
Pacific Journal of
Mathematics

NORMPRESERVING EXTENSIONS IN SUBSPACES OF C(X)

EGGERT BRIEM AND MURALI RAO

Vol. 42, No. 3 March 1972



PACIFIC JOURNAL OF MATHEMATICS
Vol. 42, No. 3, 1972
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OF C(X)

EGGERT BRIEM AND MURALI RAO

If B is a subspace of C(X) and F is a closed subset of X,
this note gives sufficient conditions in order that every function
in the restriction subspace B\F has an extension in B with
no increase in norm.

I n t r o d u c t i o n * Let X be a compact Hausdorff space, C{X) the

Banach algebra of all continuous complex-valued functions on X and

let B be a closed linear subspace of C(X) separating the points of X

and containing the constants . A closed subset F of X is said to

have the normpreserving extension property w r . t . B if any function

bQ in the restriction subspace B\F has an extension beB (i.e. b\F = bQ)

such t h a t II&H = ||6O|U(II 11(resp. || \\F) denotes t h e supremum norm

on X (resp. F)). The main result is the following:

Let F be a closed subset of X and suppose there is a map T
(not necessarily linear) from M(X) into M(X) satisfying the following
conditions

( i ) m - TmeB1 for all meM(X)
(ii) TX is a probability measure when X is
(iii) If SiGC and m{ e M(X) i — 1, , n and Σ?=i sιmi e k(F)L

then y^ s (Tm ) I G BL

Then F has the normpreserving extension property.

M(X) denotes the set of regular Borel measures on X, and if A
is a subset of B then AL is the set of those measures in M(X) which
annihilate A. k(F) consists of those functions in B which are iden-
tically 0 on F. Also if G is a Borel subset of X and m e M(X) then
m\G is the measure χGm where χG is the characteristic function for G.

Two conditions, either of which is known to imply that a closed
subset F of X has the normpreserving extension property are the
following:

Condition 1. For all σ e BL, σ\Fe BL.

Condition 2. F is a compact subset of the Choquet boundary ΣB

for B and for all σ e M(ΣB) n B\ σ\Fe BK

(M(ΣB) denotes the set of those σ e M(X) for which the total variation
\σ\ is maximal in Choquet's ordering for positive measures (see [1]
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Ch. I §3 and [6] p. 24)).
In Chapter 2 of this note we show that when either Condition 1 or

Condition 2 is satisfied there exists a map T with the above properties.
Actually, when Condition 1 or Condition 2 is satisfied stronger

extension properties than the normpreserving one hold. (In the case
of Condition 1 see [4] Theorem 3 and [5] Theorem 4.8 in the case of
Condition 2 see [2] Theorem 4.5 and [3] Theorem 2). But as we
show in Chapter 2 these stronger extension properties are corollaries
to theorems based on the existence of a map T described above.
Thus we are able to deal simultaneously with Conditions 1 and 2.

1* A condition for the normpreserving extension property*
Throughout this chapter F is a fixed closed subset of X and T is a map

from M(X) into M(X) satisfying
( i ) m - TmeB1 for all meM{X)
(ii) Tλ is a probability measure when X is.
(iii) If Si^C and mieM(X) and Σ?=i s i m < e k{F)L then

REMARK 1.1. It follows from conditions (i) and (iii) that if Σs^i e
B1 then Is^Ta^ \Fe B1. Also if λ is a probability measure and λ =
X\F then TX = (Tλ)\F, because Xek(F)1 hence by (iii) (Tλ)\X\FeBL.
Since B contains the constants and TX is a positive measure (Tλ) \X\F = 0.

We let SB denote the state space of B s.e. SB = {peB*: \\p\\ =
p(l) = 1}. SB is a convex set which is compact in the w*-topology
and the natural map of X into SB is a homeomorphism. We shall
frequently think of X as embedded in SB. A representing measure

for peSB is a probability measure vp on X such that p(f) = \fdvp

for all feB.

DEFINITION 1.2. For each boeB\F we define a function 60 on SB

as follows. If pe SB put

&o(3>) = ( bodTvp

where vp is any representing measure for p on X.

REMARK 1.3. The above definition is meaningful because if vf

p is
another representing measure for p on X then vp — v'p e B1 hence by
Remark 1.1 (Tvp)\F - (Tv'p)\FeBλ.

LEMMA 1.4. b0 has the following properties:
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( 1 ) 60 is an affine function
( 2 ) \bQ(p)\^\\b0\\Ffor all peSB

( 3 ) bj(p) = bo(p) if peF
( 4 ) b0 is a linear combination of upper semίcontinuous affine

functions.

( 5 ) [bQdσ = 0 for all a e B1.

Proof 1. follows from the definition of 6"0 and remark 1.1. ( 2 )
is trivial: To prove (3) observe that if x e F then by remark 1.1
Tdx = (Tdx)\F (dx is point mass at x). But Tδx is a representing
measure for x. (4) Observe that if bQeB\F and f0 = RebQ, we can define
/o in exactly the same way as we defined b0. Then / 0 is affine on SB

and /o = RebQ. First assume that fQ ^ 0. We want to show that fQ

is upper semi-continuous. For each t ^ 0 put if* = {p e SB: fo(p) ^ t}
we must show that Kt is closed. Let {pα} be a net from ϋΓ* with
limit point pQ, and va a representing measure for pa on X for each α.
Write Γt;β = ^ α + wa where ua — (Tva)\F. Let u0 be a w*-clusterpoint
for {ua} and let {uβ} be a subnet from {ua} converging to u0. Also let
w0 be a clusterpoint for {wβ}. Then τ;0 = u0 + ^;0 is a representing
measure for p0 and since

(Remark 1.1). Using this and Remark 1.1 once more we get:

fo(Po) = ί = \\u

fodτ(-^-) - \ fQdu0 ^ ί. Hence PoeiΓ t .

In general take a positive number fc such that f0 + k ^ 0. Then
/ 0 = f0 4- A: — fc is the difference of upper semi-continuous functions.
Since this holds for any foeReB\F (4) is proved.

Since 60 is a linear combination of real valued affine upper semi-
continuous functions it satisfies the barycenter formula i.e. if peSB

and vp is a representing measure for p then

j bodvp = bo(p)

(See [1] Cor. I 1.4)

Now we consider a measure a e B1 with a decomposition σ =
Σί=i U<?i into probability measures σ̂  representing points pt e Sβ for
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i = 1, 2, 3, 4. By axiom (i) the measure Tσ{ also represent p{ for i =
1, 2, 3, 4. Applying the above result together with the definition of
δ0 and axiom (iii), we obtain:

) M * = Σ
4 Γ Γ Γ 4 Ί

i = ί J F %
 )F ° L = l * J

This completes the proof of (5).

PROPOSITION 1.5. B\F is closed in C(F)

Proof. Let σeB1, and consider a boeB\F such t h a t | | ί > 0 | U ^ l

By s ta tement (5) of Lemma 1.4:

0 = \b4<? = \ bodσ + 1 &0<to

J J F JX\F

Hence

If , , Γ . , ^ „ . n

\ OQCLG = \ oQaσ ^ | | o Ί z \ ί Ί I >
1 J JP J X\F

and so \σ\F ^ | |oΊ Z X 2 , | | .
By a result of Gamelin [4] and Glicksberg [5] (see also [3, Prop.

1]) this implies that B\F is almost normpreserving, or what is equi-
valent, that B/k{F) is isometric to B\F. Hence B\F is complete in uniform
norm, and we are done.

PROPOSITION 1.6. Let b0 e B\F and let ψ be a strictly positive lower
semi-continuous function on X such that ψ(x) > | bQ(x) | for all xe X.
Then there is a function beB such that b\F = bQ and \b(x)\ < ψ{x)

for all xe X.

Proof. Apply Theorem 2.2 of [2].

THEOREM 1.7. Let F and T be as in the beginning of this chapter
and let bQeB\F with \\bQ\\F ̂  1 and let ψ be a strictly positive lower
semi-continuous function such that ψ{x) > \ bQ(x)\ for all xe X. Then
there is a function beB such that

b \ F = ί > 0 , I I 6 I I = | | & O | | F a n d \b(x)\ < ψ(x) f o r a l l x e X .

Proof. The proof is exactly the same as proof of [3] Theorem 2
after replacing the function A from [3] by δ0 and Lemma 1 of [3]
by Proposition 1.6 of this note.
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COROLLARY 1.8. F and T as before. Then F has the normpre-
serving extension property w.r.t. B.

THEOREM 1.9. Let F and T be as before let boeB\F and let ψ be
a strictly positive lower semi-continuous function such that ψ(x) r̂

I bo(x) I for all x e X. Suppose furthermore that ψ(x) ^ \ψdTXx for all
x e X\F for which bo(x) Φ 0 (λx is a representing measure for x).
Then there is a function be B such that

b\F — b0 and \b(x) | ^ ψ(x) for all x e X.

Proof. The proof is the same as the proof of [2] Theorem 4.5
replacing in the proof of Theorem 2.1 of [2] by Proposition 1.6 of this
note.

2* Relations to conditions 1 and 2* We start by showing
the equivalence of condition 1 to a condition involving k(F)1

PROPOSITION 2.1. Let F be a closed subset of X. Then the follow-
ing conditions are equivalent:

1. For all σeBL,σ\Fe B1

Γ. For all σ e k(F)L, σ \X^F e B1 .

Proof. Condition 1' trivially implies 1. Suppose Condition 1 is
satisfied and let σ 6 k(F)1. Let boe B\F and let 6 e B be any extension

of bQ. Since σek(F)1 the quantity Ybdσ is independent of the choice

of the extension b. Thus bo~^ \bdσ is a well defined linear functional

on B\F. By [4] Theorem 1, B\F is closed in C(F). It then follows
from the open mapping theorem that b0 —> bdσ is a continuous linear
functional. Thus we can find a measure σx = σ1 \F such that σ1 — σ e
B1. But then σ\xXF = (σt — σ)\X\FeBλ.

Let again F be a closed subset of X and suppose that Condition
1 is satisfied. Let T be the identity map from M(X) to M(X). By
the above proposition T satisfies requirements (i) (ii) and (iii) from
the beginning of Chapter 1. In this case if bQeB\F, bo(x) = 0 for all
x e X\F. From Theorem 1.9 we can then deduce the following well
known theorem.

THEOREM 2.2. Let F be a closed subset of X and suppose that

μ\FeBλ for all μ e B1. If boeB\F and ψ is a strictly positive lower

semi-continuous function with ψ(x) ^ |bQ(x) | for all xeF then there

is function be B such that
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b \F — b0 and \ b(x) | ^ ψ(x) for all x e X .

We now look at Condition 2. Let F be a compact subset of the
Choquet boundary ΣB and suppose Condition 2 is satisfied i.e. for all
σ e BL Π M(ΣB), σ\FeBι. We need the following lemma

LEMMA 2.3. Under the above hypotheses B\F is closed in C(F).

Proof. By [5] Theorem 3.1 we must show the existence of a
c o n s t a n t c ̂  1 s u c h t h a t \\μ - (B\F)

λ\\ £c\\ μ - BL\\ for a l l μ e M(F).
Let μ e M(F) and σ e BL. We write σ = σ \F + σ \X\F and further write
σ\x\F = ttXL — t2X2 + i(tsX3 — t3X4) where the ί/s are positive numbers
and the λ's are probability measures such that Xι and λ2 (resp. λ3

and λ4) live on disjoint subsets of X. For i = 1, « ,4 let vt be a
maximal measure such that λ* — Viβ BL. Put w = ̂  — 4̂ 2 + i{U% ~
t4v4). Then σXXF — weB1 and | |w| | ^ Σί=i * ll^ ll = Σ ί = i ^ l l ^ ll ^
2||(7|X X ί.| |. Now σ 1̂  + w e S 1 Π M(ΣB) so that σ ^ + I^I^G B 1 . Hence
||jt£ — (A^) 1 ! ! ^ 11 jtβ — (σ\F + w\F)\\^\\μ — σ\F)\\ + 2| |σ| |Z X f. | | ^ 2\\μ —
σ||. Thus we can take c = 2 and the lemma is proved.

As above let F be a compact subset of 2^ and suppose that for
all σ e M(ΣB) ΠB\σ\FeBL. We define a map T from M{X) to ikf(X)
as follows. If λ is a probability measure on X pick a maximal
measure v with λ — v e BL and put TX = v. If λ is already maximal
put TX = λ. If cr e M(X) write # = ̂ λi — ί2λ2 + i{tzXz — ί4λ4) where
the ίί's are positive numbers and where λi and λ2 (resp. λ3 and λ4)
are probability measures living on disjoint subsets of X. Then put
Tσ = t.TX, - t2TX2 + i(t3TX3 - t4TX4). The map Tfrom M{X) to M(X)
we get in this way obviously has properties (i) and (ii) from the
beginning of Chapter 1. Observe that Tσ — σ if σ — σ\F since Fa
ΣB. To see that T also has property (iii) let ΣsiσiβkiF)1. By
Lemma 2.3 B\F is closed in C(F). Just as in the proof of Proposition
2.1 we can find a measure μ = μ\F such that μ — Σsfii 6 BL. Then μ —
ΣsiTσi e B1 Π M{ΣB) so that μ — i/s^Γσ,-) |^ e 2?1, but then -Ts^Γα*)^ e
JB-1. We can then using Theorems 1.7 and 1.9 deduce the same inter-
polation theorems as in [2] and [3]. In particular we get from
Theorem 1.7:

THEOREM 2.4. Let F be a compact subset of the Choquet boundary
ΣB and suppose that for all σ e Bι Π M(ΣB), σ\F e BL. Then F has
the normpreserving extension property w.r.t. B.
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