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The asymptotic behaviour of Toeplitz determinants Dn(f),
as n~+ oo, is considered for nonnegative generating functions
f(θ) with a finite number of isolated zeros Θv, in the neighbor-
hood of which f(θ) ~ I eίθ — eiθ » |*v where av > 0. Using an
argument suggested by Szegό, an upper bound of the form
Dn(f) < C*Gn+1(n + l)σ is derived, where G is the geometrical
mean of / and ^ = 1/4^ <*l* Using some identities in the
theory of orthogonal polynomials, and specifically facts about
Jacobi polynomials, it is shown that the above bound is
actually asymptotically equal Dny as n -> oo, for some special
/ ' s . It is conjectured that this asymptotic equality is gen-
erally true for the class of / ' s considered.

In a paper written more than fifty years ago [9] G. Szego in-
vestigated the asymptotic behavior of the sequence Do, Dlt D2, of
determinants (Toeplitz determinants) defined as follows

(1) Dn= det (cp_ff),

where the entries of the matrix (cp^q) are the Fourier-coefficients of
a "generating function"

(2) C» = 7

Here f(θ) is a real, nonnegative function, periodic modulo 2ττ, satisfying
certain regularity conditions. A refinement of the old results is the
following theorem, also due to Szego [10]:

THEOREM B. If f(θ) is a strictly positive and differentiable func-
tion, periodic modulo 2π, whose derivative satisfies the condition

(3)

for some constants K > 0 and 0 < a < 1, then

(4) Dn~C Gn+1 fa—oo)

where

( 5 ) Q = eil**l

and
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(6) C = e*=ι < - .

The complex numbers hn are coefficients in a Taylor series

( 7) log g{z) = Σ M "
n = 0

where the function g(z) is determined up to an irrelevant constant
factor of unit modulus by the following properties:

(i) It is analytic on the disk \z\ < 1, (ii) it has no zeros on the
disk \z\ < 1, and (iii) limr^\g(reiθ)\z = f(θ).

When the conditions of the theorem are no longer met, in parti-
cular when f(θ) has zeros, the series (6) for log C may not converge.
However, when the zeros are of a sufficiently mild kind the geometric
mean G still exits and is related to the analytic function g(z) by

(8) G = \ g ( 0 ) \ 2 .

In this case the sequence DJGn+ι (n = 0, 1, 2, •) is nondecreasing
(cf. [5], and [8], Appendix A2). The problem then naturally suggests
itself to determine its asymptotic behavior as n —> °°.

The writer of these lines has encountered this question some years
ago in connection with the mathematical analysis of a problem in
quantum mechanics [8]. In the context of that problem the generating
function f(θ) was the following

(9) f(θ) = \ei0 - eiθ^\eid - eiθ*\

where θι and θ2 are distinct modulo 2τrβ This function has zeros and
it is not immediately evident that Theorem B is relevant. Neverthe-
less, as Professor Szego pointed out in a letter to the writer, a deft
use of that theorem allows the derivation of an inequality:

(10) Dn < Cn1!2Gn+1

where C = C(θlf θ2) is an explicitly given function of the zeros θ1 and
θ2. The argument leading to (10) (cf. [8], §4) may be generalized to
generating functions of the form

where the product is finite, the θv are distinct modulo 2ττ, the a, are
positive, and fo(θ) satisfies the premises of Theorem B. In the fol-
lowing we present this generalization, following closely the argument
of the special case treated in [8].

Let us adopt the following notation: If f(θ) is the generating
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function, we write Dn(f), (?(/), g{z; f) and hn(f) for the associated
quantities that occur in Theorem B, and in case the series converges,

(12)
W = l

For E > 1, let

(13) Λ(<?) =/.(*) Π

where the θu, the α, and fo(θ) are the same as in (11). Then

(14)

in particular, fR has no zeros. Moreover, it satisfies the other condi-
tions of Theorem B as well. It is a fact that the Toeplitz determinants
depend monotonically on the generating function (cf. [5], p. 38), so
that (14) implies

(15) Dn(fR) > DJJ) .

On the other hand, the ratio DJG%+1 is nondecreasing with in-
creasing n (cf. [5], ibid.)) therefore

(16) Dn(fR) ^ G(fB)*+1 lim ^4&

by Theorem B. The geometric mean is

(17) G{fR) = G(fo)R* = G(f)R*

where

(18) α = Σ «*

We now compute H(fB) as prescribed by the theorem.
One verifies directly that

(19) g(z; fR) = g(z; fQ) I I (z - Re*'")**'* ,

since the properties of g identify this function uniquely up to the
irrelevant phase factor (which makes it also unecessary to specify the
banch of the multi-valued factors). Expanding its logarithm in powers
of z, it follows that for n ^ 1

(20) hn(fR) - hn(fo) - & Σ - £ * . J R - V ' " .

A direct computation yields
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H(fR) = H(f0) - Re Σ α, log g(^-; /„)

(21) "

J /*, W l - -IT COS (<?V -

Let

(22) Λo= Inf \g(z;fo)\.
I * l < i

Since g(z;fQ) is analytic without zeros on the open unit disk and its
squared absolute value has the radial limit \g(eiθ;f0)\2 = f0(θ), continuous
and bounded away from zero, we have k0 > 0. Thus

(23) exp { - Re Σ a log g(^; /0)} ^ K«

where α is defined by (18). It follows then from (15), (16) and (21)
that

DJJ)
(24)

R4

It is convenient to separate the factors with v = μ from those with
v Φ μ; and for the latter we use the inequality, valid for R > 1 and
real a,

(25) (R* - 2R2 cos a + 1)1/2 > 11 - eia | .

Thus

#„(/) < C0[G(/)]B+15a(B+1)+a2/2(i?2 - 1)-"

X II Π Wθy — eίθ

v<.μ

(26)

where

<27) σ =

and

(28) Co =

But (26) holds for any R > 1, so the best inequality is obtained by
minimizing the right hand side with respect to R. A somewhat less
precise but simpler inequality results when we put R2 — 1 + l/(n + 1)
and note Ra{n+1) < eal2 and Ra212 < 2a\ We have now proved the fol-
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lowing

THEOREM, For a generating function of the form (11)

(29) Dn{f) < C(f)[G(f)]*+ί(n + l)σ (n ^ 0)

where the factor independent of n may be taken

(30) C(f) = C0 e*/2 2*2 Π Π |e"* - e"H~β*β*/4

and the rest of the symbols are defined above.

The interesting feature of the bound (29) is its growth with n>
and the dependence of this growth on the numbers av (cf. Equ. (27)
above) which characterize the behaviour of the generating function
near its zeros.

The principal purpose of this note is to record a further important
suggestion of Professor Szego, contained in the correspondence with
the writer in 1963- Namely, for some special cases in the class given
by the formula (11) it is possible to express Dn in finite terms (the
meaning of this phrase will become clear below), so that in these
cases another means exists for scrutinizing the behaviour of Dn in
the limit n —> oo. This happens when

(31) f(θ) = \eiθ - l\a-\eiθ + 1 | '

where a, β > 0 are arbitrary. Since a multiplicative constant in /
affects Dn trivially, we have chosen a normalisation in (31) which
makes G(f) = 1. In the following we present the calculation suggested
by Szego, and its consequences, in detail.

This calculation makes heavy use of the theory of orthogonal poly-
nomials as presented in Szego's treatise [11], to which the reader is
referred for further information. We follow the notation of this book
closely. The starting point is the sequence of identities

(32) Dn(f) = Π {Lφ5Γ (n = 0, 1, 2, . . . )

where φ, (z) is the (j + l)st member of a sequence of polynomials,
orthonormal on the unit circle z ~ eiθ with respect to the measure
f{θ)dθ (cf. [11], §11.1); and where L in front of a polynomial stands
for "leading coefficient of". We also consider two other polynomial
systems pn(x) and qn(x) (n — 0, 1, 2, •••). These are orthonormal on
— 1 Ŝ x ^ 1 with respect to measures w(x)dx and (1 — x2)w{x)dx respec-
tively, where w is related to / by

(33) f(θ) - |sin#|w(cos#) .
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Writing x — (z + z~ι)j2, there are the following identities between
these three systems.

/ 1 \ l / 2

(34) pn{x) = (-±Λ
\ 2π /

(35)

2π
l/2

Lφ2n

\ l / 2 /

(36) (z - z-^q^ix) = (-i) (1 -

(37)
X (z-*+1<P**-i(z) ~ Z^φ^iz-1)) .

The symbol C in front of a polynomial stands for "constant term of".
These formulae are valid whenever they make sense, i.e. for n ^ 1
in (35)-(37) and for n ^ 0 in (34). For proof see [11], §11.5.

In the case (31) we are considering one finds from (33)

(38) w{χ) = 2

and

(39) (1 - x2)w(x) = 2(α

Thus the pn and qn^ are, apart from normalization, Jacobi polynomials
([11], Chapter IV.). Equate the coefficients of the leading power of z
on both sides of (34)-(37). This yields identities between Cφ2n, Lφ2n,
Lφ2n^t on the one hand, and Lpn, Lqn^ on the other. But the latter are
expressible in terms of Γ'-functions whose arguments are simple linear
combinations with numerical coefficients of a, β and n ([11], Chapter
IV., especially Equs. (4.3.3) and (4.21.6)). Eliminating Cφ2n, one cal-
culates Lφ2n and Lφ2n^ explicitly, calculation that is somewhat lengthy
though straightforward, and whose details we omit. With an appro-
priate use of the duplication formula πιl22ι'2zΓ{2z) = Γ(z)Γ(z + 1/2),
one obtains

= r(» + 1 + 1 + £)r(» + i + f +1) 2

(40) x Γ(n + lΓr(n + 1 + - | + £ ) ~ ^ ( » + y + f '

and
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Through (32) above this leads to the desired formula for Dn "in finite
terms."

One is now faced with the problem of finding the asymptotic
formula for Dn as n—>^. The first minor difficulty is that, due to
the differing expressions (40) and (41) there is a corresponding differ-
ence in Dn for even and odd n. However, the Stirling formula for
Γ shows that

(42) lim Lφ2n = lim Lφ2n_1 = 1 ,

n—>co n—»oo

so that

(43) D2n ~ A - i (as n-+°o) .

Thus, it is sufficient to look at, say, odd n only. It proves convenient
to make use of the compact notation offered by a rarely used tran-
scendental function, the G-iunction of Barnes [1]. This function arises
by a natural extension of the ideas leading to the /"-function and
has a similar analytic theory. For our purpose its most essential pro-
perties are G(T) = 1 and the functional equation

(44)

Thus

(45) z)Γ(z +

G(z

1)

+ 1)

•Γ(z

= Γ(z)G(z) .

+ G(β + W + 1)

a formula that in view of (32), (40), (41) is obviously relevant in
calculating JD2Λ+1. We find

(46) D2n+1 = KJIG(as + n + iy°

with

(47) K = Π G(a8y .

The numbers au , α9 are in order 1/2 + a/4 + β/49 1 + a/A + /3/4,
3/2 + a/A + /9/4, 1, 1 + a/2 + /S/2, 1/2 + a/2, 3/2 + α/2, 1/2 +/S/2, 3/2 + /S/2.
The exponents î , , y9 are in order - 2 , - 4 , - 2 , 2, 2, 1, 1, 1, 1. We
note the facts
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(48) Σ V. = Σ VJΛ. = 0 ,

and

(49) Σ VAl = 4-(α* + /32) .
»=i 2

The final step is the application of the analogue of the Stirling
formula for the G-function. It reads [1]

logG(ί + o + 1) = - ί - logA -*L- at + ί ± - ^ log (2τr)

(50) 1 2

 2

 4 2

(JL ^±) (as+at + ̂
Δ Δ

Here a is any complex number, and A is Glaisher's constant [4].
From (48), (49) we get then

(51) D2n+1 - Kn^+W (as n-+ «>) .

It is remarkable that the contribution of the nine very rapidly growing
factors in (48) largely cancel, and the "little left over" yields the
asymptotic formula (51). This phenomenon has its origin in the
lengthy ratios of /^functions that occur in the theory of Jacobi poly-
nomials. Let us record here that the G-functions involved in the
definition of K(a, β) can be expressed in a variety ways including
integral representations [1].

Our interest lies in exponent of n governing the asymptotic in-
crease of Dn. We note that in the cases when the generating func-
tion / is of the special form (31) we have

(52) σ = ̂ ( α 2 + β*)

and therefore the majorization offered by (29) is close enough so that
the logarithm of both side divided by log n tend to the same limit σ.
This suggests that the inequality (15) for the best value of R is a
very close one, and the sign > may perhaps be replaced by ~ in the
limit n —-• °o. This leads to the

CONJECTURE. For a generating function of the form (11)

(53) Dn(f) ~ C{f)[G{f)\^n° (n - «,)

where σ is given by (27) and C(f) is some positive number depending
on f.

In recent years a number of authors have developed the theory
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of Toeplitz determinants beyond Szego's work. See especially the
papers by Devinatz [2], the review by Hirschman [6], and the review
by Fisher and Hardwig [3], where other references may be found.
Noteworthy is the progress in removing the requirement that the
generating function / be positive; this is replaced by requirements
formulated in terms of the phase of the complex valued f{θ). In all
these generalizations it is necessary to assume, however, that / has
no zeros. It is clear from the evidence in the present paper that in
the case / has zeros (but G(f) still exists) the asymptotic behaviour
of the Dn(f) as n —> ©o is intimately related to the behaviour of f(θ)
near its zeros. The above Conjecture, generalised in an appropriate
way for complex valued /, also appears in Fisher and Hartwig [3]
and is supported by calculations using ideas of Kac [7], and also by
evidence taken from the writer's work [8] and a preliminary unpub-
lished version of the present paper.

It is the authors hope that a rigorous analysis will someday carry
the results to the point where the true role of the zeros of the gen-
erating function will be understood. When that day comes a capstone
will have been put on a beautiful edifice to whose construction many
contributed and whose foundations lie in the studies of Gabor Szego
half a century ago.

Notes added after acceptance for publication:
1. The conjecture has now proved by Harold Widom.
2. The author is greatly indebted to Professor Widom for a care-

ful reading of the manuscript and the elimination of a significant
error from a previous version.
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