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In this paper it is shown that there is a countable col-
lection ^={Gk}ΐ=i of connected ^-manifolds such that any
manifold M which is compactly equivalent to a compact mani-
fold is an open monotone union of some GaiM) e gf.

In [4] it is shown that if J^ is the class consisting of all open
2-manifolds of finite genus, then there is a countable collection & —
{Dk}ΐ=i of open 2-manifolds with the property that given MeJ^, there
exists some D3 e 3f such that M is an open monotone union of Dj. By
appropriately extending the concept of genus to higher dimensions,
one can obtain similar results for a larger class of manifolds.

1* Preliminaries* Unless otherwise specified, all manifolds will
be assumed to be connected and bd M and int M will denote the
boundary and interior respectively of a manifold M. Let M and N
be ^-manifolds. M and N are compactly equivalent, denoted by
M ~CN, if given any proper compact set Ka M there is an embedding
i of the pair (K, Kf] bd M) into (N, bd N) such that i(K Π bd M) =
i(K) Π bd N and given any proper compact set L c N there is an
embedding j of (L, L Π bd N) into (M, bd M) such that j(L Π bd N) =
j(L) Π bd M. Clearly compact equivalence is an equivalence relation
on the class of all ^-manifolds. Note that a 2-manifold M without
boundary has finite genus if and only if M ~CQ where Q is some closed
2-manifold.

Let J^f be the class consisting of all non-compact ^-manifolds
My n ^ 2 and n Φ 4, such that Me £f if and only if M~CN, N a
compact manifold. The principal result of this paper is the following:

THEOREM 1.1. There is a countable collection 5? = {Gk}ΐ=1 of
manifolds such that given Me Jίf there is some positive integer a(M)
such that M is an open monotone union of Gaυn.

As usual an w-manifold M is called an open monotone union of
an ^-manifold H if M = (jΓ î Hi where for all i, H{ is open in M,
HiCiHirl and Hi = H (= denotes topological equivalence).

2* Proof of the theorem* If M is an ^-manifold, let I(M)
rel bd M — {/1 / is a homeomorphism of M onto itself such that / is
isotopic to the identity relative to bd M}.
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The following lemma gives the existence of a complicated domain
which is the basic tool used in the construction of the collection <&
mentioned in Theorem 1.1.

LEMMA 2.1. Let E be an n-cell, n ^ 2. There exists a proper
domain (open connected set) G of E, bd E c G, such that if U is open
in E and K is a proper continuum, bd E c K c U, then there exists
age I(E) rel bd E such that Kc g(G) c U.

Proof. This follows immediately from Lemma 3.8 of [5].

LEMMA 2.2. Let Q be a compact n-manifold, n ^ 2. There is a
proper domain D of Q such that if U is open in Q and contains a
residual set R of Q, and K is proper continuum in Q, Rcz Kcz U,
then there exists heI(Q) rel bd Q such that Kczh(D)(Z U.

Proof. Let E be a bicollared n-cell, E c int G, and let G be a
proper domain G of E which satisfies the conditions of Lemma 2.1.
We will show that D = (Q — E) U G is the required domain. Without
loss of generality, we may assume that U is connected. Since U
contains a residual set R (see [3] for appropriate definition) there is
a bicollared n-cell E' and a e I(Q) rel bd such that R c Q — int Ef c U
and a(Ef) — E. Note that E and a can be obtained as follows: one
easily constructs 7i, 72> and 73 e I(Q) rel bd Q such that 7i only moves
points inside E U (collar of bd E) and shrinks E to a very small set,
72 moves Ίι{E) into the open %-cell Q — R, and 73 moves only points
inside Q — R and expands 72(Ύi(E)) SO that Q ~ Ua 73(72(71(int E)) c
Q - R. Thus we can set 6T1 = 737^ and £" = α " 1 ^ ) . Let R c if c J7,
iΓ a proper continuum. Without loss of generality, we may assume
that Z n £ " is a proper continuum in Ef and bd E' c K Π ϋ". Then
JSΓ" = α(if Π Ef) = a{K) Π E is a proper continuum in #, Z7" = α(Z7) Π
E = a(UΠE') is open in E and bd ί ί c JfiΓ" c [/". Therefore it follows
from Lemma 2.1 that there is a homeomorphism h e I(E) rel bd E such
that K" c fe(G) c U". Now extend fe to all of Q by defining h(x) = α?,
xeQ — E. Then α(iΓ) c /i(D) c α( 17) and so # = a~γh is the required
homeomorphism.

Since there are only a countable number of topologically distinct
compact manifolds [1], Theorem 1.1 follows immediately from the fol-
lowing theorem.

THEOREM 2.3. Let Q be a compact n-manifold, n > 1 and n Φ 4.
There is a domain D of Q such that if M is a non-compact n-manifold
and M ~CQ, then M is an open monotone union of D.
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Proof. Let D be a domain of Q which satisfies Lemma 2.2. and
let L = Q — int E, E a bicollared n-ce\l contained in int Q. Let M be
a non-compact w-manifold such that M~CQ. It is easily seen that
bd M = bd Q and that there is an embedding / of (L, bd Q) into (M,
bd M) such that /(bd 2£) (note that bd E = L — int^L where ijitρL
denotes the point set interior of L relative to Q) is a bicollared (n — 1)-
sphere in int M. Since Λf is an π-manifold, there exists a sequence
{C<}r=i of continua in M such that ilf = UΓi C» and for all i ^ 1, /(L) c
int^Ci c d c intMCi+ι. Since ikf is not compact and M~CQ, for each
i ;> 1 there is an embedding fei+1 of (C<+1, bd M) into (Q, bd Q) such
that bd Q c hί+ί(f(L)) c / ^ ( Q c ^ + 1 (int Λ ί C ί+1), where if, = feί+1(C<) is
a proper continuum in Q and Ui = hi+ι(mtMCUί) is open in Q. Since
?̂  Φ 4, it follows from [2] that Q — Λ< n(f(intQL)) is a bicollared t^-cell
and therefore there is a residual set R of Q such that RaKiC: U^ It
follows from Lemma 2.2 that there exists a{ e I(Q) rel bd Q such that
if, e α' φ ) c E/i. Define βi:D-+M by /9t(ίc) = Λt:ί, {oCi{x)). Then /3, is
an embedding of (D, bd Q) into (If, bd Λf) and CiCi βi:(D) dinted l{.
Therefore M = (JΓ , /3<CD)> where ^(Z?) is open and β^D) c /SVi i(#) for
all i ^ 1. Therefore M is an open monotone union of D.

The author would like to thank the referee for his helpful sug-
gestions.
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