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In [5] Tsai defined the Brown-McCoy prime radical for
Jordan rings in terms of the quadratic operation and proved
basic results for the radical. In this paper we give a definition
of the prime radical for arbitrary nonassociative rings in terms
of a ^-operation defined on the family of ideals and of a
function / of the ring into the family of ideals in the ring.
The prime radical for Jordan or standard rings is obtained
by a particular choice of the ^-operation and the function /.
We also extend the results for the Jordan case to weakly W
admissible rings which include the generalized standard rings
and therefore alternative and standard rings as well as Jordan
rings.

1* Let K be any nonassociative ring and let ^(K) denote the
family of ideals of K.

DEFINITION l. We define a * -operation as a mapping of κJ^{K) x
^{K) into the family of additive subgroups of K such that

(*1) for A, B, C, and D in ^(K) if A S C and B £ D, then
A*B £ C* D,

(*2) (Q)*A = B*(0) = (0) for all A, B in
(*3) A*B = A*B for any homomorphic images A and B of A and

B in ^{K).
If K is a Jordan ring, let Ux = 2R2

X — RX2 be the quadratic
operation and AUB be the additive subgroup of K generated by xUv,
x e A and yeB. Then the ?7-operation satisfies the conditions above.
If the characteristic is not 2, it is shown in [5] that AUA = A A2 and
is an ideal of K for A in ^{K).

For any ring K and A, B in ̂ (K), if we define A*B as the additive
subgroup AB2 + B2A + (AB)B + {BA)B, then A*B also satisfies the
conditions in Definition 1. In case K is a standard ring, it is shown
in [6] that A*J3 is an ideal of K for A, B in *J^{K). If iΠs commu-
tative or anticommutative, then A*B — AB2 + (AB)B. In particular,
if K is a Lie ring, A*B is an ideal of K. Since A2 is not in general
an ideal of K for A in ^(K), but there are considerably broad
classes of nonassociative rings in which A3 =Ξ AA2 + A2A is an ideal
of K for every ideal A, this example will be particularly interesting.

We recall that a noncommutative Jordan ring K is one satisfying

187



188 HYO CHUL MYUNG

the flexible law (x, y, x) = 0 and the Jordan identity (x, y, x2) = 0 for
all x, y in K, where (x, y, z) = (xy)z — x(yz). Most of the well known
nonassociative rings are included in the class of noncommutative
Jordan rings. Recently Thedy [4] defined a considerably broad class of
algebras that generalizes many of the well known algebras.

DEFINITION 2. A noncommutative Jordan ring K is called weakly
TΓ-admissible if it satisfies

[(α, δ, c), c] - ([a, c], c, b) = 0 ,

and

([α, δ], d, c] + ([δ, c], d, α) + ([c, α], d, δ]

- p[(α, δ, c), d] + 9[S(α, δ, c), d] + r[d, [δ, [α, c]]]

for some integers p, q, r such that either m(p, q, r) = 3 + 2p + 6q —
4r Φ 0, or n(p, r) = p + 4r ^ 0, where [α, δ] = ab — ba and S(α, δ, c) =
(α, δ, c) + (δ, c, α) + (c, α, δ).

Thedy called a noncommutative Jordan algebra over a field ΐ^-ad-
missible if it satisfies the identity [a, (α, α, δ)] = 0 and the two identities
above for p, q, r in the field such that either m(p, q, r) Φ 0 or n(p, r) Φ
O He proved that if the characteristic is not 2, then any generalized
standard ring of Schafer [2] is TΓ-admissible with p = — 2 and g = r =
0. Therefore, weakly "PΓ-admissible rings include generalized standard
rings and hence alternative and standard rings as well as Jordan rings.
In case the characteristic is not 2, it is also shown in [4, p. 192]
that in any weakly PΓ-admissible ring K, A3 is an ideal of K for A
in

LEMMA 1.1. Let K be any ring. Then the conditions (*2) and
(*3) imply

(i) (A + C)*(J8 + C) £ A*£ + C,
(ii) A*β S i n £

for ideals A, B, C of K.

Proof. Consider the quotient ring K = K/C, then by (*3) (A +
C)*(B + C) = A^B = A*J5, and hence (i). Let if = K/A> then A^β =
A*B = (Q)*B = (0) by (*2) and so A*5 £ A. Similarly A*B £ 5 and
A*£ £ A Π B.

DEFINITION 3. Let K be any ring. Then / is defined as a function
of K into κJ^{K) such that for every a in K

(fl) αe/(α),
(f 2) if xef(a), then /(a?) £ /(α),
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(f 3) f(a) — f(a), where a is a homomorphic image of α.
The principal ideal (a) generated by a in K is an example of /(α).

Now let S be a subset of K and define f(a) to be the ideal (α, S)
generated by a and S. Then/ satisfies the conditions above. A similar
function to / has been defined in [1] for the associative case and in [3].

Henceforth we assume that / denotes a function of K into ^(K)
satisfying (f 1), (f 2), and (f 3). Then clearly (a) £ f(a). For an ideal
A of K, we denote the ideal ^aBA f(a) by f(A). Then A £ f(A) and
f(A) £ / ( £ ) if A SB, and also /((α)) = f(a). But in general f(A) Φ A
as shown by the example f(a) — (α, S) for a subset S of K. Let

denote the family of ideals f(A) for A in ^ ( i Q . Then J? \K) £
and in particular, if / is such that f(a) = (α) for all a in ϋf,

then f(A) = A and j

2* In this section we give a definition of the prime radical for
any ring in terms of the *-operation and the function /.

LEMMA 2.1. Let K be any ring where the ^-operation and the
function f are defined. For an ideal P of K, the following are
equivalent:

( i ) If f(A)*f(B) S P for A, B in ^(K), then either f(A) £ P
or f(B) £ P.

(ii) If we have f{A)Γ\c{P) Φ 0 and f(B)f]c(P) Φ 0 , then
f(A)*f(B)f}c(P)Φ 0 .

(iii) If a and b are in c(P), then f(a)*f(b) Π e(P) Φ 0 .

Proof. We need only to show that (ii) and (iii) are equiva-
lent. Let a and b be in c(P), then f(a) Π c(P) Φ 0 and /(&) Π
c(P) Φ 0 . Hence (ii) implies (iii). Now let A and B be ideals of Z"
with f{A) Π c(P) ^ 0 and /(£) n c(P) Φ 0. Let α e / ( i ) Π c(P) and
bef(B)Πc(P). Assuming (iii), we get f(a)*f(b) Π c(P) ^ 0 and by
(*1) f(A)*f(B) Π(P)Φ 0 , thus (ii) holds.

DEFINITION 4. (i) An ideal P of iΠs called /*-prime if it satisfies
any one of Lemma 2.1. A nonempty subset M of K is called an /*-
system if, for A, £ in ^ ( i f ) , f(A) Π -M ^ 0 and f(B) f] M Φ 0 imply
f(A)*f(B)ΠMΦ 0.

(ii) An ideal P of K is called /*-semiprime if, for any ideal A
of K, f(A)*f(A) £ P implies /(A) £ P. A nonempty subset M of Z"
is called an s/*-system if, for A in ,J^{K), f {A) [\M Φ 0 implies
f(A)*f(A)r)MΦ 0.

An ideal P is /"-prime if and only if c(P) is an /^-system.
Similarly, an ideal P is /*~semiprime if and only if c(P) is an sf*-
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system. Let if be a Jordan or standard ring. If we define A*B as
AUB or as AB2 + B2A + (AB)B + (BA)B and define f(a) as (a) for
every a in K, then the defininition of /*-prime and /*-semiprime
ideals coincide with those in [5] or in [6].

DEFINITION 5. For A in ^{K), A* = {x e K | any /^-system con-
taining x meets A) is called the /^-radical of A. Similarly, A* =
{ye K\ any s/*-system containing y meets A} is called the s/*-radical
of A.

THEOREM 2.2. Let A be an ideal of K. Then
( i ) A* is the intersection of all the f*-prime ideals Pi containing

A.
(ii) A* is the intersection of all f*-semiprime ideals containing A.
(iii) A* is an f*-semίprime ideal of K.
(iv) A is f*-semiprime if and only if A = A*.

Proof. The proofs are essentially the same as in [5]. But to
emphasize use of the *-operation and the function / we prove only (i).
Let Πί Pi be the intersection of all the /*-prime ideals P, of K con-
taining A. If a £ Pi for some i, then a e c{Pi), being an / *-system, and
c(Pi) Π A = 0 . Hence a £ A* and A* g f|i -P< Conversely, if a g A*, then
there exists an /^-system M with ae M but A Π Λf = 0 . By Zorn's
lemma we find a maximal ideal P such that P^> A but PΠ ikf = 0 . Let
5, C be ideals of K such that f(B) Π c(P) Φ 0 and /(C)Πc(P) ̂  0 .
By the maximality of P, (/(£) + P) f] M Φ 0 and (/(C) + P) Π M Φ
0 . Since M is an /*-system, 0 Φ (f(B) + P)*{f{C) + P) Π Λf S
(f(B)*f(C) + P) Π M by Lemma 1.1 (i), thus f(B)*f(C)Πc(F) Φ 0 .
Hence P is /*-prime and α ? P .

LEMMA 2O3. Lβ£ α &e αTt element of K and S be an sf ""-system

containing α. Then there exists an J**-system M such that aeM and

Proof. Let aλ = a, then α xe f{aλ) Π S and so f{a^*f(a^) Γ) S Φ 0.
Hence we obtain a set M — {al9 α2, , αw, •} such that αA + 1e
/ f e ) Π S and ikίg S. By Lemma 1.1 (ii) we note that ak+1 e f{ak)*f(ak) g
f(ak) and so /(αΛ + 1) £ /(αΛ). Let p = max (ΐ, i), then αj,+1 e f(ap)*f(ap) Π
S^f(ai)*f(ad)ΠS. Hence f(at)*fiaj) Γi M Φ 0 and Λf is an /*-
system.

Therefore, as in [5], we have

THEOREM 2.4. For any ideal A of K, A* = A*. A* is cαiied £fee
f*-prime radical of A .
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DEFINITION 6. The /*-prime radical, R*{K), of K is the /*-
prime radical of the ideal (0). A ring K is said to be /*-semisimple
if R*(K) = (0).

LEMMA 2.5. Let K be a homomorphic image of K. If M is an
f*-system of K, then so is M in K.

Proof. Let A, B be ideals of K such that f(A) Π M Φ 0 and
f(B) Π M Φ 0 , where A and B are ideals in K containing the kernel.
Recalling (f 3) and A £ f(A), these imply f(A) Π MΦ 0 and /(£) Π
ikί^: 0 . Since Λf is an /*-system, by (*3) and (f 3) we see that
f(A)*f(B)ΠMΦ 0.

Therefore, by Lemma 2.3 we easily see that any homomorphic
image of an /*-prime ideal containing the kernel is also /*-prime.
Hence we obtain

THEOREM 2.6. Let K be a ring and R*{K) be the f ""-prime radical
of K, then R*(K/R*(K)) = (0), that is, K/R*(K) is p-semisimple.

DEFINITION 7. A ring K is called an /*-prime ring if (0) is an
/*-prime ideal in K.

Clearly, an /*~prime ring is /*-semisimple. Since any homomorphic
image of an /*-prime ideal is /*-prime, if P is an /*-prime ideal in
K then K/P is an /*-prime ring. Let K = K/P be an f*A prime ring
and let f(A)*f(B) S P, then f(A)*f(B) S (0) and so f(A) £ P or f(B) £
P, thus P is /*-prime in K. Hence P is an /*-prime ideal of K if
and only if KIP is an /*-prime ring. Therefore, as for Jordan rings,
we obtain

THEOREM 2«7. A ring K is isomorphic to a subdirect sum of /*-
prime rings if and only if K is f*-semisimple.

3* Throughout this section we assume that the ^-operation satisfies
the following additional condition:

(*4) A*A = A3 and A*A is an ideal of K for A in ^(K).
We recall that if K is a weakly TF-admissible or Lie ring then

A*B = AB2 + B2A + (AB)B + (BA)B satisfies (*4).

THEOREM 3.1. Let A be an ideal of a ring K and re A*. Then
a power of r belongs to A. Furthermore if K is power-associative,
then the f*-radical R*(K) is a nil ideal in K.

Proof. Let M be the multiplicatively closed system generated
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by r in K. Then it follows from (*4) that M is an s/*-system
containing r. Hence M Π A Φ 0 . If K is power-associative and r e
R*(K), then rk e (0) for some k and so R*(K) is nil.

Therefore, the /^-radical R*{K) is contained in the nil radical
N{K) (the maximal nil ideal in K).

Let J?\K) denote the set of ideals f(A) for A in ^(K). Then

THEOREM 3-2. A ring K is f*-semisimple if and only if
contains no nonzero nilpotent ideal.

Proof. It follows from Theorem 2.2 (iv) that K is /*-semisimple
if and only if the ideal (0) is /*-semiprime. If f{A) is a nonzero
nilpotent ideal for A in ^(K), there exist positive integers u = 3*
and v = 3*-1 such that f{A)u = (0) but f(A)v Φ (0). But then since
f(A)v*f(A)υ s /(A)3V = f(A)u = (0), (0) is not /*-semiprime. Conversely,
if (0) is not /*-semiprime, then there exists an ideal f(A) Φ (0) such
that f(A)*f(A) = f{A)z = (0), thus f{A) is nilpotent.

COROLLARY 3.3. The f ""-radical R*(K) contains all the nilpotent
ideals in J

Proof. Let f(A) be a nilpotent ideal in ̂ \K) and K = K/R*(K),
then JΪAy= f (A) e^\K), and f(A) is nilpotent in K. Since K
is /*-semisimple, by Theorem 3.2 f(A) = (0), thus /(A) s Λ*(iΓ).

THEOREM 3.4. If K is a ring and ^'{K) contains a maximal
nilpotent ideal S'(K), then R*(K) = S'(K).

Proof. By Corollary 3.3, S'(K) S R*(K). Let K = K/S'(K), then
^'{K) contains no nonzero nilpotent ideal and by Theorem 3.2 R*(K) =
(0). If r&Sf{K), then r ^ 0 and so there exists an /*-prime ideal
P in K with r ? P . From (*3) and (f 3) it follows that the inverse
image P of P is an /*-prime ideal in K. But since r £P,r£P and
so r$R*(K), thus R*(K) <^ S'(K).

Now suppose that f(a) — (α) for every element a in if. Then
^(K) = ̂ XδΓ). Hence by Theorem 3.2 iΓ is /*-semisimple if and
only if K has no nonzero nilpotent ideal, and R*{K) contains all
nilpotent ideals of K. In this case the ideal S'{K) is a maximal
nilpotent ideal S(K) in K and by Theorem 3.4 B*(K) = S(K).

Let K now be a finite dimensional TF-admissible or Lie algebra
over a field. Let f(a) = (a) for all a in K. If if is TF-admissible, then
it is shown in [4] that the nil radical N{K) is nilpotent and so the
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unique maximal nilpotent ideal S(K). Hence by Theorem 3.4 R*(K) =
N(K) = S(K). If K is a Lie algebra, it is well known that K has a
maximal nilpotent ideal S{K) and hence R*(K) = S(K).

REFERENCES

1. K. Murata, Y. Kurata and H. Marubayashi, A generalization of prime ideals in
rings, Osaka J. Math., 6 (1969), 291-301.
2. R. D. Schafer, Generalized standard algebras, J. of Algebra, 12 (1969), 386-417.
3. M. F. Smiley, Application of a radical of Brown and McCoy to non-associative
rings, Amer. J. Math., 72 (1950), 93-100.
4. A. Thedy, Zum Wedderburnschen Zerlegungssatz, Math. Z., 113 (1970), 173-195.
5. C. Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc, 19 (1968),
1171-1175.
6. L. J. Zettel, Radicals in standard rings, Ph. D. Thesis, Michigan State University,
1970.

Received March 19, 1971 and in revised form July 1, 1971.

UNIVERSITY OF NORTHERN IOWA





PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University
Stanford, California 94305

C. R. HOBBY

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

E. F. BECKENBACH

ASSOCIATE EDITORS

B. H. NEUMANN F WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 42, No. 1 January, 1972

Tage Bai Andersen, On Banach space valued extensions from split faces . . . . . . . . 1
David Marion Arnold, A duality for quotient divisible abelian groups of finite

rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Donald Pollard Ballou, Shock sets for first order nonlinear hyperbolic

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Leon Brown and Lowell J. Hansen, On the range sets of H p functions . . . . . . . . . . 27
Alexander Munro Davie and Arne Stray, Interpolation sets for analytic

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
M. G. Deshpande, Structure of right subdirectly irreducible rings. II . . . . . . . . . . . . 39
Barry J. Gardner, Some closure properties for torsion classes of abelian

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Paul Daniel Hill, Primary groups whose subgroups of smaller cardinality are

direct sums of cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Richard Allan Holzsager, When certain natural maps are equivalences . . . . . . . . . . 69
Donald William Kahn, A note on H-equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Joong Ho Kim, R-automorphisms of R[t][[X ]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Shin’ichi Kinoshita, On elementary ideals of polyhedra in the 3-sphere . . . . . . . . . . 89
Andrew T. Kitchen, Watts cohomology and separability . . . . . . . . . . . . . . . . . . . . . . . . 99
Vadim Komkov, A technique for the detection of oscillation of second order

ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Charles Philip Lanski and Susan Montgomery, Lie structure of prime rings of

characteristic 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Andrew Lenard, Some remarks on large Toeplitz determinants . . . . . . . . . . . . . . . . . . 137
Kathleen B. Levitz, A characterization of general Z.P.I.-rings. II . . . . . . . . . . . . . . . 147
Donald A. Lutz, On the reduction of rank of linear differential systems . . . . . . . . . . 153
David G. Mead, Determinantal ideals, identities, and the Wronskian . . . . . . . . . . . . 165
Arunava Mukherjea, A remark on Tonelli’s theorem on integration in product

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Hyo Chul Myung, A generalization of the prime radical in nonassociative

rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
John Piepenbrink, Rellich densities and an application to unconditionally

nonoscillatory elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Michael J. Powers, Lefschetz fixed point theorems for a new class of multi-valued

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Aribindi Satyanarayan Rao, On the absolute matrix summability of a Fourier

series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
T. S. Ravisankar, On Malcev algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
William Henry Ruckle, Topologies on sequences spaces . . . . . . . . . . . . . . . . . . . . . . . 235
Robert C. Shock, Polynomial rings over finite dimensional rings . . . . . . . . . . . . . . . . 251
Richard Tangeman, Strong heredity in radical classes . . . . . . . . . . . . . . . . . . . . . . . . . 259
B. R. Wenner, Finite-dimensional properties of infinite-dimensional spaces . . . . . . 267

Pacific
JournalofM

athem
atics

1972
Vol.42,N

o.1

http://dx.doi.org/10.2140/pjm.1972.42.1
http://dx.doi.org/10.2140/pjm.1972.42.11
http://dx.doi.org/10.2140/pjm.1972.42.11
http://dx.doi.org/10.2140/pjm.1972.42.17
http://dx.doi.org/10.2140/pjm.1972.42.17
http://dx.doi.org/10.2140/pjm.1972.42.27
http://dx.doi.org/10.2140/pjm.1972.42.33
http://dx.doi.org/10.2140/pjm.1972.42.33
http://dx.doi.org/10.2140/pjm.1972.42.39
http://dx.doi.org/10.2140/pjm.1972.42.45
http://dx.doi.org/10.2140/pjm.1972.42.45
http://dx.doi.org/10.2140/pjm.1972.42.63
http://dx.doi.org/10.2140/pjm.1972.42.63
http://dx.doi.org/10.2140/pjm.1972.42.69
http://dx.doi.org/10.2140/pjm.1972.42.77
http://dx.doi.org/10.2140/pjm.1972.42.81
http://dx.doi.org/10.2140/pjm.1972.42.89
http://dx.doi.org/10.2140/pjm.1972.42.99
http://dx.doi.org/10.2140/pjm.1972.42.105
http://dx.doi.org/10.2140/pjm.1972.42.105
http://dx.doi.org/10.2140/pjm.1972.42.117
http://dx.doi.org/10.2140/pjm.1972.42.117
http://dx.doi.org/10.2140/pjm.1972.42.137
http://dx.doi.org/10.2140/pjm.1972.42.147
http://dx.doi.org/10.2140/pjm.1972.42.153
http://dx.doi.org/10.2140/pjm.1972.42.165
http://dx.doi.org/10.2140/pjm.1972.42.177
http://dx.doi.org/10.2140/pjm.1972.42.177
http://dx.doi.org/10.2140/pjm.1972.42.195
http://dx.doi.org/10.2140/pjm.1972.42.195
http://dx.doi.org/10.2140/pjm.1972.42.211
http://dx.doi.org/10.2140/pjm.1972.42.211
http://dx.doi.org/10.2140/pjm.1972.42.221
http://dx.doi.org/10.2140/pjm.1972.42.221
http://dx.doi.org/10.2140/pjm.1972.42.227
http://dx.doi.org/10.2140/pjm.1972.42.235
http://dx.doi.org/10.2140/pjm.1972.42.251
http://dx.doi.org/10.2140/pjm.1972.42.259
http://dx.doi.org/10.2140/pjm.1972.42.267

	
	
	

