groups are finitely-
presented. The methods combine results from algebraic to-
pology with combinatorial group theory.

If X is an H-space with multiplication ¢ X x X — X, a self-map
f: X— X is called an H-map if

Xx Xt X
s |s
XxX-t.x

is homotopy commutative. Such maps were first studied in [6], and
later in [1]. Arkowitz and Curjel [1] showed that if X is a connected
complex, which is an H-space, X has finite-dimensional, commutative,
rational Pontrjagin algebra, and the total homotopy groups of X are
finitely-generated, then the group of homotopy classes of self-maps,
which are H-maps, is finitely-generated. We denote this group by
A(X), and remark that it is known to be frequently a complicated,
non-Abelian group. Observe that this theorem of [1] suffices to handle
the case when X is a finite, connected complex, which is an H-space.
The purpose of this note is to show how this result can be strength-
ened. We shall prove

TuEOREM. If X satisfies the assumptions of the theorem of
Arkowitz and Curjel, then A(X) is finitely-presented (see [3] for a
definition).

The class of finitely-presented groups is countable, while it is
known that there are uncountably many groups with 2 generators.
(This result about uncountability, due to B. H. Neumann, may be
found in [3]). Hence, our theorem narrows down the possibilities for
A(X) appreciably.

To prove this Theorem, we need several propositions.

PrOPOSITION 1. Let N C G be a normal subgroup of the group G.
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Set K = G/N. If K and N are finttely presented, so is G.

Proof. See p. 130 in [2]. I believe that this is the first place
where this proposition, which is not difficult, has appeared in the
literature.

REMARK. On the contrary, if G and K are finitely-presented, N
need not even be finitely-generated.

ProrosiTION 2. Let HC G be a subgroup of finite index. If G
is finitely-presented, so is H.

Proof. See p. 93 of [4].

As a converse of Proposition 2, we have the following proposition
which we shall deduce briefly from Proposition 1.

PRroPOSITION 3. If HC G s a finitely-presented subgroup of finite
index, then G is fimitely-presented.

Proof. Let H, be the intersection of all conjugates of H in G.
H, is a normal subgroup of finite-index, as there are only finitely-
many conjugates. By Proposition 2, H, is finitely-presented. G/H, is
finite, and hence, finitely-presented. The result follows immediately
from Proposition 1.

ProrosiTION 4. If G, -+, G, are finitely-presented, so is the
group IIi, Gi.

Proof. For lack of a reference, we indicate the proof. As genera-
tors, we select the elements
(xh 1, tey, 1)) (xZ; 1} M) 1)’ ty, (xk’ 17 c 0y 1)
(1y Y, 1;"'71)y"' y(ly Y, 1;'.'1)

where the z; generate G,, the y,; generate G, etc. A defining set of
relations is then given by the relations among the #;, the relations
among the y;, etc. plus the commutativity relations

(xi’ 1! °t 1)'(1: Y, 17 Y 1) = (17 Y, 1’ ccy 1)'('7"1" 17 Y 1) ete.
We now prove our Theorem.

(a) Let k& be the maximal dimension for which H(X, @) = 0.
Let Fcrml(X) = >k, @ 7(X) be the (graded) free subgroup. We
shall denote, by Aut,(G), the group of graded automorphism of the
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graded group G, reserving the symbol Aut for the usual group of
automorphisms. According to [5.], if F, is a finitely-generated, free,
Abelian group, Aut (F) is finitely-presented. It is clear that Aut, (F)
is a direct product of such groups, and hence by Proposition 4, it is
finitely-presented. Because Aut, (F) < Aut, (7,(X)) is clearly a sub-
group of finite index, we conclude from Proposition 3 that the group
Aut, (#),(X)) is finitely-presented.
(b) It is shown in [1] that the natural map

P: A(X) — Aut, (7(x))

has finite kernel, and that the image of p (see p. 146 of [1]) is a sub-
group of finite index. It is here that the assumptions on X are used.

By (a) above, and Proposition 2, we see that Im (p) is finitely-
presented. ker (p) being trivially finitely-presented, our theorem
follows immediately from Proposition 1.

In conclusion, we would like to make some remarks about the full
group of homotopy equivalences, G(x), for such a space X. Clearly,
we have a similar homomorphism p, and Im (p,) is of finite-index.
However, ker p, is no longer finite. For consider the space

X = K(Z, 2n) x K(Z, 4n) n >0

with the usual H-space structure. A self-map is determined up to
homotopy by 2-cohomology classes, the classes f*(i.,) and f*(i.),
these being the images of the fundamental classes. We set, for any
integer £,

fl:k(”lz'n) = izn .
fk* (i&n) = i4n + k(iZn U 7/21») .

It is easy to check that such a map f, induces the identity automor-
phism on homotopy groups, but that all the different f, represent
distinet homotopy classes. Hence, the kernel of p, is infinite. An
easy cohomology calculation shows that when %k = 0, f, is not an H-
map. One also see quickly that A(X) does not have finite index in
G(X) in this case.

Nevertheless, one can prove that G(X) is finitely-presented, by
considering the kernel of p,. This will be studied in the forthcoming
thesis of Mr. Daniel Sunday.
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