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This paper is concerned to show a connection between the
validity of Tonelli’s theorem on integration in the product of
two measure spaces and the semifiniteness of the product
measure. The classical Tonelli theorem is usually stated in
a sigma-finite setting. It is shown in this paper, among other
things, that in a product measure space, where one of the
measures is sigma-finite and other one semifinite (not neces-
sarily sigma-finite), Tonelli’s theorem is valid only if the
product measure is semifinite and on the other hand, if the
product of any two measures is semifinite, then Tonelli’s theo-
rem is valid.

1. Let (X, U, B) and (Y, V, 8. be any two arbitrary measure
spaces where U and V are sigma-algebras of subsets of X and Y,
respectively, and @, and @, are two nonnegative measures on U and
V respectively. Let U x V be the smallest sigma-algebra containing
all the measurable rectangles of X x Y. The product measure 5, X 5.
(we call it g*, for simplicity) is the restriction to U x V of the outer
measure induced by the measure 8 on the algebra W consisting of
the measurable rectangles of X x Y and their finite disjoint unions
where for every measurable rectangle P X @, B(P X Q) = B.(P)B:(Q).
(See [4], p. 254). B, is called semifinite if given A in U with g,(4) =
o, we can find Bin U, BC A and 0 < B(B) < . This definition,
which at first glance seems to be less restricted than semifiniteness
as defined in [4], p. 220, is actually equivalent to Royden’s definition,
as Lemma 1 in the next section shows. Every sigma-finite measure is
semifinite, but not conversely. (For example, consider any non-sigma-
finite regular Borel measure on a locally compact space or a counting
measure on an uncountable set). The produet measure B, X B, may
not be semifinite even when @, is sigma-finite and B, semifinite, as
Example 1 shows. For the purpose of reference, let us state the
following two well-known Theorems in a form, which is slightly dif-
ferent from that given in [2] or [4].

FuBINI’'s THEOREM. Let f(x, y) be S*-integrable on Ux V. Then
both the iterated integrals of f are well-defined and

Sde* = ngdlgldﬁz = ngdﬁzdﬁx .
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The proof of this theorem follows easily from Theorem C, p. 147
in [2], if we observe the following points. First, since f is S*-integra-
ble on U x V, the set

E={@x yeX x Y: f(x, ¥) is nonzero}

is sigma-finite with respect to §*. Second, it follows from Proposi-
tion 6 on p. 256 in [4] that we can find a measurable rectangle P x @
such that EC P x @ where P and Q are sigma-finite with respect to
B: and B, respectively.

ToNELLI’S THEOREM. Let B, and B, be both sigma-finite. Let
S, y) be a nonnegative U X V measurable function. If one of the
iterated integrals of f is well-defined and finite, then the other one
18 also and

[rag = ([ apap. = ([rasas. .

This Theorem is precisely Theorem B in [2], p. 147.

The main purpose of our note is to present the following version
of Tonelli’s Theorem, which certainly is more informative than the
classical version and tells us more about product integration of non-
negative measurable functions. The proof of this Theorem is given
in the next section.

THEOREM 1. Suppose one of B, and B, is sigma-finite and the
other one is semifinite. Then Tonelli’s Theorem is valid vf and only
iof B* is semifinite. The sigma-finiteness assumption can be replaced
by semifiniteness if we assume one of the following two conditions:

(@) for all U XV measurable sets A, the function B,(AY) 1is
measurable, where AY = {x: (z, y) € 4};

(b) for all U XV measurable sets A, the function B,(A4,) 1s
measurable, where A, = {y: (z, y) € A}

Berberian in [1] defines product measure in a different way. In
§3, we show that for his product measure, Fubini’s theorem does not
hold for non-sigma-finite B, and B, and only a part of Tonelli’s theo-
rem holds. This answers, at least partly, a question of Berberian
[2, Problem 4, p. 144].

Finally, we take this opportunity to record our thanks to the
referee for his useful comments and also for pointing out that Example
1, Lemma 2, with a slightly different proof, and Proposition 1 (only
its first sentence) appeared in [3].

2. Tirst, we consider an Example showing that g* need not be
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semifinite even when A3, is sigma-finite and 3, is semifinite.

ExaMPLE 1. Let X = Y = [0, ) and U = V = the Lebesgue
measurable subsets of [0, ). Let 8, be the Lebesgue measure and
8. be the counting measure. Let D be the diagonal of X x Y. Then
SSID(ac, ¥)dpR,dg, = 0 and SSID(w, y)dB.dB, = oo, where I, is the charac-
teristic function of D. Hence g8*(D) is «, since otherwise, by Fubini’s
Theorem, the iterated integrals will be equal. If D,c D, D,e UxV
and g*(D,) < oo, then by Fubini’s Theorem,

8*(D) = || 1@, )d8ds. = 0.

Hence g* is not semifinite.
The proof of Theorem 1 will follow from the following four
Lemmas.

LEMMA 1. Let B, be semifinite. Then given Be U with g(B) =
o and any positive integer mn, there exists Cec U, CC B and n <
Bi(C) < oo,

Proof. Let T be the family of all collections @ of 8, measurable
subsets of B with finite positive g,-measure such that any two distinct
sets in @ are disjoint. Then clearly T is nonempty, since £, is semi-
finite. We partially order the collections @ in T by inclusion. Every
linearly odered subset of T has a upper bound, namely the union of
all the collections in this subset. Therefore, by Zorn’s Lemma, this
set T has a maximal element, say Q,. If @, is a countable collection,
then we must have B,(U.cq, 4) = oo; for, otherwise, we can find
Dc B — Uyeq, 4 with 0 < 8,(D) < e and then @, U {D} will contradict
the maximality of Q,. The Lemma then follows clearly when Q, is
countable. Now let @, be uncountable. Let us define Q,, = {A € Q,:
B (A) > 1/n}. Then for some positive integer m, @,, is uncountable.
From this observation, the Lemma is clear again.

LEMMA 2. Let 8* be semifinite. Then Tonelli’s Theorem is valid.

Proof. Suppose f(x,¥) is a nonnegative U X V-measurable function
such that H fx, y)dp.dp, is well-defined and equal to some nonnega-

tive-number k& < . We claim that the support of f is g*-sigma-finite.
If our claim is false, we can find a positive integer » such that if

An = {(xy y}: f(x, y) > 1/%} s

then g*(A4,) = . Since g* is semifinite, we can find BC A4,, B¢
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U x V and 2kn < 8*(B) < =, by Lemma 1. Then by Fubini’s Theo-
rem,

2k < g*Byn = {|Un . L vasds. < ||fasdp.

which is a contradiction. Hence, the support of f is sigma-finite so
that we can find a measurable rectangle P x @ containing the support
of f such that P and @ are sigma-finite with respect to 5, and g,
respectively. (This can be done using Proposition 6 on p. 256 in [4]).
Now the Lemma follows from the classical Tonelli Theorem.

LEMMA 3. Let B, be sigma-finite and B, semifinite. If Tonelli’s
Theorem ts wvalid, then B* is semifinite.

Proof. Let A be a U X V measurable set such that g*(4) is
infinite. Since B, is sigma-finite, 5.(AY) is a measurable function of
y. (This follows from the proof of the classical Tonelli theorem).
Therefore, by hypothesis,

SEIA(%', wdpdB, = SSI&(Ay)d,@z — o,

where S = {y: 5,(4Y) > 0}.
We separate the proof into two distinet cases.

Case 1. Suppose B(S; < oo.

Subcase (i). Suppose B,(B) = 2p > 0, where
B = {y: B.(A") = <}

Since B, is sigma-finite, there are sets C; in U such that C; c C;y,,
X=U:=. C; and B,(C;)< = for every positive integer 7. Now B(C;N AY)
is a measurable function of y since by the sigma-finiteness of 3, the

function EI 4@, Wl (x)dB, is measurable. Since for any arbitrary posi-
tive number %,

B U (: 8(C:N 47 > K,

there exist an ¢ and D in V such that
P < BuD) < oo and DC{y:p(C;NAY) >k},
Let £ = AN (C; x D). Then by Fubini’s theorem,

0 < kp< §D51<Ci N AN, = B5(E) < 8(C)BD) < < .
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Subcase (ii). Suppose B,(B) = 0, where B is as above. Now if
C,={y:n < B(AY) £n + 1}, then S = U3, C,. Therefore,

3, 18:(C) = | puandg, = < = 3 (n + DBIC) -

Since B.(S) < = and B, is semifinite, given an arbitrary positive
number m, we can find D, in V such that D, C, and By(D,) < =
and for some 1,

m < 3 nuD.) < oo .

Let = AN (X x Ui, D,). Now, we have

|sEas. = [sant.;

n

o (B, < oo

Hence, since Tonelli’s Theorem is valid, 5*(E) < . Since g*(E) > m,
semifiniteness of B* follows.

Case 2. Suppose [,(S) = oo.

Subcase (i). Suppose G.(B) = 0, where B is as in Case 1. By
the semifiniteness of 3,, wecan find GC S, Ge V and 0 < B.(G) <

such that S Bi(AY)dB, > 0. This is possible since for every y in S,
(2]
Bi(AY) > 0. Now if

G. = {yeG: B4 <n},

then using the monotone convergence Theorem, we can find % such

that 0<:§ B(ANdG, < . Let E=AN(XxG). Then since
Gy,

Tonelli’s Theorem is valid, 8*(F) < . Clearly,

8'®) = ||Ltw, napdp. = | piaas > 0.

Subcase (ii). Suppose B,(B) > 0, where B is as before. Then since
8. is semifinite, we ecan find Cc B, C< V and

o<mm<wamgfmw@:w.

Now, if we replace the set B in the proof of Case 1, Subcase (i) ,by
the set C above, the proof of this Subcase follows.

LEMMA 4. Let B, and B, be semifinite. Suppose for every U X
V measurable set A, the function B.(AY) ts a measurable function of
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Y. Then the validity of Tonelli’s Theorem implies the semifiniteness

of B*.

Proof. Let S = {y: B.(A¥) > 0}. We separate the proof into two
distinct cases. (Here A4 is as in Lemma 3).

Case 1. Suppose G.(B) > 0, where
B = {y: Bi(4Y) = =} .

Let Cc B,CeVand 0 < ByC) < o. Let 4,= AN (X x C), and let
the measure B, be defined by B,(M) = B,(M N C) for every M in V.
If B, X Bs(4,) < oo, then by Fubini’s Theorem,

> B, % B(4) = |B(Andg, = | sands, = -

atnd this is a contradiction. Therefore, B, X B;(4,) = «. Now we
observe that SBs(Aoz)d,& = oo, since, otherwise, we have

SSIA(x, WLW)ARAB, < o

and therefore, by the validity of Tonelli’s Theorem,
{260, w1apdp. <

which means that S B.(AY)dB, < <, which is a contradiction. If F =
4

{x: Bs(Ay,) > 0}, then B(F) > 0. Since B, is semifinite, we can find
DeU,DC F and 0 < B(D) < c. Then

0< §D33<on>del < oo
which means that
0 < || Lo, 9L L@dsdp < = .

Hence if E = AN (D x C), then by the validity of Tonelli’s Theorem,
0 < B*(E) < c.

Case 2. Suppose B,(B) = 0, where B is as above. The proof in
this case follows exactly as in the corresponding situation in Lemma 3.

3. In this section, we consider a question of Berberian. In [1,
p. 129], the product measure g8, X B,, where (X, U, B,) and (Y, V, 3,)
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are any two arbitrary measure spaces as defined in §1, has been de-
fined to be the unique measure 7w on U x V having the following two
properties:

(i) for every finite measurable rectangle P x @,

(P X Q) = B(P)B:(Q)
and (ii) for every Aec U x V,

m(A) = sup {m(A N (P x @)},

where the supremum is taken over all finite measurable rectangles
P x Q. (Here ‘finiteness’ means that each side of the rectangle has
finite measure). When g, and B, are sigma-finite, 7 coincides with
the usual product measure g*. In fact, Proposition 2 below tells us
more than this. In [1, p. 142-3], the proofs of Fubini’s and Tonelli’s
Theorems are given in the sigma-finite case. On p. 144, in Problem
4, Berberian asks the following question:

“What part, if any, of the Fubini theory survives for the product
of arbitrary (not necessarily sigma-finite) measures? Does it help
to assume that the measures are semifinite?”

In Example 2 and Proposition 4, we answer this question, at least,
partly.

Let 8* and B, be the outer and inner measure (see [4], p. 254
and p. 274) induced by the measure B (defined in §1). First, we
state a few results (omitting their proofs which would be obvious to
the serious reader) showing some connections between w, 8* and pB,.

ProprosiTiON 1. If Be U x V and g*(B) < oo, then B*(B) = n(B).
If B, and B, are semifinite, then B, = 7w on U X V.

PROPOSITION 2. If B* is semifinite, then GB* = T.

PROPOSITION 3. There exists a measure 8 on U X V, taking only
the values 0 and oo such that 8* = + g

Now we consider Fubini’s Theorem for the product measure =.
The following Example gives a negative answer even when B8, and 23,
are semifinite.

ExamMpPLE 2. Consider g8, B, U, V and D as in Example 1 in §2.
We note that if 8*(P x Q) < «, then @ is a finite set if g8,(P) > 0.
This means that g*(D N (P x @)) = 0 for every finite rectangle P x Q.
Then I,(x, y) is clearly z-integrable since w(D) = 0. But the iterated
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integrals of I,(x, ) are not equal.
However, as the following Theorem shows, we can have a partial
converse of Fubini’s Theorem for measure 7.

PRrOPOSITION 4. Suppose f(x,y) is a nonnegative U X V-measur-
able function and either S g fdB.Ads, or SS fdBdB, is well-defined and finite.
Then f s m-integrable.

Proof. Suppose SS fdp.dp, is well-defined and equals %k which is

finite. Assume that S fdw = . We will get a contradiction to this

assumption to prove the proposition.
By the monotone convergence theorem, there is a nonnegative
simple function g(x, y) = >\ ¢, (%, y) such that

g=<f and 2k<ggd7r.

By the property (ii) of #, we can find a finite measurable rectangle
P x @ such that for each 4,1 <7 £ n, 7(A;) is so close to n(B;), where
B; = A, N (P x Q), that

k<§hd75<°°:

where A(x, y) = 2, ¢l (2, y). Now we define for every P’ in U, @
in Vand A4 in U x V, the measures

T(4) = T(AN(P X Q)) »

Bs(P/) = Bl(P, N P) and

BiQ) = L@ NA) .
Since B, and B, are both finite measures and since 7, coincides with
Bs X B, (defined as in § 1) on all the U x V measurable sub-rectangles
of P x @, by the uniqueness of the product measure in this case (see
p. 257 in [4]), =, is the product measure B8, X Q.. Since the function

h is m-integrable, it is also 7,-integrable and so by Fubini’s Theorem,
we have

k< ghdn = {ndm, = ﬂghdggd@
which contradicts that SS fdp.dp, = k. This proves the Proposition.
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