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Throughout this paper the author defines

Fult) = 3, [0ut)|7 = 3, St(pm(x)dw l

m=1

where 0 <a<2,a <t =<b, and {¢.} is a sequence in L'[a, b],
usually orthonormal. In this paper, F,(f) is studied for the
Haar, Walsh, trigonometric, and general orthonormal sequences.
For instance, it is proved that for the Haar system F,(f)
satisfies a Lipschitz condition of order «/2 in [0,1] and that
this result is best possible for any complete orthonormal
sequence. An application is also given regarding the absolute
convergence of Walsh series.

Previously, Bosanquet and Kestelman essentially proved [3, p. 91]

THEOREM A. Let {p,} be orthomormal. Then the Fourier coef-
fictents of every absolutely continuous function are absolutely convergent
if and only if F\(t) e L7[a, b].

Also, applying Parseval’s equality to the characteristic function
of [a, t], we obtain

THEOREM B. Let {®p,} be orthonormal. Then {P,} is complete in
La, b] if and only if Fot) =t —a,a <t < b

For certain systems, such as the Haar system, the following ex-
tension of Theorem A is possible.

THEOREM 1. Assume {®p,} is orthonormal, @,(t) has constant sign
on [a, b] for eachm =1,2, ---, and X |9D,(0)| < . Then the Fourier
coefficients of every absolutely continuous function [f(t), such that
f'(t) e L?, are absolutely convergent if and only if Fi(t)e L', 1< p =< oo,
pt4+qgt=1.

Proof. Necessity. Integrating by parts we obtain
b oo
.7® 3 1 out) at
exists for every f’e L?. Hence, F\(t)c L* [7, p. 166].

Sufficiency. By Holder’s inequality
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m=1

> | [ rooawa] = {1701 Souwiae < 171171,

If an orthonormal sequence {®,} is not complete we still obtain
F,(t) continuous since the “ completed ” series converges to a continuous
function and hence (i.e. by Dini’s theorem) the convergence must be
uniform. In fact, we have

THEOREM 2. If {®,} is orthonormal, then F,(t) € Lip (1/2).

Proof. Let x,yec|[a, b]. Using Bessel’s inequality, we obtain

Fi) = F@)| = | 3 10,0 - [0.0)F

M3§

< 2 [0n(@) — Pu(y) [{|@u(®@) | + |Du(v) 1}

8
il

1

=3

<

[0.@) — @)1 3, [2a@1)
{z [2.2) — 2u)]* 3 10.@)1)
[b —

alllzlx - i1/z .

N_i_f—’;'\

IA

REMARK 1. This result is best possible in the following sense:
For every ¢ > 0 if we set @,(x) = (1 — )¢ "7, 0 £ 2 < 1, then ¢, e L0, 1]
but [9,(H)]* ¢ Lip (1/2 + ¢).

REMARK 2. It would be interesting to know if F,(¢) is absolutely
continuous and if F)(t)e L* for any orthonormal sequence {®,}.

THEOREM 3. For any complete orthonormal system {®,}, F.(t)¢
Lip (a/2 + ¢) for any ¢ > 0.

Proof. Let te[a, b]. By Parseval’s equality
[FOI" 2[R0 = —a) 0 <a=2,

since for any nonnegative sequence {a,}, [Za%]’* is a non-increasing
function of « for « > 0.

We will now determine which Lipschitz class F,(f) belongs to for
the Haar, Walsh, and trigonometric systems.

DEFINITION. If 0 < a <1, set

N.(f) = sup [f(@) — fly)| o —y[™ for x=+y and z,yela,b].

LEMMA 1. Let a>0and 0 < a—pB=<1. If
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m=1 No(f) = O(n?)
and

Sim=n I fmlle = O™,
then

f@) = >5- fu) e Lip (@ — B) -
Proof. Let 2" ' < h < 2. Then

=P+Q.

+1

e+ = 0= S+ D~ L0 = 5+
P= o[ $ N(f)]| = 0,
Q=0 3 lfall.] =00 .

m=2"+1

LM

3

LEMMA 2. () If S50 |a,|m® = O2%), then

S, lan] = 0m), 8 — a < 0.
on-+1

(b If 3 |a.|=0@"), then z: la, |m® = O, & + 8 >0 .

Proof. Straightforward.

LEMMA 3. Let 0 < v <1 and suppose fe Lip~.
(a) If 0 <a<1,|f|"eLip(av).
(b) If « >1,]|f|*e Lip~.

Proof. We may assume f(t) = 0 because

S+ W] = 1O = IfEt+ B — fD)].

Part (a). Since |z + y|[* < |[2]* + |y|5, 0 < a < 1, we obtain
L+ h — fO =/ + k) —fO = 00) .
Part (b). Since |2* — y*| < ||at* |||z — y], « = 1, it follows that

1+ n) = O = llaf Ol f ¢+ B =[] = OW) .

THEOREM 4. Let 0 < v <1 and assume fe Lip~ and is of period
b — a.

(a Ifo<a<l,0<ary—0=1, and

3 (@ mer = O(n) ,
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then
Fult) = 3} anlflmt)|e Lip (wr — 9) -
b Ifa>1,0<y—-06=51, and
3 [anlm = O ,
then
Fult) = 55 anl flm) e Lip (v - 9) -
Proof. Part (a). By hypothesis and Lemma 3 (a)
3 Nofaalfmt)|] = O3 jan|m) = OGw) .
Also, by Lemma 2 (a), if 0 < av — 4, then
3 llanlfm) .. = 0(3: an]) = O~
and so our result follows by Lemma 1.
Part (b). By hypothesis and Lemma 3j(b)
35 Nlaulfomt) 1] = O( 3 an|m) = O@?) .
Also, by Lemma 2 (a), if 0 < v — 4§, then
S llanlfmt) ) = O(3 jau]) = 0@,
and so our result again follows from Lemma 1.

THEOREM 5. Let 0 < a <2 and assume @ € L™[a, b], P,(x) = p(mwx),
and @.(t) is of period b — a. If

S [bal = 0@, 0 < a ~ g < 1,
then

G.(t) = 2 b, |®0,.(t)|* € Lip (@ — 5) .

Proof. @,() = m™'@,(mt) and so
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G.(t) = 2, bt | @ (mt) | .

Now let y=1 and q, = b,m™® in Theorem 4. Then, if 0 < a < 1,
our result follows by Theorem 4 (a) with ¢ = g.
If «>1and « — B8 <1, then by Lemma 2 (b)

ZZ Iamlml = zn“ Ibmlml—a — O(nﬂ—a+1) .
Thus, utilizing Theorem 4 (b) with 6 = § — a + 1, we obtain
G.(t)eLip[l — (8 — a + )] = Lip (@ — p) -

COROLLARY 1. (a) i‘, St sin max dw ]ae Lipa—1),1<a<2, on
[0, 2x].

b If1<a<?2 and {w,(x)} and {r,.(v)} = {r(2"'x)} denote the Walsh
and Rademacher functions (defined in [1]), then

)
>
m=0

Stwm(w)dxla =4 3 gm Strm(x)dxlae Lip (a — 1) on [0, 1],

0 m=1 0

since Htwm(x)dwl = lgtrk(x)dxl Jor 22" <m < 25 k=1,2 -+, as can
0 0

be easily seen directly.

() If 0 < a< 2 and {h,} denotes the Haar system (defined in [1]),
then

S| [ rateya) = ¢ 35 2mover
m=_ 0 1

S:m(x)dxlae Lip (a/2) on [0,1] ,

. 2k—1
since >,
m=2k—1

Sth/m(x)dxl — Quk—naz
0

Strk(x)dxi for k=1,2, «--.
[} |

REMARK 3. For the Haar system F({) has no finite derivative
anywhere [5, p. 279].

THEOREM 6. Let 0 < ||@|], < =, @,.(¢) = P(mx), and assume D.(t)
1s of period b — a.

(@) Slanm™ < co if and only if 3 |e.||0.(t)]" € L']a, b].
o)y If e, m™ = o, then > |a,||@.(0)|" = = almost everywhere.
Proof. Part (a). Since @,(t) = m™'®,(mt), we obtain

Sb[ () "t = m*agby O,(mt) "t = m~a§b| () |“dt .

Part (b). Applying Fejer’s Lemma [7, p. 49], we obtain for every
set E of positive measure
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limS | @(mt) |*dt = /‘(E) S D) [5dt >0 as m— oo,
E

and so by a theorem of Orlicz [1, p. 327]
2ianlm™ [0 (me)|* = 3 || [@a(t)[* =

almost everywhere.

COROLLARY 2. There exists an absolutely continuous function
whose Walsh-Fourier series is absolutely divergent.

Proof. For the Walsh system F\(t)¢ L~ by Theorem 6 and so
the result follows from Theorem A.
It now seems appropriate to prove

THEOREM 7. Let
1 1/2
w6, f) = sup{{ 7@+ W) — f@Pds}

If 3 2"w*@2™", f) < oo, then the Walsh-Fourier series of f converges
absolutely.

Proof. Let {c,} denote the Walsh-Fourier coefficients of f and
let ¢ +y =32 — 9.]12™ where x = >, 2,2 and y = 3, %,2™" are
the binary expansions of « and y (where for dyadic rationals we choose
the finite expansion). N. Fine proved [4, p. 395]

S az e+ - .

Jo=gn—1

Also, by definition of 4, we obtain
|[f@+27) — felde
= [ @+ 2 — foras + | [~ 27) — ffd
=2{ [f(w +2) — f)d
where E, = {ve 0, 1]: @, = p} for »p = 0, 1. Hence,
I N

on—1

and so by Schwarz’s inequality

2£1 lex| = <2§l Ck)V?(Z”Z—‘I 1) < W27, f)2"*.

f=gn—1 gn—1 on—1
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REMARK 4. Previously N. Fine [4, p.394] and N. Vilenkin [6,
p- 32] proved that if fe Lipa, a > 1/2, then the Walsh-Fourier series
of f converges absolutely. By Theorem 7 it follows that all of the
sufficiency theorems on absolute convergence for trigonometric series
[2, p. 154-161] in terms of modulus of continuity carry over completely
for the Walsh system.
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