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In this paper the authors first prove a theorem on bilateral
generating1 relations for a certain sequence of functions. It
is then shown how the main result can be applied to derive
a large variety of bilateral generating functions for the
Bessel, Jacobi, Her mite, Laguerre and ultraspherical polyno-
mials, as well as for their various generalizations. Some
recent results given by W. A. Al-Salam [1], S. K. Chatterjea
[2], M. K. Das [3], S. Saran [6] and the present authors [9]
are thus observed to follow fairly easily as special cases of
the theorem proved in this paper.

Let the sequence of functions {Sn(x) \n — 0,1, 2, •} be generated
by

( l ) Σ Au,jsm+n(*)r =
°

where m is a nonnegative integer, the Am>n are arbitrary constants,
and /, g, h are arbitrary functions of x and t.

In the present paper we first prove the following

THEOREM. For the Sn{x) generated by (1), let

(2) F[x,t] - Σ « A ( Φ W ,
Λ:=0

where the an Φ 0 are arbitrary constants.
Then

f(x,t)F[h(x,t),yt/g(x,t)]

= Σ Sn(x)σn(y)r >

where on{y) is a polynomial of degree n in y defined by

(4) σn(y) 4 « Λ ^ f c .

We also show how this theorem can be applied to derive a large
number of bilateral generating functions for those classical polynomial
systems that satisfy a relationship like (1). In particular, we discuss
the cases of the Bessel, Jacobi, Hermite, Laguerre and ultraspherical
polynomials.
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2* Proof of the theorem* If we substitute for the coefficients
σn(y) from (4) on the right-hand side of (3), we shall get

Σ Sn(ΦΛv)tn = Σ Sn(x)tn±akAk>n_ky
k

= Σ Mvt)" Σ Ak,nSn+k(χ)t«

= /(*, t) Σ α*S*(Λ(0, t)){yt/g(x, t)}k ,

by using (1), and the theorem follows on interpreting this last ex-
pression by means of (2).

3* Applications* As a first instance of the applications of our
theorem, we recall the following known generating function for the
ultraspherical polynomials [5, p. 280]:

n

where p = (1 - 2xt + f)~1/2

Formula (5) is of type (1) with / = ρ~2λ, g = p, h = (x — t)/p, and

Am,n = ( m "Γ ^ ) , and therefore, our theorem, when applied to the
\ n /

ultraspherical polynomials, gives us

COROLLARY 1. If

(6) F[x, t] = Σ aΛPl(x)r ,
0

( 7 )

where, as well as in what follows,

Corollary 1 was proved recently by Chatterjea [2] Note that
in his long and involved derivation of Corollary 1, Chatter jea made
use of the following formula of Tricomi:

nl dxndxn

Evidently, in view of the known generating function (5), formula (7)
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would follow from (6) and (8) in a straightforward manner, without
using (9)

Next we consider the Laguerre polynomials which satisfy the
relationship [5, p 211]

(10)

= x/(l - t), and Am,n = ( m + n \ Thus we arrive at the following

which is of type (1) with / = (1 - ίJ-'-'expf-aί/ίl - t)}9 g = (1 - ί),

A = x/(l - t), and Am,n = ( m \

special case of our theorem:

COROLLARY 2. 1/

(11) F[x,

<i- tJ Li - ί ' i - ί
(12)

= ±Li»(x)bn(y)tn.

Corollary 2 provides us with the corrected version of a result
proved earlier by Al-Salam [1, p. 134].

On the other hand, if we consider the formula (see, for instance,
[4], p 58)

~ (m + n
2-ι

= (1 + *)Λ—e—*iίi-~}(a?(l + ί)) ,

we shall obtain the following particular case of our theorem:

COROLLARY 3. If

(14) F[x,t] = ±anLrn)(x)tn,

then

(1 + tye-'F[x(l + ί), yt/(l + ί)]
(15)

= Σ L«->(χ)bn(y)r
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For the simple Bessel polynomials defined by [5, p. 2931

(16) yn(x) = 2F0\-n, n + 1 - - \ x\ ,

we have [3, p. 409]

Σ ».+.(*)£
»=o nl

(17)
x

V ( l - 2αί)

and on comparing (17) with (1) we are led to the following result of
Das [3, p. 410]:

COROLLARY 4, If

(18) F[x9t] = ±aΛyu(x)£i9

then

I ^ 1 Γ yt ΊΊ
]/(l-2xt) \/(l-2xty

Similarly, if we compare (1) with the known formula [5, p. 197]

(20) Σ #.+.(*) -ζ = exp (2xt - ί2)iϊw(α; - ί) ,
0 nl

where Hn(x) denotes the Hermite polynomial of degree n in x, we
shall obtain a class of bilateral generating functions for these polyno-
mials, given by

COROLLARY 5. If

(21) F[x,t] = ±2*HΛ(x)r,

n=o nl

then

exp (2xt - F)F[x - t, yt]
(22) - fn

For the Jacobi polynomials we first observe that the special case
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y — 1 of the bilinear generating relation (21), p 465 of Srivastava [8]
leads us to the elegant formula

~ /m + n\

0 \ fl j

( 1 Λct~m( 1 \

(23) - j l + -|. (α? + l ) ί | | l + i (a? - l ) ί |

X

Note that the last formula (23) is a generalization of the well-known
result

(24) Σ P*~n'β-n)(x)tn = {l + -ί (a? + l)ίΓ j l + — (» - 1)*}',
n=0 1 2 J I 2 J

which follows at once from (23) when m = 0.
A comparison of (23) with (1) yields

COROLLARY 6. / /

(25) F[x, t] =

(26) x

0

Next we set v = 0 in the bilinear generating relation (18), p. 464
of Srivastava [8] On replacing α, 7 and λ b y l + α + /S, 1 + α and
1 + a + m respectively, it is easy to see that

(27)

where, for convenience,

(28) X = \x - λ (x + i ) ί j | i - i.(a? + l)ίj"x .
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We thus obtain

COROLLARY 7. If

(29) F[x, ί] = Σ anP«>^(x)t«,

then

(1 - t)>{l - - | φ + l)ty~^F[X, yt/(l - t)]

(3°)
= Σ Pia'β~n)(x)bMtn ,

where X is given by (28).

Lastly, we recall the following generating relation [9, p. 79, eq.
(3.6)]

Σ ( m + "W.(*, r, p, α)F

(31) = (1 - at)~m~λla exp [pxr{l - (1 - at)~rla}]

x G^(x(l - αί)-1 / α, r, p, a) ,

where the Gn](x, r, p, a) are polynomials in xr introduced by us [9]
in an attempt to provide an elegant unification of the various recent
extensions of the classical Hermite and Laguerre polynomials given,
for instance, by Gould and Hopper [4] and others referred to in our
earlier paper [9]. A comparison of (31) with (1) would yield the
following result:

COROLLARY 8 If

(32) F[x, t] = Σ a*Glλ)(x, r, p, a)tn ,

then

1 - at)~xla exp ]par[l - (1 - at)-ri"}]F[xl(l - at)ίla, yt/(l - at)}
(33)

= Σ <?«»(*, r, p, a)bn{y)tn

71 = 0

Corollary 8, which incorporates Corollaries 2 and 5 as its particular
cases, was proved earlier by us [9, p. 82, §6] by using an operational
technique.

Now we recall the sequence of functions {fn(x) \n — 0,1, 2, •••}
defined by Rodrigues' formula
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(34) ;

where φ(x) and Ψ(x) are independent of n. By using Taylor's theorem
it is readily seen that the fn(x) are generated by

(35)
»=*o nlμ(

m = 0,1, 2,

which evidently is of type (1) with

(36) Am,Am,κ= / = - * & - . g = l,h = x+t.
n\μ(m + n) ψ(x + t)

Thus the sequence {fn{x)}, considered recently by Saran [6], is merely
a proper subset of {Sn{x)} defined by the generating relation (1).

Consequently, as a very special case of our theorem we can obtain
the following corollary which happens to be the main result of Saran's
paper [6] :

COROLLARY 9. For the fn{x) defined by (34), let

(37) F[x, t] = Σ α»Λ(α?)ί ,
n=0

where the an Φ 0 are arbitrary constants.

Then

( 3 8 ) Φ(X)F[,-tyt] = ± i z J ) l Λ ( a ; ) C κ ( y ) ,
^(α; — ί) =̂0 n\μ(n)

where

(39) c%(τ/) - Σ (-n)kμ(k)aky
k .

By comparing (34) with Tricomi's formula (9) it would seem
obvious that Corollary 1, involving ultraspherical polynomials, is
contained in Corollary 9 However, it may be pointed out that the
scope of Corollary 9 is very limited, since Rodrigues formulas of most
of the classical polynomials require that the function Ψ(x), involved
in (34), depend upon both n and x. Besides, the factor μ(n) on the
right-hand side of (34) is superfluous. Indeed, in equations (34), (35), (37),
(38) and (39) one can replace, without any loss of generality, fn(x) by
μ{n)fn{x) and an by ajμ(ri), n = 0,1, 2, .

In conclusion, we remark that by assigning special values to the
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arbitrary coefficients an it is easy to obtain, from Corollaries 1 to 9,
a large variety of bilateral generating functions for the Bessel, Jacobi,
Hermite, Laguerre and ultraspherical polynomials, and their generali-
zations studied earlier. For example, Corollary 2 would lead us fairly
easily to a number of extensions of the well-known Hille-Hardy
formula given, for instance, by Srivastava [7] and Weisner [10]. The
details involved are quite straightforward and are, therefore, omitted.
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