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ON A GENERALIZATION OF ^-SPACES

AKIHIRO OKUYAMA

In order to simultaneously generalize the class of M-spaces
and (7-spaces, K. Nagami introduced ^-spaces. Subsequently,
E. Michael defined a class of ^-spaces. In this paper we will
discuss the class of 2̂ -spaces which lies between ^-spaces and
^-spaces and which contains all images of I'-spaces under
closed continuous maps.

1* Introduction* Recently K. Nagami [6] has investigated a
new class of spaces, called I'-spaces, containing two different classes
of generalized metric spaces; i.e. the class of M-spaces (cf. [4]) as
well as the class of σ-spaces (cf. [5], [7]).

If J^Γ is a cover of a space X, then a cover j y is called a (mod
Sί^)-network for X if, whenever KaU with Ke 3ί^ and U open in
X, then Kd A a U for some Aej&' According to K. Nagami [6],
X is a Σspace if it has a σ-locally finite closed (mod t:^Γ)-network
for some cover SΓ of X by countably compact sets.

E. Michael [2] has pointed out that the image of a paracompact,
T2 -Γ-space under a closed continuous map need not be a I'-space and
also that replacing "σ-locally finite" by "cF-closure-preserving" in the
definition of a I'-space leads to a strictly larger class of spaces, which
are called Σ*-spaces.

We say that a space X is a Σ*-space if it satisfies the definition
of a J-space with "σ-locally finite" weakened to "σ-hereditarily closure-
preserving", where we say that a collection j y = {Aλ: XeΛ} is here-
ditarily closure-preserving if any collection {Bλ: XeΛ} with Bλ c A7 is
closure-preserving (cf. [3]).

Clearly, every I'-space is a l^-space and every l^-space is a Σ%-
space. Since the image of a locally finite closed cover of the domain
under a closed continuous onto map is a hereditarily closure-preserving
closed cover of the range, we can easily see that the image of a Σ-
space by a closed continuous map is always a i^-space. As a matter
of fact, E. Michael [2] has pointed out that a paracompact, T2 Σ*-
space need not be a I'-space, in general. Hence this fact arouses our
interest in studying Jt^-spaces comparing with I'-spaces as well as
^-spaces.

In this paper we will investigate some relationship between above
spaces and obtain the following results:

(A) Any image of a l^-space under a closed continuous map is
a J?*-space.

(B) Any inverse image of a J^-space by a perfect map (i.e. a
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closed continuous map whose fibre at each point is compact) is a
.P-space, while this is not true for a i^-space.

(C) Every Lindelof, T2, 2^-space is a IZ-space, while this is not
true for a I'̂ -space.

(D) A J^-space X is a J?-space if every open set of Xis an Fσ.
(E) For a paracompact, T2 space X the following conditions are

equivalent:
(1) X is a Jf-space.
(2) I x I is a I'-space, where I denotes the unit closed interval

with usual topology,
(3) I x I is a 2^-space.
According to the first half of (B), the product of a J'-space with

I is a 2^-space. On the other hand, as noted above there exists a
paracompact, T2, I

7*-, non J-space. Hence statement (E) shows that
the product of a paracompact, T2, 2

1*-, non J-space X with J is a
I7*-, non 2^-space. Since the projection from X x I to I is perfect,
this is an example for the later half of (B). Also, this shows that
the class of ^-spaces is strictly larger than the class of 1^-spaces.

Concerning (D), it raises the following question:
Is (D) true for I^-spaces?
§ 2 is concerned with hereditarily closure-preserving closed covers

of a countably compact, T2 space, a Lindelof, T2 space and a T2 space
whose open sets are Fσ's. As an immediate consequence of 2.1 and
2.3 we have the simple facts that every hereditarily closure-preserving
closed cover of a countably compact, T2 space (resp. a Lindelof, T2

space) has a finite (resp. a countable) subcover. In §3 we will prove
main results.

We will use the following notations in §2 and §3:
For a cover ^ of a space X and a point x of X we put

C(x, j ^ ) = f]{F:x

and for a sequence {J^n: n = 1, 2, •} of covers of X and a point x
of X we put

C(x) = n C(x, JK)

Throughout this paper we assume that all spaces are T2 and all
maps are continuous.

cover

2* Some properties of a hereditarily closure-preserving closed

THEOREM 2,1. Let J/ = {Fλ:\eΛ} be a hereditarily closure-
preserving closed cover of a space X and C a countably compact set
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of X. Then J?~ is locally finite at almost all points of C; i.e. there

exist xl9 , xn in C such that ^ is locally finite at any xeC —

{x19 , xn}, and only finitely many members of ^ meet C — {xly , xn}.

Proof. On the contrary, suppose J?~ is not locally finite at
infinitely many points of C. Since any closure-preserving, point-finite
collection of closed sets is locally finite, J^ is not point-finite at
infinitely many points of C. Then we can choose, step by step,
countably many points xly x2 in C and countably many λ1? λ2, in
A such that xn e Fλn for n = 1, 2, . Since J^ is hereditarily closure-
preserving, {xί9 x2, } must be discrete in X. On the other hand,
since C is countably compact, {xl9 x2, •••} must have a cluster point
in C. This is a contradiction. Hence J^ is locally finite at all points
of C but finitely many points xlf •••, xn.

To complete the proof of 2.1, assume that D = C — {xl9 •••, xn]
is infinite. If infinitely many members of jP" meet D, then we can
again obtain a sequence {pl9 p2, •} in D and a sequence {Fλl, Fλ2, •}
in ^ with Pi e Fλ. for i = 1, 2, by noting that js~ is point-finite
at any point of D. Since ^ is hereditarily closure-preserving,
{Pi, P29 •} must be discrete in X, therefore, in C, which is a contra-
diction. Hence only finitely many members of S^ meet D. This
completes the proof.

As an immediate corollary of 2.1 we have:

COROLLARY 2.2. Every hereditarily closure-preserving closed cover
of a countably compact space contains a finite subcover.

REMARK. 2.2 does not necessarily hold for a closure-preserving
closed cover even if a space is compact and metrizable; for example,
let X = {1/n: n = 1, 2, •} U {0} be a subspace of real line and put
^r — {{o, 1/n}: n = 1, 2, •}. Then X is a compact, metric space and
J^~ is a closure-preserving closed cover of X, but we cannot choose
any finite subcover.

THEOREM 2.3. Let S^ — {Fλ: λ e A} be a hereditarily closure-
preserving closed cover of a Lindelof space X. Then the set

Xo — {x e X: A(x) — {λ e A: x e F}] is uncountable}

is countable, and the set

Λ' = {XeA:FλΠ(X- XQ) Φ 0}

is countable if X — Xo is uncountable.
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Proof. On the contrary, suppose Xo is uncountable. Then Xo

contains a subset {xa: a < ωj, where ωι denotes the least uncountable
ordinal. For each a < ω19 by transfinite induction we can obtain xa

in Xo and aλ f fe Λ(xa) with xa e Fλ(χ and such that a Φ β implies xa Φ xβ

and Xa Φ xβ, because for each xe Xo Λ(x) is uncountable. Since j^~ is
hereditarily closure-preserving, {xa: a < ωj must be discrete in X.
This contradicts the assumption that X is Lindelof, and hence the
first half of 2.3 is proved.

To complete the proof, again suppose Λ' is uncountale. From the
definition of Xo, ̂  must be point-countable at any x e X — Xo. If
X — Xo is uncountable, by transfinite induction, we can choose an
uncountable set {xa: a < ωj in X— Xo and a corresponding set {Xa: a < ωλ}
with xa G Fλa for each a < ω1 and so that a Φ β implies xa Φ xβ as
well as Xa Φ Xβ. Since ̂  is hereditarily closure-preserving, {xa: a < ω,}
must be an uncountable discrete set in X, which contradicts the
assumption that X is Lindelof. Therefore X — Xo is countable, and
hence the proof is completed.

As an immediate consequence of 2.3 we have:

COROLLARY 2.4. Every hereditarily closure-preserving closed cover
of a Lindelof space contains a countable subcover.

REMARK. Example 3.4 in next section shows that 2.4 does not
necessarily hold for a closure-preserving closed cover.

LEMMA 2.5. Let j^~ be a closure-preserving closed cover of a
space X. Then the set

is discrete in X.

Proof. Let y e X be an arbitrary point and

U=X-

Then U is an open neighborhood of y, because j^~ is a closure-preserv-
ing closed cover. If x e U Π X19 then we have

ΦΦ UnC(x,Jt~) = (X- U{FeJT:yeF})Γ)(n{Fejr:χeF})

and hence C(y, ̂ ) c C(x, ̂ Γ). Since x e Xu C(x, J^) — {x} and thus
we have y = x. This means that U contains at most one point of
Xίf which completes the proof.

THEOREM 2.6. Let X be a space each of ivhose open sets is an
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Fσ, and let J^ be a closure-preserving closed cover of X. Then the
set

Xn = {xeX:\C(x,jT)\ = n}

is σ-discrete in X for n — 1, 2, •••, where we denote by \A\ the cardi-
nality of A.

Proof. We shall prove 2.6 by induction on n. By 2.5 Xγ is dis-
crete in X. Assume that Xn is σ-discrete in X for any n ^ k. We
shall show that Xk+1 is also σ-discrete.

First note that X — U5=i X» is °P e n i n X Let y be any point
of X - UίU Xn and let U = X - U {Fe^ y £ F}. Then U is an
open neighborhood of y. If x e X belongs to U, we have C(y, ̂ ) c
C(x, ̂ r). Since y does not belong to \Ji=1Xn, C{y, ̂ ) contains at
least k + 1 points of X and thus C(x, ̂ ") also contains at least k + 1
points. In other words, x $ \Jl=1 Xn. This shows that Z7ΓΊ (UίU -3ΓJ = 0
and hence X — Uί=i X* i s °P e n i n X*

According to hypothesis, X — Uϊ=i ^ ί s a n Fσ; i.e. X - Uί=i Xn =
US=i ί̂ j where each Yi is closed in X and Ŷ  c F ί + 1 for i = 1, 2, .
Since Xk+1 c UΓ=i Y<, it suffices to show that Z{ = Xk+1 Π Yi is discrete
in X for i = 1, 2, .

Let 7/ e X be an arbitrary point and i fixed. If y £ Yi9 then X — Yi

is clearly the desired neighborhood of y. If y e Yif put U = X —
U { F e ^ : 7/ g F}. Then a; e J7Π ̂  implies C(τ/, ̂ ^) c C(α;, ̂ ^) and
\C(x, J?r)\ — k + 1. Since ?/ belongs to Yi9 y does not belong to any
Xn with n^k: i.e. | C(τ/, ̂ " ) | > k. Hence we have C(y, ̂ ") = C(x, ^).
This means that x must be in C(y, J^) which is finite. Consequently,
U contains at most k + 1 points of Z{. Since X is T19 we obtain the
desired neighborhood of y by deleting finitely many points from U.
Therefore Zi is discrete in X. This completes the proof.

3* Some relations* Let / be a closed map from a space X onto
a space Y and J^" a hereditarily closure-preserving closed cover of
X. Then f{J^~) is also a hereditarily closure-preserving closed cover
of Y. Since the image of any countably compact space by a map is
countably compact, we have the following:

THEOREM 3.1. Any image of a Σ*-space under a closed map is
a Σ*-space.

Let / be a perfect map from X onto Y and j y a (mod
network for Y. Then we can easily see that f~ι{J^f) is a (mod f~ι{3ίΓ))-
network for X. Since the inverse image of any countably compact
space by a perfect map is countably compact, we have the following:
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THEOREM 3.2. Any inverse image of a Σ*-space by a perfect map
is a Σ*-space.

THEOREM 3.3. Every LindeVόf Σ*-space is a Σ-space.

Proof. Let X be a Lindelof 2r*-space having a ^-hereditarily
closure-preserving closed (mod J^")-network JF* for some cover .ί%Γ
of X by countably compact sets. Without loss of generality, we can
denote jβ~ by (J~= i «^^ such that each jjTn is a hereditarily closure-
preserving closed cover of X. Put ^~% = {Fλ: λ e Λn} for n — 1, 2, ••

By 2.3, for each n the set

Xn = {x e X: Λ(x) = {λe Λn: x e Fλ) is uncountable}

is countable. If X — Xn is countable for some n, then X is countable.
Since X is T2, X is clearly a I'-space; more precisely, it is a cosmic
space (cf. [1]). If X — Xn is uncountable for n = 1, 2, , then again
by 2.3,

Λ'u = {\eΛn:FλΓι(X-Xn)Φ 0}

is countable for n = 1, 2, . Put J^ζ = {{x}: x e X J U {Fλ: X e Λ'n) for
n = 1, 2, . Then each ^ ζ is countable and, therefore, 3ίf = U » = i ^ ^
is still countable. Since each Jg^ covers X, < ^ covers X and thus

f̂7 is a σ-locally finite closed cover of X. Furthermore, if we put
SίT' = {{x}: x e U~=i Xn) U {ΛΓG . ^ : if Π (X - Xn) Φ 0 for some n), then
SΓ' is a cover of X by countably compact sets. It is easy to see that
3ί? is a (mod <:^')-network, and hence X is a I'-space.

EXAMPLE 3.4. We shall show that in general a Lindelof 2^-space
need not be a J-space.

Let X = {xa: ae A} U {p} be an uncountable set with a special point
p. We define the topology for X as follows: each {xa} is open; V is
an open set containing p iff X — F is countable. Then we can easily
see that X is a regular, Lindelof (T2) space.

Now, put J ^ — {{p, xa}: a e A}. Then J ^ is a closure-preserving
closed cover of X, because any subset of X missing p is open. If we
put J>tΓ — J^~, then StΓ is a cover of X by countably compact sets
such that JF' is a (mod j^Γ)-network for X; i.e. X is a ^"-space.

Next, we shall show that X is not a J-space. On the contrary,
suppose X is a I'-space. Then there exists a σ-locally finite closed
cover £%f = Un=i £{fn of X which is a (mod J ^ ) - n e t w o r k for some
cover <5ίΓ by countably compact sets. We can assume without loss
of generality that {Sίfn\ n = 1, 2, •••} is an increasing sequence of
locally finite closed covers of X and that each ^fn is closed under
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finite intersections. Furthermore, in case of a I'-space we can put
j ^ ~ = {C(x): x e X}, where C(x) = Π~=i C{x, ^gζ) as noted in the intro-
duction. Since X is Lindelόf, each 3i?n is countable. From the
definition of the topology for X any member of ^f missing p is a
countable set. Therefore X' = X — I) {He 3ί?\ p $ H) is an uncountable
closed subspace of X, which is a iZ-space having Sίf\X' = {H Π X':
i ϊ e ^ } as a cr-locally finite (mod J2Γ/X')-network. Consequently, we
could have assumed from the beginning that each 3ίfn is finite and
each member of £%f contains p. For each xe X and n, let H(x, n)
be the smallest (as a subset) member of Sίfn containing x. H(x, n)
exists because £%fn is closed under finite intersections. Since the
compact sets of X are exactly the finite sets, C(x) = fi»=i H(x> n) m u s t
be finite for each xe X. Furthermore, for each xe X there is an nx

such that H(x, nx) is finite. To see this, suppose not. Then there is
an increasing sequence nγ < n2 < with H(x, ni+1) £ H(x, n^ for
i = 1, 2, . Now pick a point xi e H{x, n{) — H{x, ni+1) which is
distinct from p and x. Then F = {x^ i = 1, 2, } is a closed set in
X with JP7 n C(x) = 0 but F Π H(x, n) Φ 0 for all w. This contradicts
the fact that έ%? forms a network around C(α). Hence there exists
such an nx. We denote by n(x) the smallest nx for which Jϊ(ίc, nx) is
finite. Put

Ln = {x e X: n(x) ^ n) for w = 1, 2, .

Then {L%: π = 1, 2, •} is an increasing cover of X Since X is un-
countable, there exists an n0 such that LnQ is an uncountable set
containing p. Clearly LnQ is closed in X and hence it is a J-space
having £έf \ L%0 as a (mod 3ίT \ Lno)-network. But U*=i ̂  i s finίte a n ( i

for each x e LnQ there exists an H(x, n(x)) with w(α?) ̂  w0. This means
that Lnj must be finite, which is a contradiction. Thus X is not a
I'-space.

LEMMA 3.5. If X is a Σ*-space (resp. a Σ*-space), then X has a
sequence {J^n: n = 1, 2, •••} of hereditarily closure-preserving (resp.
closure-preserving) closed covers of X such that any sequence {xn: n =
1, 2, } with xn e C{x, ̂ Q for some xe X has a cluster point. In
particular, X is a Σ-space iff X has a sequence {^n: n = 1, 2, •} of
locally finite closed covers of X such that any sequence {xn: n = 1, 2, }
with xn e C(x, J?Z) for some xe X has a cluster point.

Proof. Since all cases are proved similarly, we shall prove for a
2^-space, only. Let X be a 2^-space having a σ-closure-preserving
closed (mod .^T)-network ^f = JJ»=i ̂  f o r a cover SΓ of X by
countably compact sets, where we can assume that each §ίfn is a



492 AKIHIRO OKUYAMA

closure-preserving closed cover of X. Put ^Ί = \Jk^n έ%fk for n =
1, 2, •••. Now we shall show that {^Z: n = 1, 2, •} satisfies the
required condition. On the contrary, suppose not. Then there exists
a discrete sequence {xn: n = 1, 2, •} with xn e C(x, .βQ for some xe X.
Since J3ίΓ covers X, there is a KeSΓ containing x. Since {xn: n =
1, 2, •} is discrete, there exists an w0 such as {xn: n^ n0} f] K = 0 .
Then G = X — {α?π: w ^ %0} is an open set containing K and thus, by
the assumption, there exists an Fe^m for some m with KczFciG.
Hence we have xt e CO, ^7) c C(α, ^ Q aFcG for any £ with m < i
as well as n0 < i, which is a contradiction.

The * if' part in the later half is easily seen noting that any
C(x, <_̂Q could have been a member of

THEOREM 3.6. Let X be a Σ*-space for which every open set is
an Fσ. Then X is a Σ-space.

Proof. Let J^ = U»=i ^l be a cr-hereditarily closure-preserving
closed (mod SΓ)-network for a cover St~ by countably compact sets.
We can assume that each ^ n covers X and that J?~% c , ^ + 1 for n =
1, 2, . Put

Γ = {a;Gl:|C(x, ^l)\ is finite for some n) .

Then X' is σ-discrete in X by 2.6. Denote X ' by U"=i P«> where each
P Λ is discrete in X and we can assume Pn c P Λ + 1 for w = 1, 2, .

We shall show that each . ^ is locally finite at any xe X — X'.
On the contrary, suppose some <J^0 is not locally finite at some xe X —
X'. Since J^ c ^l+1 and since each j ^ * n is closure-preserving, Λ'n =
{λ G /ί%: a? 6 F;} must be infinite for all n ^ n0. Since x ί X', C(x, ^l)
is infinite for all n ^ w0. We can choose a point a;n e C(x, J ^ ) and a
λn e Λ'%Q with α?Λ e Fλn for each n ^ n0 and such that n Φ m implies
xn Φ xm as well as λΛ Φ λm. By 3.5 {xn: n = nQ, n0 + 1, •} has a
cluster point. On the other hand, it must be discrete, because each
{xn} c Fχn e ^l0 and ^nQ is hereditarily closure-preserving. This con-
tradiction shows that each ^ n is locally finite at any xe X — X'.

Next, put

Yn = {x e X: J^n is locally finite at .τ}, n = 1, 2, .

Then each FΛ is open in X and therefore an Fσ. Denote Yn by
Um=i Qnm, where each Q%m is closed in X and Qnm c Qwm+1 for m, n =
1, 2, . Further, as was seen above, we have X — X ' c Yn for
w = l ,2, . . . .

Finally, put
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= {F* Π Qnm: XeAJu {X} for n, m = 1, 2, . ,

ς - {{x}: xePn}{J {X} for % = 1, 2, . . . .

Then each ^ n m as well as 3$fn is locally finite closed cover of X. In
order that X be a I'-space, it suffices to show that the sequence
{^»: n, m = 1, 2, ...} U {<§K: n = 1, 2, •} = {gf<: i = 1, 2, •} satisfies
the condition in 3.5. Let a e l b e any point and {ay ί — 1, 2, •} a
sequence with α?< e C(#, ^ ) . If a? e Xf, then a? e Pfc for some k, and since
{Pn: n = 1, 2, •} is increasing, we have C(#, ^ ) = {x} e ^ for all
n^k. Hence {ay i = 1, 2, •} has a cluster point a;. If x $ X', then
x e Yn for n = 1, 2, and hence, for each n, there exists a &Λ with
% e Qnkn Thus, for any n we have C(x, ^lkj c C(ίt?, ̂ U) On the other
hand, by 3.5 any sequence {pn: n = 1, 2, •} with pΛ e C(a;, JΓ,) has
a cluster point. Hence {a?<: i = 1, 2, •• •} must have a cluster point.
This shows by 3.5 that X is a J-space.

THEOREM 3.7. Let Xbe a paracompact space. Then the following
conditions are equivalent.

(1) X is a Σ-space.
( 2 ) X x I is a Σ-space.
( 3) X x I is a Σ*-space.

Proof. Since the property of being a paracompact iJ-space is
countably productive (cf. [6]), we have (1) => (2), From the definition
clearly (2) => (3).

(3) => (1). Let j ^ ~ — \Jn=ιJKι be a σ-hereditarily closure-preserv-
ing (mod J^)-network for some cover J%" of X x I by countably
compact sets. We assume that <β^a<^l+1 for n = 1, 2, •••.

At first we shall construct by induction on n a collection
{V(al9 '- -, an): axe Au , an e An; n = 1, 2, } of open sets of X and
a corresponding collection

{I(al9 •, α j : ^ e Λ , , αΛ e An; n = 1, 2, .}

of subsets of I satisfying the following conditions:
( i ) {V(al9 • *,an):a1eAl9 , an e An) is a locally finite open

cover of X for n = 1, 2, .
(ii) F(α :, ••-,«*, αn + 1) c ^(α,, •••,«„) for ^ e i , •••,«.£ Aw,

α Λ + 1 e An+1; w = 1, 2, ••-.
(iii) If F(α :, •• ,α:n) is nonempty, then /(α^ •••,«„) is a closed

interval.
(iv) /(«!, , αw,αw + 1) c !(«!, •••,«») for αx e Ax, , an e An, an+1 e

An+1; n = 1, 2, - - .
(v ) y(«i, •••,««) x I(al9 , an) meets only finitely many mem-

bers of ^ for a,eAlf , an e An; n = 1, 2,
Assume that such collections are constructed for all n ^ k and
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consider n = k + 1.
Fix ^ e 4 , ak e Ak with V(al9 , ak) Φ 0 . For any point

xe V(aL, , ak), since {x} x I(aly ••-,#&) is compact and ^l+1 is
hereditari ly closure-preserving, by 2.1 J??k+1 is locally finite a t all b u t
finitely many points of {x} x I(al9 •••, α A ) . Let {plf •••, pm} be those
points of {x} x J(α!, •••, ak) a t which ^ I + 1 is not locally finite. Let
Ix be a closed subinterval of I(al9 •••, α^) missing ^ , •••, pTO. Since
{#} x Ix is compact, there exists an open neighborhood Ux(in V(aίy cck))
of x such t h a t

Uxx IxdX x I - U{FeJsηc+ι:FΓ) ({x} x /,) = 0} .

Since Ffe, * , ^ ) is paracompact, there is a locally finite open cover

{Vλ: Xe Λ(aly ,ak)} of F(α1? ,ak) which refines {Ux: xe V(a19 ,αΛ)}

Let

9>: ̂ (αx, , ak) • V(al9 , ak) c X

be a function which satisfies F^c ί7^(;) for XeA{al9 •• ,αA ;).
Now varying ^ G ^ , , αΛ G AΛ, put

4̂.̂ +1 = U {Λ(al9 , α/c): α ^ A , , ak G A,}

and

(^, , ak) Π Fα / c + 1 if F ( ^ , , ak) φ 0 and α:^, e Λ(a19 , ak)

otherwise

Furthermore, if V(al9 " ,ak9 ctk+1) Φ 0? then from the definition we
have V(aly *',(xk) Φ 0 and ak+1 e Λ(alf •• ,α / ί ) . By inductive hypo-
thesis I(aί9 — ,ak) is not empty. Hence we put I(al9 •••, ak9 ak+1) =
I<p(ak+1)9 which is not empty. Otherwise we put I(al9 , ak9 ak+ί) = 0 .
Then we can easily see that {V(ctϊ9 , cck+1): aγe Al9 , ak+ι e Ak+1}
and {I(al9 , ak+1): a, e Al9 , ak+1 e Ak+ι} satisfy all required condi-
tions ( i ) — ( v ) .

Consequently, for each n we can construct {V(au •• ,αw):α:1G
Al9 , an G An) and {I(al9 , an): av e Aί9 an e An} satisfying (i)—(v).

Next, put

Y« = U {V(al9 , an) x /(«!, , α j : a, e Aί9 , an e An}

and

γ=n γn.

Since { F ^ , •• ,α 1 , ) :α 1 eA 1 , •••, ane An) is locally finite in X, Yn is
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closed in X x I and thus Y is closed in X x I. Also by (v) the
collection

is a locally finite closed cover of Y for n = 1, 2, .
Now we show that Y is a Jί-space. For this purpose it suffices

to show that {J%?n: n = 1, 2, •••} satisfies the condition in 3.5. Let
y e Y be any point and {yn: n = 1,2, } any sequence with j / w e C(y, β£ζ).
Since C(#, β£ζ) c C(τ/, . i Q for each n and since X x I is a I^-space,
by 3.5 {yn: n, = 1, 2, •••} has a cluster point in X x I. Since Y is
closed in I x J, {τ/%: w = 1, 2, •} must have a cluster point in Y,
which shows by 3.5 that Y is a I'-space.

Finally, let π be the restriction to Y of the projection from X x I
onto Y. Since the projection is perfect and since Y is closed in X x J,
7Γ is perfect. It remains to show that π is onto, because a I'-space
is preserved by a perfect map (cf. [6]). Let x be any point of X.
Since {V(al9 - , an): aLe Au , an e An} covers X for n = 1, 2, ,
by (ii) we can choose a point (alf α2, •••) in AL x Λ> x with
xe V(al9 , an) for n = 1,2, . Since each V(al9 •••,«») is non-
empty, by (iv) {/(#!, , an): n = 1, 2, •} is a decreasing sequence of
nonempty closed intervals. Hence Γ\n^il(o:lf - --, an) Φ 0. Pick a
point g in this intersection. Then (x, q) belongs to V(alf « , α j x
I(al7 , α%) c Yn for w = 1, 2, , and thus belongs to Y. Clearly
τr((^, q)) = x. This shows that π is onto and hence X is a I'-space,
which completes the proof.

REFERENCES

1. E. Michael, Xo-spaces, J. Math, and Mech., 15 (1966), 983-1002.
2. , On Nagami's Σ-spaces and some related matters, Proc. of the Washington
State University Conference on General Topology, 13-19.
3. E. Michael and F. Slaughter, Jr., Σ-spaces with a point-countable separating open
cover are σ-spaces, to appear.
4. K. Morita, Products of normal spaces with metric spaces, Math., Ann. 154 (1964),
365-382.
5. K. Nagami, σ-spaces and product spaces, Math. Ann., 181 (1969), 109-118.
6. , Σ-spaces, Fund. Math., 65 (1969), 196-192.
7. A. Okuyama, Some generalizations of metric spaces, their metrization theorems and
product spaces, Sci. Rep. Tokyo Kyoiku Daigaku, sect. A 9 (1967), 236-254.

Received April 16, 1971 and in revised form October 8, 1971. This research was
accomplished during author's stay in University of Pittsburgh as a visiting professor
and was supported in part by NSF Grant GP 29401.

OSAKA UNIVERSITY OF EDUCATION





PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDJI

Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007

C. R. HOBBY RICHARD ARENS

University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
"we" must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,

3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.



Pacific Journal of Mathematics
Vol. 42, No. 2 February, 1972

Stephen Richard Bernfeld, The extendability of solutions of perturbed scalar
differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

James Edwin Brink, Inequalities involving f _p and f (n)
q for f with n

zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Orrin Frink and Robert S. Smith, On the distributivity of the lattice of filters

of a groupoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Donald Goldsmith, On the density of certain cohesive basic sequences . . . . . 323
Charles Lemuel Hagopian, Planar images of decomposable continua . . . . . . 329
W. N. Hudson, A decomposition theorem for biadditive processes . . . . . . . . . . 333
W. N. Hudson, Continuity of sample functions of biadditive processes . . . . . . 343
Masako Izumi and Shin-ichi Izumi, Integrability of trigonometric series.

II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
H. M. Ko, Fixed point theorems for point-to-set mappings and the set of

fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Gregers Louis Krabbe, An algebra of generalized functions on an open

interval: two-sided operational calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Thomas Latimer Kriete, III, Complete non-selfadjointness of almost

selfadjoint operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Shiva Narain Lal and Siya Ram, On the absolute Hausdorff summability of a

Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Ronald Leslie Lipsman, Representation theory of almost connected

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
James R. McLaughlin, Integrated orthonormal series . . . . . . . . . . . . . . . . . . . . . 469
H. Minc, On permanents of circulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Akihiro Okuyama, On a generalization of 6-spaces . . . . . . . . . . . . . . . . . . . . . . 485
Norberto Salinas, Invariant subspaces and operators of class (S) . . . . . . . . . . 497
James D. Stafney, The spectrum of certain lower triangular matrices as

operators on the lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Arne Stray, Interpolation by analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 527
Li Pi Su, Rings of analytic functions on any subset of the complex plane . . . . 535
R. J. Tondra, A property of manifolds compactly equivalent to compact

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Pacific
JournalofM

athem
atics

1972
Vol.42,N

o.2

http://dx.doi.org/10.2140/pjm.1972.42.277
http://dx.doi.org/10.2140/pjm.1972.42.277
http://dx.doi.org/10.2140/pjm.1972.42.289
http://dx.doi.org/10.2140/pjm.1972.42.289
http://dx.doi.org/10.2140/pjm.1972.42.313
http://dx.doi.org/10.2140/pjm.1972.42.313
http://dx.doi.org/10.2140/pjm.1972.42.323
http://dx.doi.org/10.2140/pjm.1972.42.329
http://dx.doi.org/10.2140/pjm.1972.42.333
http://dx.doi.org/10.2140/pjm.1972.42.343
http://dx.doi.org/10.2140/pjm.1972.42.359
http://dx.doi.org/10.2140/pjm.1972.42.359
http://dx.doi.org/10.2140/pjm.1972.42.369
http://dx.doi.org/10.2140/pjm.1972.42.369
http://dx.doi.org/10.2140/pjm.1972.42.381
http://dx.doi.org/10.2140/pjm.1972.42.381
http://dx.doi.org/10.2140/pjm.1972.42.413
http://dx.doi.org/10.2140/pjm.1972.42.413
http://dx.doi.org/10.2140/pjm.1972.42.439
http://dx.doi.org/10.2140/pjm.1972.42.439
http://dx.doi.org/10.2140/pjm.1972.42.453
http://dx.doi.org/10.2140/pjm.1972.42.453
http://dx.doi.org/10.2140/pjm.1972.42.469
http://dx.doi.org/10.2140/pjm.1972.42.477
http://dx.doi.org/10.2140/pjm.1972.42.497
http://dx.doi.org/10.2140/pjm.1972.42.515
http://dx.doi.org/10.2140/pjm.1972.42.515
http://dx.doi.org/10.2140/pjm.1972.42.527
http://dx.doi.org/10.2140/pjm.1972.42.535
http://dx.doi.org/10.2140/pjm.1972.42.539
http://dx.doi.org/10.2140/pjm.1972.42.539

	
	
	

