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A commutative ring R is a general Z.P.I.-ring if each
ideal of R can be represented as a finite product of prime
ideals. If R is not a general Z.P.I.-ring, it is still possible
that each principal ideal of R can be represented as a finite
product of prime ideals. In this paper, it is shown that if
R is a commutative ring in which each ideal generated by
two elements can be written as a finite product of prime
ideals, then R must be a general Z.P.I.-ring.

Let R be a commutative ring. R is a general Z.P.I.-ring if each
ideal of R can be represented as a finite product of prime ideals. In
a previous paper, we proved that R is a general Z.P.I.-ring if each
finitely-generated ideal of R can be represented as a finite product
of prime ideals [4 Theorem 2.3]. If each ideal of R generated by
n or fewer elements can be represented as a finite product of prime
ideals, then we define R to be a π(ri)-rίng. Mori completely charac-
terized the structure of π(l)-rings in a series of four papers [5, 6,
7, 8]. Using his characterization, it is not difficult to construct a
π(l)-ring that is not a 7r(%)-ring for any n > 1. For this reason it
is surprising that the main result of this paper is the following
theorem.

THEOREM. Let R be a commutative ring. Then the following
conditions are equivalent:

(a) R is a general Z.P.I.-ring;
(b) for n ^ 2, R is a π(n)-ring
( c) R is a π(2)-ring.

Throughout this paper, R denotes a commutative ring and n
denotes an arbitrary positive integer.

2 7r(^)-rings without zero-divisors* If D is an integral domain,
we call a prime ideal P of D minimal if P is of height one. An
integral domain D with identity is a Krull domain if there is a set
of rank one discrete valuation rings {Va} such that D = f\a Va and
such that each nonzero element of D is a non-unit in only finitely
many of the Va.

EXAMPLE 2.1. An integral domain D with identity is a π(l)-ring
if and only if D is a Krull domain in which each minimal prime ideal

147



148 KATHLEEN B. LEVITZ

is invertible [4 Theorem 1.2]. If Z denotes the rational integers,,
then the polynomial ring in one indeterminate Z [x] is a 7r(l)-ring and
Z[x] is not a π(n)-ring for any n > 1.

Henceforth we refer to 7τ(w)-rings without zero-divisors as π(n)-
domains.

LEMMA 2.2. Let R be a π(2)-domain with identity. Then R is a
Krull domain in which each prime ideal of height one is invertible.
Moreover, the prime ideals of height one are pair wise comaximal.

Proof. If R is a τr(2)-domain, R is a π (l)-domain. It follows
from [4 Theorem 1.2] that R is a Krull domain in which each
minimal prime ideal is invertible. Let Pι and Q be distinct minimal
prime ideals of R. Let a e P\Q. Then

(a) = Π P/< ,

where, for each i, e{ ^1,P{Φ Q, and Pi is a minimal prime ideaL
Let δ e Q\U?«i Pi- Then

(α, δ) = Π Λ, (α, δ2) = f[ Sk ,
3=1 k=l

where for each j and k, R3 and Sk are prime ideals of R.
If bt e (a) for some t e R, then (bt) c Π?=i P»β< If for each ir

1 <̂  i <£ s, we let ^ denote the valuation on ϋ? with respect to the
minimal prime ideal Piy then Vi(bt) ^ eζ while ^(δ) = 0. Hence t e P|6 i ),
the βith symbolic power of P, . Since for each i, Pi is invertible, it
follows that P[ei) — Pp [9 Lemma 21], and so t e Pj*. Because each
Pi is invertible, we can use an induction argument on s to conclude
that t G Πf=i Pi* = (α)

If JK — R/(a), and δ is the image of δ in R, the above argument
shows that δ is a regular element of R. In R,

m

{h) = β
= π

By [1; Theorem 1], the factorization of the ideal (δ2) is unique up tσ
factors of R. It follows that p = 2m, and that we can index the
ideals Sk,l^k^p, so that

Hence (α, δ2) = ΐ[l=i Sk = U7=i (^i)2 = (α, δ)2. Thus
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(a) c (α, V) = (α, bf c (α2, 6) .

If x e (α), then x = ra2 + sδ, where r, s e Jί. This implies that sί> e
(a), and, consequently, s e (α). We conclude that

(a) £ (α)(α, 6) .

Since the reverse conclusion is always valid,

(a) = (a)(a, b) .

Because a Φ 0, it follows that

R = (α, δ) £ (P,, Q ) S 5 .

Hence the minimal prime ideals of R are comaxίmal. This completes
the proof of the lemma.

An integral domain with identity that is a general Z.P.I.-ring
is called a Dedekind domain.

THEOREM 2.3. Let R be an integral domain with identity. The
following conditions are equivalent:

(1) R is a Dedekind domain,
(2) for n ^ 2, R is a π(n)-domain
(3) R is a π(2)-domain.

Proof. (1 —> 2) By definition of Dedekind domain.
(2—»3) By definition of π(n)-τing.
(3 —> 1) By Lemma 2.1, R is a Krull domain in which prime ideals

of height one are invertible. To conclude that R is a Dedekind
domain, it suffices to show that R is of Krull dimension one [3
Theorem 35.16]. Each non-unit of R is contained in some minimal
prime ideal. Hence, if R has a unique minimal prime ideal P, P is
also the unique maximal ideal of R, and R is of Krull dimension one.
If R has more than one minimal prime ideal, then by Lemma 2.1,
all these prime ideals are comaximal. If Q is any nonzero proper
prime ideal of R, there is a minimal prime ideal P such that P £ Q
[3; Corollary 35.10]. If P Φ Q, there exists b e Q\P. (b) = Π U & ,
where for each i, Si is a minimal prime ideal of R and St Φ P. Since
b e Q, for some i, H i ^ ί, ^ c Q. But this implies that R =
(P, Si) £ Q. Hence Q = P, and i? is of Krull dimension one. This
completes the proof of the theorem.

THEOREM 2.4. Let R be a π(2)-domain without identity. Then
R is a general Z.P.I.-ring.

Proof. Each minimal prime ideal of R is a principal ideal [8
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Theorem 26]. If R contains a unique minimal prime ideal (p), then
it must be the case that R = (p) [8 Lemma II]. We assume that
R contains two distinct minimal prime ideals, (p) and (q). Using the
same argument we did in Lemma 2.2, we can show that

(p) = (P)(P, Q)

Since (p) is a regular ideal, it follows that R must have an identity
[2; Corollary 5.2]. Therefore, since R has no identity, it must be
the case that R is the only nonzero prime ideal of itself.

Let A be a nonzero ideal of R. Then there is a smallest positive
integer n such that Rn c A £ Rn~ι. Let a e A\Rn. Since (a) = Rk

for some k < n, it follows that Rn c (a) = Rk £ A £ i?*"1. Hence
A = jβ*-1. Because each ideal of R is a power of R it follows that
R is a general Z.P.I.-ring [10; Theorem 2]. This completes the
proof of this theorem.

3* Main result*

LEMMA 3.1. Let R be a π(2)-ring with identity. If R is the
direct sum of finitely many rings, R = Σ?=i ^ then each direct
summand Rι is also a π(2)-ring.

Proof. Let R3 be one of the direct summands of R, and let Aό =
(aljf a2j) be an ideal of Rό generated by two elements of Rά. Let e*
denote the identity of the direct summand Riy 1 ^ i ^ k. Then if A
is the ideal of R generated by the two elements ( Σ w ei) + au a n ( l

where for each r, 1 ^ r ^ έ, P r is a prime ideal of i2. Then Â  =
-4^i = (Πr^iPr)^ = Πr=i(PΛ). Since for each r, Pri2, is a prime
ideal of Rj9 As can be expressed as a finite product of prime ideals.
Hence Rd is a π(2)-ring.

A principal ideal ring R with identity is called a special primary
ring if i2 contains only one prime ideal M Φ R and if Mk = (0) for
some positive integer k.

THEOREM 3.2. Let R be a commutative ring. Then the following
conditions are equivalent:

( a ) R is a general Z.P.I.-ring]
(b) for n ^ 2, R is a π(n)-ring
(c) R is a π(2)-ring.



A CHARACTERIZATION OF GENERAL Z.P.I.-RINGS II 151

Proof. It is clear that (a) implies (b) and that (b) implies (c).
We now show that (c) implies (a) We consider three cases: (1) R
is a commutative ring with identity; (2) R is a commutative ring
without identity, but with zero divisors (3) R is an integral domain
without identity.

If R is a commutative ring with identity, then R is a direct sum
of ττ(l)-domain with identity and special primary rings by [7 Haupt-
satz] Using [10 Theorem 2], we can conclude that R is a general
Z.P.I.-ring if any summand Ri of R that is a domain is Dedekind
From Lemma 3.1 it follows that each summand of R is a π(2)-ring.
Hence if the summand Ri is a domain, Ri is Dedekind by Theorem
2.3. Thus a π(2)-ring with identity is a general Z.P.I.-ring.

If R is a commutative ring without identity, but with zero-divisors,
then R = M or R — M Λ- K, where K is a field and M is a ring
without identity such that each ideal of M is a power of M [8
Hauptsatz 11]. R is a general Z.P.I.-ring by [10; Theorem 2J.

The last case is settled by Theorem 2.4.
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