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MARILYN BREEN

In an extension of the classical Radon theorem, Hare and
Kenelly have introduced the concept of a primitive partition,
allowing a reduction to minimal subsets which still possess
the necessary intersection property.

Here it is proved that primitive partitions in the vertex
set P of a polytope reveal the subsets of P which give rise
to faces of conv P, thus determining the combinatorial type
of the polytope. Furthermore, the polytepe may be recon-
structed from various subcollections of the primitive partitions.

2. Preliminary results. Throughout, | P| denotes the cardinality
of P. If Pis a set of points in R%, A U B is a Radon partition for P
if P=AUB AnNnB= @, and conv A conv B = @. Eachof A and
B is called half a partition for P and each element of A is said to
oppose B in the partition. The Radon theorem says that for P R®
having at least d + 2 points, there exists a Radon partition for P.
When P is in general position in R? and P has exactly d + 2 elements,
the partition is unique.

In [2], Hare and Kenelly introduce the concept of a primitive
partition: For PSS R* AU B is a Radon partition wn P iff A U B is
a Radon partition for a subset S of P. We say that the Radon parti-
tion A U B extends the Radon partition 4’ U B’ iff A’ 4 and B'< B.
Finally, A U B is called a primitive partitton in P, or simply a primi-
tive, provided it is a Radon partition in P and A U B extends the
Radon partition A’UB iff A’ = A and B’ = B. It is proved that
each Radon partition extends a primitive partition having cardinality
at most d + 2.

Theorem 1 follows immediately from the results of Hare and Kenelly.

THEOREM 1. Let P denote a set of d + 2 points in R* and let
AUB be a primitive for P. Then |A|+ Bl =d+ 2 iff P is in
general position.

CorROLLARY 1. If AU B is a primitive for P, P< R?, then AU B
is in general position in R* for some k< d, and |A|+ |B| =k + 2
for this k.

THEOREM 2. If P=R' and AU B 1is a primitive for P, then
dim (conv AN conv B) = 0.
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Proof. By the corollary to Theorem 1, A U B is in general posi-
tion in R* for some k < d.

Recall that dim (aff 4 N aff B) = dimaff A4 + dim aff B — dim
(aff A + aff B). Letting j = |A] and [ = |B|, for points in general
position, this is equalto j — 1)+ (@ ~1) - k=7+1—k — 2. Also,
for &k + 2 points in general position, the partition is unique, and so
J+1=1%k+ 2, and the above is zero.

3. Reconstructing polytopes. Our goal is to establish the rela-
tionship between faces of conv P and primitive partitions for P.
Throughout, P denotes the vertex set of a convex polytope in R?,
and [P| = #n.

THEOREM 3. If SESP and conv S is a face of conv P, thewn S
1s not half a Radon partition for P.

Proof. Assume conv S is a proper face, for otherwise the result
is trivial. Let H be a supporting hyperplane to conv P for which
Hnconv P =convS. Assume PZcl(H,), the closure of the open
half-space H,. Then P~ S& H,, and conv (P~ S)Nconv S = .

The following definitions are useful in obtaining a converse to
Theorem 3.

DEFINITION. Let S P. Then we say conv S cuts conv P (or
S cuts conv P) iff one of the following is true: Either (1) dim aff
S=d or(2) dimaff S<d -1 and any hyperplane containing S cuts
conv P.

DeriNiTION. If SE P and conv S cuts conv P, then a subset T
of S is said to be a minimal cutting subset of S for P iff conv T
cuts conv P and no subset of S of cardinality less than | T'| cuts conv P.

THEOREM 4. If |Pl=n=d + 1, and S& P, then the following
is true: conv S s a face for conv P if for ASS, A is half a primi-
tive for P only in case all the elements opposing A in the primitive
are also in S.

Proof. If conv S is a face for conv P, then by Theorem 3, S
cannot be half a Radon partition for P. Thus if A< S and A is half
a primitive for P, some of the elements opposing A must lie in S.
We must show that all the elements opposing A lie in S:

Suppose not, and let A U B be a primitive for P with AS S, BN
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S+ @, and BN(P~S)=* . Since AU B is a primitive, conv 4 N
conv (BN S) is empty. Thus any point in conv 4 N conv B cannot lie
in conv S. Yet AL S, so conv A< conv S, and we have a contradic-
tion. Our supposition is false, and all members of B lie in S.

Conversely, suppose S& P has the property that for ASS, A is
half a primitive only in case all the elements opposing A in the primi-
tive come from S.

Let e P~ S+ @.

First we assert that v ¢ aff S. If xc aff S, then reduce S to a
(k + 1)-subset T<S such that aff T = aff S, where k = dimaft S.
Then conv 7T is necessarily a simplex. Since T U {#} is a (k + 2)-subset
of R* = aff (T'U {z}), there is a Radon partition for 7'U {x}. Let 4, U B,
be a primitive for T'U {¢}. Necessarily « appears, since T is a simplex.
Assume xz ¢ B,. Then A4, is a subset of T (and thus a subset of S)
which is half a primitive for P. Yet x opposes A, and 2z is not in S,
contradicting our hypothesis. Thus we have proved that for z in
P~ S,z¢ aff S. Also, this implies that S = Pnaff S and dim aff
S=d-—-1.

We assert that S lies in a proper face of conv P. Assume that
S does not lie in a proper face of conv P to reach a contradiction.
Let xe P~ S. If S does not lie in a face of conv P, then conv S
necessarily cuts conv P. Choose S’< S to be a minimal cutting sub-
set of S for P. Let p be in conv S' and interior to conv P. We
will show that a subset A of S’ is half a primitive partition A U B
for P, where BZ S:

Consider the ray from x through p. Since p is interior to conv
P, this ray intersects bdry conv P at a point v beyond p. Clearly
ve aff S, or else e aff (SU {v}) = aff S, a contradiction since z ¢ aff S.
Now v lies in a facet F of conv P. Choose exactly d vertices T in
F such that ve conv T and T determines a simplex.

Let Q = TU S U{x}. Consider the polytope conv Q. We will
show that S’ is half a partition for Q:

By minimality of |S’|, it follows that aff ' N conv P = conv S'.
For otherwise, conv S’ is not in a face for the polytope aff S’ N conv P
(since the dimensions are the same), and some proper subset of S’
must cut aff S’ N conv P. Thus a proper subset of S’ cuts our original
polytope conv P, contradicting minimality of S’. This implies also
that aff S’ N conv Q@ = conv S'.

To show that conv S’ N conv (Q ~ ) # ¢, it suffices to show
that aff §' N conv (@ ~ S') = @. Assume that the intersection is empty
to reach a contradiction. If the intersection is empty, then strictly
separate aff S’ from conv (Q ~ S’) by a hyperplane H. Since H N aff
S" = @, H must be parallel to aff S'. Let J be a hyperplane parallel
to H and containing aff S’. Clearly J N conv(Q ~ S") = @, so J is a
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supporting hyperplane for conv @ such that J N conv @ = conv S, and
conv &’ is a face for conv Q. However, this is a contradiction, for
the segment [z, v] intersects conv .S’ at p. Our assumption is false,
conv S’ N conv (@ ~ 8’) is not empty, and S’ is half a partition for Q.

Let AU B be a primitive inside S’ U (@ ~ §'). We claim that »
necessarily appears in B, for otherwise we have B< T, but conv T
is a face for conv @ so by the first part of this theorem, A< T also.
But we chose T to be a simplex, so there is no primitive for T; we
have a contradiction, and = must appear.

Recall that x¢ S. Thus BZS since x€ B. At last we have con-
tradicted our hypothesis, for A U B is a primitive such that A= S
and BZS. Our assumption that S does not lie in a face of conv P
is false, and S does indeed lie in a face.

To complete the proof, it remains to show that conv S is a full
face of conv P. Select a face F' of conv P having minimal dimension
for which S F. Clearly S cannot lie in a proper face of the polytope
F. Thus, FcaffS, so PNFEPnaff S= 8, and vert F = S, fini-
shing the proof.

COROLLARY 1. For a simplicial polytope conv P and S E P, conv
S is a face for conv P iff no subset of S is half a primitive for P.

The proof to Theorem 4 required a construction which we will
need again, and for this reason we list it as a corollary:

COROLLARY 2. Let SSP,xc P~ af S+ @. If S does not lie
wn a face of conv P, let S’ be a minimal cutting subset of S for P.
Then aff S'N conv P = conv S’. Moreover, S’ is half a Radon parti-
tion for a subset @ of P where x€ @, and Q may be chosen so that
@~ IS U{x}] s a simplex and lies in a facet of conv P. For any
primitive AU B inside ' U [Q ~ S'] with AS S, ze B.

COROLLARY 3. If P is in general position, S half a Radon parti-
tion for P,xc P~ S, and S a minimal cutting subset of S for P,
thew S' is half a primitive for P, and this primitive may be selected
so that x still appears.

DEFINITION. We say that it is possible to reconstruct the polytope
conv P iff for each face F' of conv P we can determine the unique
subset S of P such that conv S = F.

The author wishes to thank the referee for the following obser-
vation: Let p determine the collection of all sets S < P for which conv
S is a face for conv P. Since p is a complete lattice under inclusion,
and each maximal chain in g is of length d + 2, beginning with &
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and ending with P, we can determine the dimension of each face
conv S from its position in any maximal chain. The lattice g also
determines all inclusion relations between faces and hence gives the
combinatorial type of conv P.

Therefore, when the definition of reconstruct is satisfied, the
combinatorial type of the polytope is revealed.

DErFINITION. Let P, P, be vertex sets for two polytopes conv P,
conv P,, and let R,, R,, denote the set of primitive partitions for P, P,
respectively. We say that R, is isomorphic to R, iff there is a one-
to-one map + of P, onto P, having the following property: AU B is
2 primitive for P, iff v(A) U {(B) is a primitive for P,.

The following corollary is a direct consequence of Theorem 4.

CoROLLARY 4. Let P,, P, be vertex sets for polytopes, R,, R, their
respective primitive partitions. If R, is isomorphic to R,, then conv
P, is combinatorially equivalent to conv P,., Thus it is possible to
determine the combinatorial type of a peolytope from the Radon parti-
tions of its vertex set.

The following example shows that the converse is false. That
is, two polytopes may be combinatorially equivalent although their
vertex sets have non-isomorphic Radon partitions.

ExampPLE 1. Let {1, 2, 3, 4} be the vertex set for a square which
is base for two distinct bipyramids conv P, and conv P,. Let {5, 6}
be the remaining vertices for conv P,, and let the segment [5, 6] pass
through the center of the square. The primitives for P, are

{1,3u{2,4},
{1,3y U {5, 6},
{2y 4} U {5y 6} .
Now let {7, 8} be the remaining vertices for conv P,, where the

segment [7, 8] intersects the base within [2, 4] N rel int conv {1, 2, 3}.
The primitives for P, are

{1,31u{2, 4
{1,2,3}U{7,8}
{2,40(7,8}.
The primitives for P,, P, are not isomorphic, yet the map « from
P, onto P, defined as the identity on {1, 2, 3, 4}, v+(5) = T, 4(6) = 8, sets
up a one-to-one correspondence between faces and is inclusion pre-
serving.
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Even for points in general position, combinatorial equivalence of
conv P, conv P, does not imply that R, is isomorphic to R,. However,
in case we have exactly d + 2 points in general position in R?, the
implication does hold.

COROLLARY 5. For ¢ =1, 2, let conv P; be a simplicial polytope
having d + 2 vertices, and let R; be the unique Radon partition for
P,. Then combinatorial equivalence of conv P,, conv P, implies that R,
18 1somorphic to R,.

It is interesting that Corollary 5 may be used to obtain the fol-
lowing familiar result.

COROLLARY 6. Consider the collection & of all sets P in R* con-
sisting of d + 2 points in general position with no point of P interior
to conv P. Then there are exactly [d/2] possible Radon partitions for
P in & and each one determines a distinct polytope conv P. There-
fore, there are exactly [d/2] simplicial polytopes having d + 2 vertices.

4. Reductions. Of major interest is the problem of obtaining
a minimal subcollection of primitive partitions for P which will deter-
mine the combinatorial type of conv P. The following theorems are
concerned with one kind of reduction.

For x¢ P, let &, denote the subcollection of primitive partitions
for P defined in the following manner: A U B belongs to &, iff either
(1) « appears in AUB or (2) |Al+ |B|=d+ 1.

Theorems 5 and 6 show that conv P may be reconstructed from & ..

THEOREM 5. For x€ P and SES P ~ {z}, conv S is not a face for
conv P iff there is some member A J B of &, such that A=S, BZS.

Proof. By Theorem 4, if a subset A of S is half a primitive
AU B for P, and BZ S, conv S cannot be a face for conv P.

Conversely, suppose that « is a specified point in P,S&E P ~ {x},
and conv S is not a face for conv P. We consider cases:

Case 1. If S lies in a facet F of conv P, then by a fundamental
property of polytopes, conv S cannot be a face for F. TUsing Theorem
4, since conv S is not a face for the polytope F, a subset 4 of S must
be half a primitive AU B for vert F, with BZS. Moreover, since
Fis (d — 1)-dimensional, | 4| + | B| £d + 1, and Condition (2) is satisfied.

Case 2. If S does not lie in a facet and if x¢ aff S, then as in
the proof of Theorem 4, let dim aff S=% <d and reduce S to a
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(k + 1)-subset T of S such that aff T = aff S. Conv T is necessarily
a simplex. Since T U {z}is a (k + 2)-subset of R* = aff (T'U {«}), there
is a Radon partition for T U {z}. Let A U B be a primitive correspond-
ing to this partition. Necessarily x appears since conv 7T is a simplex.
Assume xc¢ B. Then A= TZ S, and Condition (1) is satisfied.

Case 3. If S does not lie in a facet and if x ¢ aff S, then we
may call on the technical corollary following Theorem 4 to obtain a
subset S’ of S and a subset @ of P having the property that S’ U
(@ ~ §') is a Radon partition for Q. Moreover, if AU B is a primi-
tive inside S’ U (Q ~ §’), then z appears in B. Thus AS S, BZS,
and « opposes a subset of S in this primitive. We have satisfied
Condition (1) and completed the proof of the theorem.

For z in P, Theorem 5 allows us to recognize all faces of conv P
not containing 2 by listing the primitives in which « appears plus the
primitives having < d + 1 points. Our next problem, of course, is
recognizing the faces containing %, and we would like to be able to
do this from the same collection of primitives. Happily, the next
theorem shows that this is possible.

THEOREM 6. For T& P and z in T, conv T is mot a face for
conv P off there is some member AU B of &, such that AT, BZT.

Proof. Certainly if there is a primitive A U B with A< T and
BZ T, then by Theorem 4, conv T cannot be a face for conv P.

Conversely, assume that conv 7T is not a face for conv P and x e T.
Again, we must consider cases:

Case 1. Now if T lies in a facet F of conv P, repeating the
argument in Case 1 of Theorem 5 shows that Condition (2) is satisfied.

In the remaining cases, assume that T does not lie in a facet for
convP. Let S= T~ {z}:

Case 2. If S is contained in a facet F but conv S is not a face
for conv P, then by repeating the argument in Case 1 of Theorem 5,
Condition (2) holds.

Case 3. Suppose S is contained in a facet and conv S is a face
for conv P. Recall T = SU{«} is not a face, for we are assuming
that T does not lie in a facet. By Theorem 4, there is a primitive A U B
for P with ASSU{z} =T and BZS U {z}. Moreover, since conv S
is a face for conv P, a subset C of S is half a primitive CU D for
P iff D= S. This implies that  must appear in A4, for otherwise
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we would have AS S and BZ S, a contradition. Thus AS T, BZ T,
and x appears, satisfying Condition (1).

Case 4. If conv S is not in a facet for conv P and « is in aff S,
then unfortunately it is necessary to consider subcases:

(42) If dim aff S = d, then since T = P, there is some yec P~ T
and necessarily ¥ is in aff S. Let 7" be the vertex set for a d-dimen-
sional simplex, xe T'<=T = SU {x}. Then T'U{y} is a set having
d -+ 2 points in R?, so there is a primitive A U B for T’ U {y}. Certainly
y appears (since T’ is a simplex). Assume ye B. Then AT =T,
and BZT. Now if |A| + |B| = d + 2, then x appears and Condition
(1) holds. If |A|+ |B] =d + 1, then Condition (2) holds.

(4b) Similarly, if dim aff S =% < d and if there is some y in
(PnaffS) ~ T, let T’ be the vertex set for a k-dimensional simplex,
zeT'S T, and repeat the above proof.

(4c) If dimaff S=k < dandif (PNaffS)~ T = &, then select
a point ye P~ aff S. (This is possible since T # P.) Again, let T”
be the vertex set for a k-dimensional simplex, z in T' & 7.

Now we want to use our old friend, the corollary following The-
orem 4, but first we must make a few adjustments.

Let conv R be a new polytope, where R=P~ @f T~ T"). We
have thrown away the vertices in aff T except for those in T’. Notice
that & remains. Also y remains since y ¢ aff S = aff 7.

We assert that T’ does not lie in a face of conv B: If T” is in
a face, then let the hyperplane H support conv R with 7S H. Then
aff " H. But aff T" = aff T, so aff T< H, and H supports conv
P=conv(RUT) with TS H. But T does not lie in a face of conv
P by hypothesis. We have a contradiction, and 7’ does not lie in a
face of conv R.

We are ready for the corollary to Theorem 4. 7T’ doess not lie
in a face of conv R, and y is in B ~ aff T7’. Thus there is a subset
T" of T’ which appears as half a Radon partition for a subset @ of
R, where y<@Q. Moreover, @ may be chosen so that @ ~ (7" U {y})
is a simplex and lies in a facet of conv R. For any primitive AU B
ingide 7" U@ ~ T") with A= T”, ye B.

Now if xisin T, and if z€ A, then we have AS T, BZ T (since
ye B), and x appears in the primitive, satisfying Condition (1). If 2
is in T but « is not in A, then by our minimality condition of 71,
no proper subset of T may cut conv R, so conv A cannot cut conv
R, and likewise, conv A cannot cut conv Q. Then conv A must lie in
some face of conv @, and certainly conv A N conv B must lie in the
boundary of conv @. By Theorem 1, Corollary 1, necessarily |A| +
|B| =d + 1, satisfying Condition (2).

We still need to examine what happens in case x does not appear



DETERMINING A POLYTOPE BY RADON PARTITIONS 35

in T”. Again by the corollary to Theorem 4, aff 7" N conv R = conv T'".
Now conv T’ is a simplex, T" = 1T’, and ¢ T’. If x is not in T,
then x ¢ conv T, and so z ¢ aff T”. By the very choice of T”, conv T
cuts conv R, and so conv T does not lie in a face of conv R. Also
xc R~ aff T, so there is a subset 7% of T” which is half a
partition for a subset of R (by the corollary). Let CU D be a cor-
responding primitive. Then CS T® and zeD. Not all of D can lie
in 7', for if it did, we would have a primitive C U D in the vertex
set of the simplex T', and this is ridiculous. Thus, DZ T’, but D E R,
and the only points of 7T in R are those in 77. Thus, DZT. To
review, C&T,DZ T, and 2 appears in D, satisfying Condition (1),
and completing Case 4ec.

Case 5. If S is not in a face and @ is not in aff S, then as in
Case 4c, reduce conv P to a new polytope conv R, where R= P ~
(aff S ~ S"), and where S’ is the vertex set for a k-dimensional simplex
with £ = dimaff S. By our earlier argument, S’ does not lie in a
face of conv R. Also, xc R and z¢ aff S’. Then by the corollary to
Theorem 4, a subset S” of S’ appears as half a partition for a subset
@ of R. lLet AU B be a corresponding primitive. Then by the corol-
lary, A= S” and e B. Moreover, BZ T = S U {a}, for if B& T, we
would have AS S, B=TNQ=S U{x}. But S’ determines a simplex
and z¢ aff &', so S’ U {z} determines a simplex and has no primitives.
Thus AST,BZ T, and x appears in B, satisfying Condition (1) and
finishing Case 5.

This completes the proof of Theorem 6.

At last we have obtained a reduction in the number of partitions
necessary to reconstruct an arbitrary polytope. Combining Thecrems
5 and 6, we have the following corollaries:

COROLLARY 1. The combinatorial type of conv P 1is determined
by &, for any xwe P.

COROLLARY 2. For P in general position and x e P, the combin-
atorial type of conv P 1s determined by the primitive partitions for P
which contaitn x.

5. Locating points. Another approach to the problem of obtain-
ing a minimal collection of primitive partitions which determine conv P
leads to the method of reconstructing a polytope by locating vertices,
one at a time.

DEFINITION. Let P U {x} be the vertex set for a polytope in R’
and assume that we have reconstructed conv P. We say that we



36 MARILYN BREEN

locate x relative to conv P iff we are able to reconstruct conv (P U {z}).

DEFINITION. Let P be the vertex set for a polytope in R! and
let * be a point not in P. For F a facet of conv P, we say o is
beyond F iff © is in the open halfspace of H, not containing P (where
H, is the hyperplane determined by F'). For E a face of conv P, we
say « is beyond E iff x is beyond F for every facet F containing E.

To reconstruct conv P by locating vertices, one at a time, first
select a (d + 1)-subset S of P for which there is no primitive. (Clearly
S determines a simplex.) The following theorem describes the pro-
cedure for locating additional points.

THEOREM 7. Let PU {x} be the wertex set for a polytope, and
assume that we have reconstructed conv P. Then to reconstruct conv
(P U {x}), it s sufficient to comsider the primitives AU B for PU {x}
such that A lies in a face of conv P, x € B, and x opposes no proper
subset of A inm a primitive.

Proof. TUsing Theorem 5.2.1 of Grinbaum [1], we see that to
establish the faces for conv (P U {z}), it suffices to examine the faces
for conv P.

For S P and conv S a face for conv P, S determines a face for
conv (P U {z}) iff no subset A of S appears as half a primitive A U B
with # in B. Also, S U {x} determines a face for conv (P U {x}) iff for
every primitive AU B with A< S and « in B, then B= S U {z}.

However, if there is one primitive 4, U B, with A, =S, z € B,, and
B,= S U {z}, then by general position of the points involved, x e aff S,
x lies in every face containing S, and S U {#} determines a face for
conv (P U {x}). Therefore, if one primitive with 4,=S and z in B,
satisfies B,&S U {x}, then every primitive with ASS and z in B
satisfies BS S U {x}, and it is easy to determine all faces of conv (P U
{x}) from those listed.

As the following example illustrates, the construction in Theorem
7 allows us to locate x relative to conv P but does not allow us to
locate x relative to conv @, where Q& P.

ExampLE 2. Let {1, 2} U {8, 4, 5} be the primitive partition for the
set P={1,2,3,4,5} in R% and let 6 lie beyond the face conv {1, 4, 5}.
This does not determine the location of 6 relative conv Q, @ = {1, 2, 3, 4},
for 6 may or may not lie beyond the edge [1, 2] of conv Q.

REMARK. It is easy to find examples for which the subcollection
of primitive partitions described in Theorem 7 is minimal. Moreover,
at each stage of the construction at least one primitive is required
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to locate an additional vertex. Thus at least n — (d + 1) primitive
partitions are needed to reconstruct conv P. This lower bound is
always attained for simplicial polytopes having d + 2 vertices.
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