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Sufficient conditions for embeddings between weighted
Sobolev spaces to be compact are derived. These theorems
are generalizations of the well known selection principle of
Rellich. These results are then applied to the study of the
oscillational properties of self-adjoint second order elliptic
equations. In addition to reproving some results of Headley
and Swanson, new nonoscillation criteria are furnished for
these equations.

1. Introduction. Let 2 be a domain, bounded or unbounded,
in Euclidean n-space E”*, p(x) a positive measurable function, z =
(@, ++-, ®,), and a(x) a symmetric matrix with measurable entries
such that the smallest eigenvalue of a(x) for each x in 2 positive.
Define the weighted strong Sobolev spaces H,(p) and Hy(p, a) as the
closure of the sets of functions %, C* on 2 for which the integrals

(LY |, P@ [

(1.2) S”{P(x) [w@)] + 2 ass(@)us(@)uy(@)} do

are finite. The closures are taken with respect to norms given by
(1.1) and (1.2). The weighted weak Sobolev spaces Wy(p) and Wy(p, a)
consist of functions # with (1.1) or (1.2) respectively being finite.
Here u;(x) is the distributional derivative du/dx;.

We will say that the pair (p, a) has the strong Rellich compact-
ness property if the inclusion map Hy(p, a) — Hy(p) is compact. This
means that each sequence in Hy(p, @) which is uniformly bounded in
its norm has a subsequence which is convergent in the norm for
Hy(p). The classical Rellich selection principle states that if 2 is
bounded and smooth, then (1, I) has the strong Rellich compactness
property where I is the identity matrix. The weak Rellich compact-
ness property is defined analogously with W,(p), Wo(p, a) taking the
place of Ho(p), Ho(p, a).

This paper investigates the case where 2 = E", n=2. The
arguments however apply eqully well to quasi-conical domains, i.e.
domains which contain a cone {¥|z-v = a|% |}, where v is some unit
vector, and a is a positive constant. Theorem 3.1 and 3.2 of §3
provide sufficient conditions for (p, @) to have either the strong or
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weak Rellich compactness property. Theorem 8.2 is based on a
Sobolev type lemma communicated to the author by N. Meyers. A
proof of this lemma is included as an appendix. Theorem 3.3 gives
a simple condition on p(x) in case a(x) is uniformly definite on E*
which ensures that the inclusion map Hz.(p, @) N LA(E™) — Hg(p) is
compact. This weaker result is still sufficient for the application in
§5. In §4 we give a necessary condition on p when a is uniformly
definite. An example shows that the sufficient conditions of Theorems
3.2 and 3.3 are the best of their kind in this case.

In § 5 we apply the preceding results to the determination of
the oscillatory properties of the elliptic equation

(13) Lu= 3 2 (ay@u) + plu = 0.

We say that (1.3) is monoscillatory if there is a positive constant R
such that for each bounded domain N with smooth boundary exterior
to the sphere {z||2| < R}, the Dirichlet problem

Lu=0 in N
=0 on ON

has nontrivial solution. (1.8) is said to be wunconditionally non-
oscillatory if for each positive n, (1.3) with p(x) replaced by Ap(x) is
nonoscillatory.

Theorem 5.1, which asserts that if (p, @) has the Rellich com-
pactness property then (1.3) is unconditionally nonoscillatory, combined
with the results of §3 yields results which differ from the recent
nonoscillation theorems of Swanson and Headley, [1] and [2], in two
respects. Our conditions apply directly to the coefficients a;;(x) and
p(x), rather than to pointwise majorants. Furthermore our results
are not based on the oscillation theory for ordinary differential equa-
tions. There is, however, some overlap between the results of [1] and
[2] and ours, which will be pointed out later.

2. The case of a bounded domain. Our results for the un-
bounded domain E™ will follow from a process of Cantor diagonali-
zation over compact subdomains. Therefore we will need conditions
guaranteeing that (p, ) has a Rellich compectness property for a bounded
domain Q with smooth boundary 092. The first result in this direc-
tion follows from an imbedding theorem for weighted Sobolev spaces
due to Stampachia and Murthy [7], which in turn followed easily
from the corresponding result for classical Sobolev spaces, see Sobolev
[5]. A special case of the Stampachia-Murthy Theorem is stated as
a lemma:
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LEMMA 2.1. Let Q be a bounded domain in E™ with smooth
boundary. Suppose \(x) is the smallest eigenvalue of a(x) and N~'(x)
and p~(x) are in LY(Q) for some t = n. If 1+ 1/t<2<n(@l+ 1/t),
then the embedding W,(p, a) — L*%(Q) is compact, where q s defined
by

@1 _;- =1+ 1) -+

From Lemma 2.1 follows our first result.

THEOREM 2.1. Suppose the conditions of Lemma 2.1 hold. If in
addition p(x) is in L°(Q) where s = (@ — ¢)(q@ — ¢ — 2)™', then (p,a)
has the weak Rellich compactness property on 2.

By Holder’s inequality
0] (0 () "

or
[ 10 pdo]” = cllull,,

where || % |l,-. is the norm of % in L**(2). Thus the imbedding
L7(2) — Wy(p) is continuous. Since by Lemma 2.1 the imbedding
Wa(p, @) — L %(2) is compact, and since the composition of a compact
map and a continuous map is compact we have the desired con-
clusion.

A second compactness theorem can be obtained independently of
the Sobolev imbedding theorems. Yet despite its apparent simplicity
it permits p(x) which are inadmissable in Lemma 2.1. This generality
is obtained at the expense of restricting ourselves to the strong
spaces.

THEOREM 2.2. Let 2 be bounded and convex and p(x) be non-
negative and measurable. If p(x) is bouded above and has a positive
lower bound on some open subset of 2, them (p,I) has the strong
Rellich compactness property.

Proof. Let us assume that B is a bounded subset of Hy(p, I).
It suffices to assume that Bc C'(2). Pick x, in 2 such that p(x)=p,
for |# —x,| <e. Thus if % is in B, Fu is in L*Q) and « is in
LS (z,, €,)), where S(z,, ¢,) = {x |z — 2, | < &}. Now fix ¢, 0<¢g < ¢,
For any ¢ such that ¢, < ¢ < ¢, set u.(®) = u(®, + (@ — 2)/(|x — @,))).
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Introduce spherical coordinates (r, 6), » = | ¢ — z,| and

= L= %
'x_xo‘

Then

I

IMWWxS:HSW%+WWMM

g50<]x——xo\<al

gﬁ:iimMS[M%+¢@PM.

n gg<r<ey JO

So for w in B there is an ¢, ¢, < ¢ < ¢, with
2.2) SNMﬁWWMéQ,

where C, is a constant independent of the particular % in B. Now
if R is the diameter of 2, also by (2.2)
S |m@mmﬂ Sm%+wwwm
[x—zglze
C

o B .
n

A

So for each u in B there is an & = e(u), & < ¢ < ¢, such that
2.3) | lu@ra=sa,
le—zylZe

and C, is independent of % and e.
Also if |z — x| = ¢

_ jz—2gl — —
u(@) — u(xo - su> = g ' Vu(% + 52 xo) Al B
r — X, € ]x—xol ]x—xol

Letting ¢ = s/(lx — x,)) we see that
) — @ | = o —al | (7uE e — ) i

e/(lz—axg])

Now square both sides and use the Schwartz inequality, integrating
over |o — x,| = &, to derive

Y[m%+mv%wwm.
eIR

le—wxglzey

Sm mgsll w(@) — u(w) [Pde < R? S

We reverse the integrals on the right and set y = &, + (& — %), ob-
taining

1 1S .
—u(@) Pdo = R*\ =\ [Fuly) [dydt,
LRI W RO
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or
2.4 . 1w —w@rde s | ruwrdy,
r—zglZey

where C, only depends on R and ¢,. From (2.3) and (2.4) we finally
see that

Sglu(x) 2 do :S

§C4+2§

| w(x) |2 da + Slx . [ w(@) | do

le—zglSey —%l

(@) — u.@) [P dz + 2 S} @ P

Je—zglzeg z—2

< C, + 2C, Sn]Vulzdy +2C,.

Thus there is a C independent of w such that

(2.5) SQ| w(@) Pde < C
for all « in B.
Now
(e + B) — w(@) | < g:” }Vu(x + t—IZ—I>! dt
or
lu@ + k) — w@) < | b g'h' l Vu(w + t'lz_l) “dt.

Integrate both sides with respect to # and interchange the order of
integration on the right to obtain

(2.6) Sglu(x N |h|2§91 Pu() Pds < C' | B .

By a well known theorem of Bochner, see [6] p. 38, (2.5) and (2.6)
imply that B is compact in L*(?) and since p(x) is bounded above,
B is compact in Wy(p).

We see that the proof of Theorem 2.2 has yielded the following
embedding theorem.

THEOREM 2.3. Let p(x) and 2 be as in Theorem 2.2. Then
Hy(p, I) s embedded in L*(2) by a compact mapping.

It should be observed that in the applications to differential
equations in § 5 only smooth functions are used. Also in many ap-
plications a(x) will be uniformly definite and p(x) bounded from below
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and above by positive constants on bounded subdomains 2 of E*. In
this case, where Theorem 2.1 applies anyway, the weak Rellich com-
pactness of (p, a) over 2 follows from the-classical Rellich selection
principle referred to in § 1.

3. 2 = E". Throught this and the remaining sections of this
paper the hypothesss of Theorem 2.1 or Theorem 2.2 are assumed to
hold on each bounded subdomain of E™".

Our first compactness result gives conditions on p(x) sufficient
for the mapping Hyp«(p, I) — Hz(p) to be compact. So it may be
assumed that the hypothesis either of Theorem 2.1 or 2.2 hold on
bounded subdomains. Spherical coordinates (r,60), » = |2 |, § = x/| x|
are introduced.

THEOREM 3.1. If p(x) satisfies the local conditions of Theorem
2.1 or 2.2, is continuous and in addition

@3.) lim [s?p S“wp(ra)dr] —0, and inf S“w—l p@6)dr > 0
a—o0 a 8 1
then (v, I) has the strong Rellich compactness property.

Proof. The theorem is proved if we can establish the ineqality
62 | r@u@ra=[| p@ w0 rds+e@| 1ru ras],
E™ 1zl<a E™ e

where &(a) — 0 as @ — oo, &(a) and v are independent of % in Hya(p, I).
For if {u,} is a bounded sequence in Hz.(p, I), by the results of the
preceding section and Cantor diagonalization we can select a sub-
sequence {u,,} which is Cauchy in Hy(p) for each bounded subdomain
2 of E*. But then (3.2) would show that {u,} was Cauchy in Hp.(2),
and hence convergent. This would establish the desired conclusion.

Thus we need to prove (3.2) for u in Hgy(p, I). Without loss
of generality assume that « is in C*(E™). Fix 0 and let 1 <s<¢t.
Then

u(th) = u(s) + S Pu(sh + (z — s)) - fde
WA(t6) < 2uX(s8) + 2(t — s) S'” | Pu(c6) | e de

Multiply both sides of the inequality by s"'p(sf) and integrate with

respect to s from s =1 to s = a, then divide by Sus”"lp(sﬁ)ds to
1

derive
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W) < —— 2 [Sas""lp(sﬁ) |u(sh) [ ds + S (t — 5)s"p(s0)ds
S s*'p(sb)ds ' '

X S:o | Pu(zl)|? T dr] .

Now multiply both sides by ¢"'p(tf) and integrate with respect to ¢
from ¢t = a to ¢ = oo, to find that

=i (t6)dt

w 2 ga s"'p(s6) | u{sh) Fds ...
| tp) | ue) | at < — g

S“sn—lp(sa) ds e
(3.3) :

2 r S #(E — )" p(t0)p(s0)ds dit
+ a JO

Sa s"'p(sf)ds

1

X Sw | Fu(z6) Pt dr .
0
By reversing the order of integrations
g“’g“ 1t — 5)s" p(t6)p(s6)ds dt = [g“s"—l p(s6) ds] U"tn p(w)dt]
a 0 [} a
_ th”“lp(tﬂ)dt] [S:s”p(sﬁ)ds] :

Thus condition (3.1) shows that if ¢(e¢) is defined by

e(a) = sup Sw Sa "t — 8)s" p(t0) p(sd)ds dt ,

4 e Jo

then
gla) —0 as a—> co .

Define
y=2 (n{}f Sjs”“’p(sﬁ)cw)_l for all ¢ = A.
Then (3.3) implies
S‘” £ p(t0) | w(t0) P dt < v [S 5 p(s6) | u(sh) [t ds
+ &{a) S:cl Vu(zd)|? z‘”*‘dz‘] .

Now if this is integrated over all ¢, (3.2) results.

It is clear from the proof that the same conclusion follows if the
condition
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inf Sar”"‘p(rﬁ)dfr >0
[ 1
is replaced by
inf gu'r"“p(rﬁ)dr >0,
g 8

where ¢ is a positive constant.

Our next theorem depends on a lemma related to a Sobolev type
embedding theorem, see [3]. It differs from such embedding results
in that instead of asserting that a function belongs to a certain
Lebesgue class, it states that the function minus a suitable constant
is in the Lebesgue space. This lemma was communicated to the
author by N. Meyers. The proof is given in an appendix.

LEMMA 3.1. Let r» be a number with 1 <r < n and define r*
by the expression (r*)™ = r~* — n™'. Then if u(x) ts a function on
E™ whose gradient is tn L™(E™), there is a function v in L™(E™) and
a constant k such that

@) = v(x) + k.
Furthermore the inequality

vl =cllPull

holds, where ¢ is a constant depending only on w and 7.
Now define a function ¢(x) such that

(3.4) a;; (®)yy; = q@) [y I°

n
-y

%

for all  and y in E". Theorem 3.2 gives conditions on p and ¢
guranteeing that (p, @) has the Rellich compactness property.

THEOREM 3.2. Let q be such that (3.4) holds and a a constant
such that 2n)(n + 27" < a < 2. Then if

(i) o s in L *E"), and

(ii) 1/q is in L**27'(E")
the pair (p, a) has the weak Rellich compactness property.

Proof. By (3.4) we may assume without loss of generality that
a(x) = q(x) I. Let B be a bounded set in W(p, a), so that there is

a constant K with

Sp(x) ? de + Sq(x)qu[zdxg K
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for each » in B. We must find a sequence in B which is convergent
in the norm for W(p).
By Holder’s inequality if a < 2

17wt ds = | [a@ 1" | @@ do
< [S[Q(x)‘ll"’ E—a dw](z_a)lz Uq(m) [ 7w |? d:c]m .
Thus for each » in B
(3.5) [I7ulds < c
where C, depends only on ¢(x). Clearly (3.5) also holds when a = 2.

By Lemma 3.1 and (3.5) for each » in B there is a v, in L* and a
constant %, such that

(3.6) U = v, + k,,
and
(3'7) “ ’vu Ha* é CZ ’

where C, does not depend on wu.

Now we claim there is a sequence {u,} from B such that the v,
associated with u, by (3.6) converge in W(p). For by Holder’s
inequality

2fa* (a*—2) [a*
2 a* a*[ (a*—2)
S|M>R p(w)vﬂdx é <Slx\>lﬁ I /Uu(x) ] dx) <S|$|>R [p(x)] > '
So by hypothesis (i) and (3.7) the estimate
(3.8) [ pEwids < cre®)
x| >R

holds, where ¢(R) —0 as R — . By the results of §2 and Cantor
diagonalization there is a sequence {v,,} which converges in the W(p)
norm on each compact subset of E*. But then the estimate (3.8) show
that this sequence converges globally in W (p).

If g(x) is not in LYE™), the fact that k=0 in (3.6) follows.
Then we are done since u, =wv,,. But if p(x) is in L'(E"), then
clearly from (3.6) and (3.8) with R = 0 we have the inequality

[ k| = const. || kllym = const. (% llym + 1l vullwe) = C,

where C is independent of % in B. Thus {k,} is a bounded sequence
in R' and must have a convergent subsequence in R'. But this sub-
sequence also converges in W(p). Hence u, = v, + k,, has a con-
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vergent subsequence in W(p). This completes the proof. -

If a(x) is uniformly definite then we may choose ¢(x) to be a
positive constant. Then we may take a« = 2 in Theorem 3.2. As a
special case of Theorem 3.2 we have the following corollary.

COROLLARY 3.2. If a(x) is uniformly definite and p(x) is in
L*(E™ for m =3, then (p, a) has the weak Rellich compactness pro-

perty.

In the case where a(x) is uniformly definite a simple bound on
the growth of p(x) as & — o suffices to ensure a weaker compactness
property of the pair (p, a).

THEOREM 3.3. If a(x) is uniformly definite and p(x) = o(| |7
as - co, then the inclusion map H(p,a) N LYE"™ — H(p) s
compact.

Proof. Without loss of generality assume that a(z) = I and let
B be a bounded set in H(p, I) N L*(E™. For any function in L*(E")
with its gradient in L*(E'") the inequality

(3.9) S |& [Fu—de < (0 — 2)-25 | 7 | do

holds, see [4] where (3.9) is proved in greater generality. But then
because of the growth condition on p(z) we have the estimate

(3.10) Sl Pyt ds < e(R) S | d

where ¢(R) — 0 as R— . As before we pick a sequence {u,} from B
which converges in H(p) on each compact subset of E”. But (3.10)
then shows that {u,} converges globally in H(p), and the proof is
complete.

The following section contains an example to show that in the
case a(x) = I the conditions p(x)e L"*(E") and »(x) = o(jx|™®) of
Corollary 3.2 and Theorem 3.2 are the best of their kind. By this
is meant that p(x) € L"***(E™") and p(x) = 0(]  |~* will not be sufficient.

4. A necessary condition. In this section we limit ourselves
to the case a(x) = I. In this case Theorem 4.1 provides a necessary

condition for (p, I) to have the Rellich compactness property.

THEOREM 4.1. Suppose (v, I) has the Rellich compaciness property.
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It n =2, then p(x) must be in L'(E?. If n > 2 then necessarily

(4.1) lim S p@)ds =0 .
lwi<t

t—oo

Proof. For positive numbers a and %k consider the piecewise C*
function u(x; a, k) defined to be identically zero for |z|<a and
x| =a+ k+ 1, to be one for 2| =a + 1, and to be linear in |z |
foras|z|a+land a+1= (2| <a+ k+ 1. If Q[u] represents

the quotient (S | Vu {de> (S pul dx>—l, then

Qu(z; a, k)] = Comst- [@+ V)" —a" +k*(a+k+1D"—(a+ )]
S pudw

By obvious estimation of the denominator and multiplication of num-
erator and denominator by k>~ we derive the estimate

4.2) Qu(z; a, k)]
< const. [ "((a + )" — a™ + (1 + k7 a + 1)) — (K (a + 1))7"] )
p(x)dx

k2-—«n S
ct+i1<|zi<a+1+1/2k
If n =2 and g'p(x)dx = oo, (4.2) shows that for any a there is a k

such that Q[u(x; a, k)] < 1. If n > 2 and (4.1) does not hold there
is a ¢ > 0 and a sequence {¢,} with ¢, — c such that

(4.3) g S p@)ds = 20
l2{ <ty

for all m. Now if k =1k, =2, — a— 1), the denominator of the
right side of (4.2) becomes essentially

(tn — (a + D) [S! p@)ds — | P@dz

= (1 _et 1>2~n [t?;”ﬁ p(z)de — ti;”g p(m)dx]
0<|zl<t,y, 0<jz|<a+1

m

o<izi<e+l

=0

for all large m. Thus in either case there is a constant K such that
for any given a, there is a k such that Qu(x; a, k)] < K.

Thus if either condition of our theorem is violated we can pick
a sequence {u,} of piecewise C' functions with disjoint supports such

that Qu,] £ K. But if we set v, = Hpuidm]*llz %,, then

§pvzdx+S;mide:HQ[un]gHK
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for each n. But {v,} clearly cannot have any convergent subsequences
since

Ep(vn — v)tds = 2

if n %= m. Thus if either condition in our theorem is violated, the
pair (p, I') will not have the Rellich compactness property.

As an example consider p(x) =] x| By Theorem 4.1 (p, I) does
not have the Rellich compactness property. Yet p(x) is in L"*(E™)
for each ¢ > 0 and p®) = 0(%|™® as x— .

5. Unconditionally nonoscillatory equations. Let p(x) and
a{x) be as in §1 and in addition let them be C~. We shall show
that if (p, @) has the Rellich compactness property then for each
A > 0 the equation

(5.1) v 2 (@us) + rpu = 0

%,5=1 aw.,,

is nonoscillatory. We say that in this case the equation

(5.2) s ai (@ssus) + P = 0

1,5=1 7

is unconditionally nonoscillatory.

THECREM 5.1. Suppose that (p, a) has either the weak or strong
Rellich compactness property. Then (5.2) is wunconditionally non-
osctllatory.

Proof. Define C;(|x| > R) to be the space of C* functions with
compact supports contained in the set of # with |2 | > R. Define the
function f(R) by

(5.3) S(R) = inf{Q[p] | is in C(l«| > R)},

where

Qlel = [| 3% au@epida]|lp@etas] .
Now f(R) is a continuous function of R and furthermore lim,_.f(R) =
co. For if lim, ..f(R) = L < =, then we could select a sequence of
funetions in C;°, say {®.,}, with disjoint supports such that

m—oo
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But this contradicts the fact that (p, @) has the Rellich compactness
property since if

Y = (S p%dx)”mevm :
then

ngdx + gzw,i s =1+ Q] = K

¥

for all m, and

| PCra = yirds = 2

if m=#1. So on the one hand {y,} forms a bounded set in W(p, a)
or H(p,a) and on the other contains no subsequences convergent in
W(p) or H(p).

Now if A >0 pick B so that f(R) > . If N is any bounded
smooth subdomain of {z||x| < R}, the first eigenvalue o, of the
problem

S 22 (5@uy) + op@u =0, in N
3=1 0%,

=0 on ON

is greater than f(R) and so ¢, >X. Thus N cannot be a nodal
domain for the equation

(5.4) I

2 (a:;(x)u;) + Mp(x)u = 0 .
i,j=1 ax,l

So (5.4) is nonoscillatory, and (5.2) is unconditionally nonoscillatory.

COROLLARY 5.1. If » and q satisfy the conditions of Theorem 3.2,
then (56.2) is unconditionally monoscillatory.

COROLLARY 5.2. If a(x) is wuniformly definite on E", n =3,
etther of the following conditions is sufficient for (5.2) to be uncon-
ditionally monoscillatory:

(i) p(x) s in L3E™),

(ii) p@) =o(z|™ as |[z|— co.

Condition (ii) of Corollary (5.2) is also obtained as a special case
of a theorem of Headley and Swanson, see [2] Theorem 5. However,
Corollary 5.1 and condition (i) of Corollary 5.2 seem to be new.

Theorem 3.1 coupled with Theorem 5.1 leads to the next corollary.

COROLLARY 5.3. Suppoese a(x) is uniformly definite on E™ and
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p(x) is positive and continuous for each x. If

lim [sxzp S:t”p(frﬁ)dfr] =0,

a—sco

then (5.2) 1s unconditionally nonoscillatory.

Corollary 5.3 can be used to prove a theorem of Headley, see [1],
Theorem 2. If the smallest eigenvalue of a(x) is greater than or
equal to a positive constant K and g,(r) = max,-, b(x), the equation

]
(5.5) K; é—,'l—;—é + gy(r)v =0
is a Sturmian majorant of the equation

(5.6)

: ai (ais(=)u;) + d(myw = 0.

1 0%,

M) i

If we write (5.5) as an ordinary differntial equation in » and trans-
form to remove the first derivative term, as Headley does, we ar-
rive at the equation

Ky’ + [gi(r) — K(n — 1) (n — 3)/4rly =0,
which in turn is majorized by
(5.7) Ky + gi(n)y =0,

where g (r) = max(0, g,(r) — K(n — 1)(n — 3)/4r*). So if (5.7) is non-
oscillatory so is (5.6). But Corollary 5.3 in the case n = 1 shows
that the condition

rrg;“(r)dr < o
suffices. This is Headley’s condition.
Appendiz: Proof of Lemma 3.1. Suppose that f,, ---,f, are

functions in L"(E™ with the property that (81;)/(0%;) = (@f;)/(0%;) as
distributions. We shall construct a function v such that

(A.1) W g =1, m.
o,

and

(A.2) Hvlle=cll fll,

where (r*)' =" —n, f={f, -+, f), and ¢ is a constant that
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depends only on % are r. The proof is based on the validity of the
inequality

(A.3) el =cllFell,

for functions with compact support, see [3].

Let £ be a modification of f; so that fi* — f; in L as k— co.
Set I'(z) = const. |z [*™ if » =3 and I'(x) = const. log |z | if n = 2,
so that A" = ¢, where ¢ is the Dirac distribution with support at
zero, and 4 = >.7..0°/(0x%). Let &,(x) be a smooth function with
0=<& =1 &) =1for |a|=Zh, &) =0 for |x| = 2R, |VE | <207

Now consider the function

(k) __ < af % ' (Je)
vy = ;1<Eh axi> (fi¢&,) .
Differentiate and use the fact that (31,)/(0x;) = (0f;)/(0x;), so that
avﬁ,"’ af(’” n ol . % (k)
S 2(ag ) a) - Se ) (2)
< 0 /[ I s £k 0, (k) __ (Ic)OCh
= ; 7 <§h axi> (fiP&,) + Z Eh < f axj> .
Finally
a,v(k)
A4 —r
(A.4) o,
=7+ 3 (2S00 + e (G - 5 2.
For each 1
0%, QE () ) —a‘]:_ <
‘ ‘ox, ox; S "r =1 0x; 0w; ”1 = const 17l

so that the first summation term on the right in (A.4) is bounded in
L7 uniformly in k. Furthermore we find that for each 7 the same
term is tending to zero in L’,, as h— 0. For if B, is the set of =
with |z | < a, Holder’s inequality implies that

|, |22 2L g do < const. [ 7@ | |22 20

Yy — m)[dydx
B,l 0w, &w '

§const.§ | fi(@)|"de——0 as h—> oo .
|z|Zh—a
Furthermore Holder’s inequality also shows that all the other terms

in the right side of (A.4) tend to zero in L" as h— oo.
So (owi)/(0x;) — f{¥ is bounded in L" as h— o and converges to
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zero in L7,,. For some sequence of 2’s then tending to infinity,

(k)
81) Fo
a 7
42

weakly in L". Also (A.3) holds for each v/ so there is a further
subsequence of A’s with v{¥ — »* weakly in L™. Hence (0v"®)/(0x;) =
S as distributions and (A.2) holds for v = »* and f = f*. Finally
for a subsequence of k’s tending to oo, v»* — v weakly in L™ and
©@v*)/(0x;) — f; in L7, 8o (0v)/(0x;) = f; and (A.2) holds. This com-
pletes the proof.
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