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ON PERMANENTS OF CIRCULANTS

HENRYK MINC

A recurrence formula is obtained for permanents of cir-
culants of the form aln + βP + γP2 and explicit formulas are
deduced from it. It is shown that for doubly stochastic cir-
culants aln + βP + γP2 the minimum permanent lies in the
interval (1/2", 1/2*-1].

1* Introduction* The well-known unresolved conjecture of van
der Waerden asserts that in Ωn, the polyhedron of doubly stochastic
n x n matrices, the permanent function takes its minimum value for
the matrix Jn, all of whose entries are 1/n, i.e.,

( 1 ) min per (A) = per (Jn) .
AeΩn

By a theorem of Birkhoff, Ωn is a convex polyhedron with the per-
mutation matrices P19•• , P Λ l as vertices. Thus (1) can be written
in the form

( 2 ) min per ( Σ θspλ = per ( Σ -i

where the minimum is over all nonnegative (%!)-tuples θ = (θly , θnl)
satisfying ΣilUθs = 1.

Since van der Waerden's conjecture is still unresolved, it is natural
to ask whether

( 3 ) min per ( Σ cϋjPλ = per ( Σ —

for a fixed set of permutation matrices {Pl9 •••, Pm), where the mini-
mum is over all nonnegative m-tuples ω = (ωly , ωm) satisfying

In this paper we study circulants of the form aln + βP + jP2,
where In is the n x n identity matrix and P is the full-cycle per-
mutation matrix with l ' s in the positions (1, 2), (2, 3), •••, (n — 1, w),
(̂ r, 1). We obtain a recurrence formula and deduce explicit formulas
for per (aln + βP + 7P2). We then specialize to doubly stochastic
circulants of the form aln + /3P + 7P2, obtain bounds for the mini-
mum value of the permanent of such circulants, and show that (3)
does not hold for the set {In, P, P2}, n ^ 5.

The author is indebted to Dr. David London for drawing his
attention to the fact that per ((1/2)1, + (1/2)P) < per ((1/3)7, + (1/3)P +
(1/3)P2), for sufficiently large n.
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2* Results* We begin with two formulas for the permanent of
a tridiagonal matrix of the form

( 4 )
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Let Fn(a, β, 7) denote the matrix (4) of order n and let the permanent
of FJμ, β, 7) be denoted by fjfit, β, 7), or simply by fn. Set /„ = 1,
Λ = β, and /2 = β2 + ay.

LEMMA 1. If n :> 2,

(5) / . = βfn-, + «7Λ_2

COROLLARY. If n ^ 1 = α//32 + 4cry ^ 0,

( 6 ) Jn
μ μ

r2 = (β — μ)/2. If μ = 0,where rx = (β +

(6')

(In other words, if the right side of (6) is considered as a poly-
nomial expression in a, β, 7, then (6) holds even in the case μ = 0.)

The lemma is proved easily by expanding the permanent of
Fn(a, β, 7) by the first column. Formula (6) is obtained by solving
the difference equation (5) subject to initial conditions.

In the next lemma, formula (5) is used to obtain a relation be-
tween the permanent of the circulant aln + βP + 7P2 and permanents
of tridiagonal matrices of the form (4).

LEMMA 2. If n^ 3, then
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( 7 ) per (aln + βP + yP2) = Λ + or/,-. + an + yn .

Proof. A direct computation shows that the theorem holds for
n — 3. Assume that n ^ 4. Denote the matrix αJ% + /SP + 7P 2 by
Qn, and the submatrix of Qn obtained by deleting rows iu i2 and
columns jl9j2 by Qn(il9iz\JuJύ Expand the permanent of Qn by the
first two columns:

per (Qn) = a2 per (Q%(1, 211, 2)) + βy per (Q.(l, n - 111, 2))

+ (on + β2) per (Q.(l, w 11, 2)) + αγ per (QΛ(2, n - 111, 2))

+ α/9 per (Qn(2, n 11, 2)) + τ2 per (Q.(w - 1, n \ 1, 2))

= αw + α/57Λ_3 + (on + /32)Λ_2 + α2τ2Λ-4 + α/SτΛ-3 + 7%

= βfn-i + ατΛ-2 + on(βfn-* + onh-ύ + an + T

We now use the preceding result to obtain a recurrence formula
for the permanent of aln + βP + 7P2, and then to deduce explicit
formulas for these circulants.

THEOREM 1. If Qn = aln + βP + 7P2 and n^5, then

per (Qn) = β per (Q^J + ay per (Qw_2)

+ α ^ ^ α - β - y) + T " " 1 ^ - α - /S) .

Proof. We use (7) and (5) to transform the right-hand side of
(8) as follows:

β per (Qn-J + ay per (Qn_J + α 7 1 " 1 ^ - β - y) + 7W-X(7 - α - /j)

ayn~ι + an — an~ιβ — an~ιy + yn — ayn~ι — βyn~ι

2) + ay(βfn_3

- per (Qw) .

The difference equation (8) can now be solved subject to the con-
ditions

per (Q8) = α3 + βz + 73 + 3α/57

per (Q4) = α4 + /34 + 74 + 4α/S27 + 2α272

per (Q5) = a5 + /35 + 75 + 5«/S37 + 5α2/372 , etc.,

which are computed directly using a Laplace expansion. We obtain
the following explicit formula.
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THEOREM 2. If n^ 3, then

( 9 ) per (aln + βP + 7P2) = r? + r? + an + 7"

where rt and r2 are ίΛe rooίs of x2 — βx — OLΊ — 0.

Alternatively, formula (9) can be obtained from (7) and (6) if
μ Φ 0, or from (7) and (6') in case μ = 0. Thus if μ Φ 0:

per (αlw + /SP + 7P2) = /« + «7Λ-2 + α% + 7W

μ ι μ 2 ^

= — Of + r?)(n - r2) + an + 7W

= rf + r? + an + 7% ,

since ai = — rxr2 and μ — rι — r2. The case ^ = 0 is proved similarly.

Formulas (8) and (9) have been obtained in [2] for the special case
a = β = 7.

THEOREM 3. If n^3, then
|>/2]

(10) per (αJn + /3P + 7P2) = α% + βn + 7% + Σ c[n) a1 βn~2tΊι

t

Proof- Let r1 = (β + μ)/2 and r2 = (β — μ)/29 where μ =
Then by formula (9),

per (αJ, + /9P + 7P2)

[>/2]

= an + T + 2~{n-]) Σ
yfc-0

K + 2-'- u [g3 (2I) Σ

Σ ( Σ 2-(-2ί-1

The following alternative form of formula (10) can be proved by
induction:
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O/2]

per (aln + βP + 7P2) = an + βn + T + Σ c^a'β71-

where c[n) = n, c%l = 2 in case ^ is even,

and c[n) = Cί*""1* + cίϋ.72), 1 <C t <

(11)

The cases n = 3 and 4 can be easily verified. If Q% = αJΛ + βP +
7P2, ^ ^ 5, then by (8),

per (Qn) = β per {Qn_λ) + <xγ per (Q._2) + α»-^α - β - Ί)

βn [(w-D/2]

ί = l

0 - 1 ( 0 : _ β _ 7 ) + " 7 « - i ( 7 - a - β)

[w/2]

Σ
ί=2 l>/]

Σ
ί=2

^-1 vcί
ί=2

if w is odd,

if n is even,

and formula (11) follows easily.
Formula (11) allows us to construct a table of coefficients c[n) in

the manner of Pascal's triangle.

n
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In the remainder of this paper we assume that aln + βP + 7P2

is doubly stochastic, i.e., that a, β, 7 are nonnegative and a + β + 7 = 1.

THEOREM 4. If α, β, 7 are nonnegative then

(12) 1- < min (per (of. + βP + 7P2)) ^ - ί - .

2 W 2 7 1 " 1

Proof. The right inequality in (12) follows immediately from the
fact that

We prove the left inequality by showing that

(13) per (aln + βP + 7P2) > ^

for any nonnegative α, /3, 7 satisfying α + β + 7 = 1. If any of α,
/S, 7 exceeds 1/2 then (13) clearly holds, since by (10)

per {aln + βP + 7P2) ^ an + /Sw + 7" .

Suppose that

(14) O ^ α ^ — , 0 ^ / 3 ^ — , 0 ^ 7 ^ -ί, α + /9 + 7 = l .
2 ^ ^

We assume, without loss of generality, that a ^ 7, and assert that
under these conditions

(15) rx ^ — and \r2\ ^ a
Li

where rγ = (1/2)(/3 + l//S2 + 4<xγ) and r2 = (1/2)(β - v'/S2 + 4ατ). We
use the method of Lagrange's multipliers to determine the stationary
points of the function rL = r^a, β, 7). Let

F(a, β, 7) = —(β + Vβ2 + 4αry) + λ(α + /9 + 7 - 1) .

The necessary conditions for a stationary point are

d F 7 -4- Λ 0
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dy μ

Where μ — Vβ2 + 4ατ, i.e., we must have a = 7 = rλ. But then

2a = β + Vβ2 + 4α2 ,

i.e.,

4α2 - Aaβ + β2 = β2 + 4α 2,

which implies that either β = 0 and α = 7 = 1/2, or α = 7 = 0 and
β = 1. In any case the function r^α, /9, 7) has no minimum in the
interior of region (14). It is easy to verify that its minimum value
on the boundary is 1/2.

We proceed to the second inequality in (15). Suppose that \r2\ >
α, i.e., that

Vβ2 + 4α7 - β > 2a ,

or

(16) β2 + 4α7 > β2 + 4α/5 + 4α2 .

Now α cannot be 0, since a ^ 7 and /S ̂  1/2. Hence (16) implies that

7 > a + /3 ,

i.e.,

which contradicts (14). Therefore the inequalities (15) hold. Thus
for any a, β, 7 satisfying (14) we have

per (aln + βP + 7P2) = rf + r2" + an + 7"

^ rΓ + 7" + (α% - |r2|'
w)

> rf

THEOREM 5. // a, β, 7 are nonnegative numbers, n ^ 5,

(17) min (per (aln + βP + 7P2)) < per (±-In + — P + —P 2) .

J^ oί/̂ βr words, the minimum of the permanent function on the
convex hull of In, P, P2, n ^ 5, is not attained for a = β = 7 = 1/3.
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Proof. By Theorem 4,

min (per (aln + βP + 7P2) ^

<χ+β+r=ί

From (9) we compute

per (—In + — P
3

which is greater than 1/271"1 for n ^ 10. It can be checked by com-
putation, that (17) holds for 5 ^ n ^ 9 as well.

An explicit formula for minα+/3+r=1 (per (α/Λ + /5P + 7P2)), α, /3, 7 ^
0. appears to be out of reach. The available numerical data for n ^ 18
seem to indicate that the values of a, β, 7, at which the minimum is
attained are the same for n = 2k — 1 and n = 2k, for any k, but that
otherwise they vary with n.
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