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Let B(c) denote the Banach algebra of bounded operators
over c, the space of convergent sequences. Let Γ and Δ
denote the subalgebras of B(c) consisting, respectively, of
conservative and conservative triangular infinite matrices,
and C the Cesaro matrix of order one. In this paper we in-
vestigate Com(C) in Γ and B(c), Com(H) in Γ and B(c) for
certain Hausdorff matrices H, and some related questions.

Let B(c) denote the Banach algebra of bounded operators over
c, the space of convergent sequences. Let Γ and A denote the sub-
algebras of B(c) consisting, respectively, of conservative and con-
servative triangular infinite matrices. It is well known (see, e.g.
[3, p. 77]) that the commutant of C, the Cesaro matrix of order one,
in A is the family gίf of conservative Hausdorff matrices. The same
proof yields the result that if H is any conservative Hausdorff
triangle with distinct diagonal elements, then Com(H) = £έf in A.
In this paper we investigate Com(C) in Γ and B(c), Com(H) in Γ
and B(c) for certain Hausdorff matrices H, and some related ques-
tions.

The spaces of bounded, convergent, and absolutely convergent
sequences shall be denoted by m, c, and I. U will denote the uni-
lateral shift, and we shall use A <— B to indicate that the operators
A and B commute. An infinite matrix A is said to be triangular if
it has only zero entries above the main diagonal, and a triangle if it
is triangular and has no zeros on the main diagonal. An infinite
matrix A is conservative; i.e., A: c-~+c if and only if

II A || = sup Σ I α«* I < °° > a>k = Mm ank
n k n

exists for each k, and lim% Σ& α»* exists.
The proof [2, p. 249] that Com(C) = έ%f in A, uses the associ-

ativity of matrix multiplication. If Com(C) is to remain unchanged
in the larger algebra Γ, it is necessary that Com(C) contain only
triangular matrices. We are thus led to the following result, where
ek denotes the coordinate sequence with a 1 in the kth position and
zeros elsewhere.

THEOREM 1. Let A be a conservative triangle, B an infinite
matrix with finite norm, B«-»A. Then B is triangular if and only
if
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(1) t(A-annI) = 0

and tel imply t lies in the span of (e0, eu , en), n — 0,1, 2, .

The conditions in (1) are merely a reformulation of the fact that
B is triangular. For, if B*-*A, then we obtain the system

(2) Σ & yαyifc - Σ anibjk; n, k = 0,1, 2, . . . .
i=fc i=o

Define tn — {δwfc}fcU, w = 0,1, 2, •; i.e., tn is the w-th row of B.
With w = 0, (2) can be written in the form t°(A - aool) = 0. Thus
bok — 0 for & > 0. By induction, one can then show that bnk — 0 for
k > n, and hence -B is triangular.

To prove the converse, suppose (1) fails to hold for all n. Let
N be the smallest such n. Then (1) has a nonzero solution outside
the span of (e0, eu •• ,eN) and B is not triangular.

A matrix A is said to be of type M if it is not a right zero
divisor over I: i.e., tA — 0 and tel imply t — 0. Therefore, an equiva-
lent formulation of (1) is that (U*)n+1(A - anJ)Un+1 be of type M
for each n = 0,1, 2, .

Let ^ denote the set of conservative Hausdorff triangles with
distinct diagonal entries, Jzf the algebra of all matrices with finite
norm.

COROLLARY 1. Let He&. Then Com (if) in A = Com(H) in
Γ — Com (H) in J^f = Sίf if and only if (1) is satisfied.

The last equality follows from the fact that every Hausdorff
matrix with finite norm is automatically conservative.

A matrix A is said to be factorable if ank = cndk for each n and
k. Examples of factorable triangular matrices are C, the Hausdorff
matrices generated by {a/(n + a)} for a > 0, and the weighted mean
methods (see [2, p. 57]).

THEOREM 2. // A is a factorable triangle and B*-> A then B is
triangular.

Proof. Set n = k = 0 in (2) to get

(3) Σ M i o ^ o .
3=1

From (2) with w = 0, k = 1, we have

αO(Ai = Σ δoi^Ί = Σ bojCjdx = (djdo) Σ bojajo .
i i I
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Since a00 Φ 0, δOi = 0 from (3). By induction one can show that
bnk = 0 for k > n.

COROLLARY 2. Com(C) in Δ = Com(C) in Γ = Com(C) i

Corollary 2 follows immediately from Theorem 2 since C is
factorable.

COROLLARY 3. If Ae A, is factorable, and has exactly one zero
on the main diagonal, then B^ A implies B is triangular.

Proof. Let N be such that α ^ = 0. If N > 0, then the proof
of Theorem 2 forces bnk = 0 for k > n, n < N. For k> N, n = N
in (2) we have

Σ Kjdjk = Σ Q>Njbjk — aNNbNk = 0 ,

or
oo

- bNkck = Σ

since cZfc ^ 0 for k > N. The above equation leads to bNkck = 0 which
implies 6^ = O By induction, bnk — 0 for n > JV, k > n.

If a factorable triangular matrix A contains at least two zeros
on the main diagonal, then Com (A) in Δ need not equal Com (A) in
Γ. This fact is a special case of the following. A necessary con-
dition for any conservative triangle A to satisfy Com(A) in Δ = Com(A)
in Γ is that A have distinct diagonal entries. For, suppose there
exist integers ΐ, k, k > i >̂ 0 such that a« = afcA.. Then the matrix
(U*)i+1(A — a,iiI)Ui+1 has a zero on the main diagonal in the (k — ΐ)th
position and is therefore not of type M.

A necessary condition, therefore, for a conservative Hausdorff
matrix H to satisfy Com(iϊ) in A — Com(H) in Γ is that If have
distinct diagonal entries. The condition, however, is not sufficient.
Let A = H + λl£ where if is the Hausdorff matrix generated by
μn = (n — a)/(—a) (n + 1), α > 0, if is the compact Hausdorff matrix
generated by μ0 = 1, μΛ = 0, n > 0, and λ is any real number satis-
fying -(α + l)/α < λ < 0. We shall show that J5 = Z7*(A - αoof) C7
is not of type M. Thus Com (A) in 7"1 will contain nontriangular
matrices.

Let D by the Hausdorff matrix generated be

Vn = λ ^ ~ g) , where s = λ/δ, δ = - λ - 1 - I/a .
— e(n + 1)
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Since α00 = 1 + λ, a straightforward calculation verifies that D and
A — α00/ agree, except for terms in the first column. B is obtained
by removing the first row and first column from A — aool. Therefore
B = U*DU. By Theorem 1 of [4], D is not of type M, and a suita-
ble sequence t is t0 = 1, tn = (—ϊ)nε(e — 1) (e — n + l)/n I n > 0.
Therefore B is also not of type M.

For Com(jff) in Δ to equal Com (if) in Γ it is not necessary that)
the Hausdorff matrix H be a triangle. Set H — H — μol, when H
is any conservative Hausdorff matrix such that Gom(H) in Δ ~
Com(iϊ) in Γ.

We shall now examine Com(C) in B(c).
Let e denote the sequence of all ones. If TeB(e) then one can

define continuous linear functionals χ and χ{ by χ(T) — lim Te — Σ *
lim (Tek) and χ,(Γ) - (Te), - Σ*(Γe*)<, i = 1, 2, . (See, e.g., [5,
p. 241].) It is known [1, p. 8] that any TeB(c) has the representa-
tion

( 4 ) Tx — v lim x f o r e a c h xec ,

where B is the matrix representation of the restriction of T to c0

and v is the bounded sequence v = {χ<(Γ)}.
The second adjoint of T has the matrix representation

(χ{T) a, α2 ••«

(5) T**--

\ /

where the α/s occur in the representation of

lim oΓec* as (lim T) (x) = lim (Tx) = χ(Γ) lim x +

See, e.g., [6, p. 357].
For the matrix C, each χ^C) = 0, [5, p. 241] and Z(C) = 1, so

that

( 6 ) C** =

/ I 0 0 ••• \

0 1 0 •••

o i i •••

Since C *-* T if and only if C**<->Γ**, we may use (5) and (6)
to obtain (C**T**)m = (Γ**C**)Oo = χ(Γ), and, for n > 0,

(C**T**)KO = i Σ Xt(T) = = (T**C**),,0 .
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The system (7) yields χn(T) = χ^Γ), n = 1, 2, 3, . Thus v =
χ1(T)e. Substituting in (4) with χec0 we see that c must commute
with B. Since B is a matrix and 5 e J ^ we may use Corollary 2 to
obtain the following result

THEOREM 3. Let TeB(c). Then T<-+C if and only if T has
the form (4) with v = χx{T)e and Be£έf.

Note added in proof. The hypotheses of Theorem 1 can be
modified without changing the details of the proof. For example,
if A and B are any two bounded operators over lp, p > 1, then the
conclusion of Theorem 1 holds. In particular, since CeB(lp) for
p > 1, we get as a corollary that Com(C) in B(lp) consists only of
those Hausdorff matrices that belong to B(lp). Another description
of Com(C) in B(l2) appears in A. Shields and L. Wallen [Indiana
Univ. Math. J., 20 (1971) 777-788].
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