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Let G be a compact topological group. In this paper, it
is shown that the derived algebra D, of L,(G)(for 1 <p <)
is contained in the ideal S, of functions in L,(G) with
unconditionally convergent Fourier series. It is also noted
that this inclusion can be strict if G is nonabelian. Finally,
it is shown that the derived algebra of the center of L,(G)
is always equal to the center of S,, generalizing a known
result that D, =S, when G is compact and abelian.

In general, let (4,{ |l.) be a Banach algebra which is an es-
sential left Banach L,(G)-module in L,(G) under convolution. For
convenience and with no loss of generality it is assumed that

Nl =17k for every feA.

This paper investigates the relationship between the derived
algebra of A and the ideal in A4 of functions with unconditionally
convergent Fourier series. Bachelis has shown in [1] that in case G
is abelian and A is equal to L,(G), for 1 < p < <o, the two algebras
coincide.

Bachelis’ result is generalized to the derived algebra of the center
of L,(G) and it is shown that for the compact group .&4~ and 4 =
L,(54~) with p = 2, the derived algebra is strictly contained in the
ideal of functions in L,(.54") whose Fourier series converge un-
conditionally.

Notation throughout will be as in [4]. 2 will denote the dual
object of G, the set of equivalence classes of continuous irreducible
unitary representations of G. For each oce¢X, H, will denote the
representation space of ¢ (of finite dimension d,) and & () will denote
the product space [[,.:B(H,). Important subspaces of & (Y) referred
to in the text include:

(i) &(2)={E={E}) || E,|l,, is small off finite sets}

(ii) &) ={E={E} | E|, = Seerd, || B, |ls, < e}

(i) &) ={E={E}: | Eli = Xoexd, || B, |[}, < o=}

For feL,(G), f has Fourier series f~ >,.:d,tr(4,U") where
A,eB(H,), U“ eg. The Fourier transform f of f has the property
that F(0) = A* and hence:

11l = sup [ A, ., -

The author wishes to thank Professor Kenneth A. Ross for
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many helpful conversations on these matters, Professor Gregory
Bachelis for suggesting a shorter proof of (3.8), and the referee.

This paper is based on results in the author’s doctoral disserta-
tion at the University of Oregon, June, 1971.

1. The derived algebra. We begin by defining the derived
algebra D, for an essential left Banach L (G)-module 4, and noting
a few of its properties.

DEFINITION 1.1. If fe A, we define

f*gll

| fllp, = sup -=—
sed | |l

and let
D,={feA:|fllp, < oo}

The following facts are easy to check.

PropostTioN 1.2. (i) (Du |l lls,) 78 @ Banach algebra and a
left Banach L,(G)-module in L,(G) under convolution.

(ii) [ flla= [ fllp, for every fe A.

(iil) If we demnote the set of trigonometric polynomials by T(G)
then we have

| fllp, = sup 1f= gl for every feA .

ser@ 191l

We next give a characterization of D, which is due essentially
to Helgason ([3], Theorem 2).

THEOREM 1.3. (Helgason)

D, = {feA: fEc A, for every Ec £,(5)} .

Proof. Suppose fe€ A and that for Ee go(Z),fE = g, for some
gr€A. Then the linear map E— g, of &,(2) into A has closed
graph and is therefore continuous. In particular, there exists a
constant 4 > 0 such that

Nfxhll, k| k. for every he A .

Consequently, f belongs to D,.

Conversely, if fe D, then the continuous map §— f* ¢ of A into
A extends to a continuous map E— k; of %,(2) into A. Then the
element fE = h, belongs to A for every Ee &,(2).
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This characterization of D, gives two more properties of D,.

COROLLARY 1.4. (i) D, is an ideal in L(G) and
(ii) D, is a right ideal in &,(2).

We denote by C(G) the algebra of continuous complex valued
functions on G, and by K(G) the algebra of functions on G with
absolutely convergent Fourier series (see [4], Sect. 34).

For 1 < p < «, the derived algebra of L,(G) is denoted by D,.

ExampPLEs 1.5. (i) Dge = K(G),
(ii) D) = K(G), and
(ili) D, = L,(G) for 1 <p < 2.

Proof. First we show (i). Let f belong to K(G) and g to T(G).
Then || £+ gllx = 1 FGIL= N7 1Gll. = | Fllx 1§]l.. Hence, by (1.2),
J belongs to Dy .

To see (ii), observe that since || ||, = || llz@ on K(G), it follows
that K(G) = Dy, CD¢. Conversely, let fe D, with Fourier series
given by

f~>dtr(A,U7).
cel

For each g2, let V, be the unitary matrix such that V,4, = | 4,].
For FC Y, a finite set, define:

g=> dtr(V,U?).

oeF

Then g€ T(G), ||§ll. =1 and we have:
2l Al = 2 dotr | A, | = | frg(e) | = NI f+gllu = 1| Flloo -

Hence || fllx = ISl poy and fe K(G).
To prove (iii), we use the facts (see [4], 36.10, 36.12) that D, =
L{G) and

272 fll. = I fllo, = I fll:  for every fe Ly(G) .
It 1< p =2 and fe L(G), then for ge T(G) we see that
Nrxgll = Fxgl=11Fal < U F1liglle=F115a-

Hence, we conclude that || f||,, < ||f]l. and

o, = 1 1lo, = 277 ([ Fls

2. The ideal in A of functions with unconditionally con-
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vergent Fourier series. Let & denote the family of all nonvoid
finite subsets of 2. For Fe &, let D(F) = D4erd)Y,. For f in
L(@), f= D(F) is the finite partial sum of the Fourier series of f
consisting only of terms involving elements of F.. We say that f in
A has unconditionally convergent Fourier series in A whenever

lim [[f = f+DE)la=0.

We denote by S, the family of all functions in A with this property.
If we also define

s = sup W+ D(F) |4,

then the following facts are easily verified.

ProposITION 2.1. (i) If fe S, then || flls, < oo.
(ii) (Su || lls,) s a Banach algebra.

(1) |[flla= [ flls, for every feA.

(iv) If eS8, then lims. - ||f — f D(F) |ls, = 0.

(v) S, is an essential left Banach L,(G)-module tn L,(G) under
convolution.

Since S, satisfies the conditions we have postulated for A4, we
may compute its derived algebra.

THEOREM 2.2. (i) Ds,=D,NS,and || fllss, =fllp, for f€Ds,.
(ii) Ss, = S, (isometry).

Proof. Suppose f belongs to Ds,. Then for feS, and ge T(G)
we have

19l g 1720 00s 2 gy,
Gl S e o

Conversely, if feD, N S, then for ge T(G) and F e &, we have

”f*g*D(F)HAS Hf*g*D(F)HASHfHD .
gl T geD@ T

Thus it follows that |[f|lps, = [ fllo, < o, and f belongs to D,.
Part (ii) follows immediately from (2.1, iv).

Hence we have || f|l,, = || fllss, < o, and thus f belongs to D,NS,.

3. Central derived algebras. Let A® denote the center of A.
Then A* = L:(G) N A and (4%, || ||, is an essential Banach L:-module
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in L7(G) under convolution. Before we investigate the derived algebra
of A?, we prove a useful proposition.

ProrosiTION 8.1. For Ec #.(2), define a function @, on X by:
@,(0) = 1/d, tr(E,) for every c€X. The map E— ¢, is an isometric
isomorphism of

(1) &) onto 1.(5),

(ii) &7(2) onto ¢(2), and

(iii) &E(ZE) onto c(X).

For fe L (G), let Jg(o) = 1/d, tr(f(0)) = Ps(c), so that f has Fourier
series D sesd, ]%(O)XU. Then the map f—f is the Gel’fand transform
A7, X is the maximal ideal space of A7, and

(iv) |1 fll =7l for every fe Li(G).

Proof. Let E belong to &i(X¥). By Schur’s lemma we have
(1) E, = ¢0)1,, for ceX .
It follows that
(2) NE e =[] Pz lle -

Clearly the map E — @, is linear and carries #2(%) isometrically
onto 1.(Y). By (1), E— ®; is multiplicative. By (2), the image of
&7(2) 18 ¢ (2), and the image of Zi(2) is ¢,(3). The rest of the
proof is analogous to ([4], 28.71).

DeErFINITION 3.2. For f in A7, let

1Fegll,

HfHQA = sup 5
gl

ge4?

The derived algebra <, of A* is defined as
Gy ={fed|[fllo, < e}.

The following properties of <, are easily proved.

ProrosITION 3.3. (i) (=, |- is a Banach algebra and an
Li(G)-module under convolution.

(it) [[fll S Sflley for every fe A

(i) 1S lle, = suDyer | f* g |4/l gl for every fe A%

(ivy Dy cC =2,

Helgason’s characterization (1.3) has an analogue in the central
case. We omit the proof since it is exactly like that of (1.3).
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THEOREM 3.4. (Helgason)
g, ={fc A% feec(A)° for every ®cc(2)}.

We next prove that the center S: of S, is always contained in
,. To do so, we use the following well known fact which follows
from a theorem of Seever ([6]).

Facr 8.5. Let X be a discrete topological space and M a Banach
space. If T: M—1.(X) is a bounded linear map whose image con-
tatns the characteristic function of every subset of X, then T s onto.

We also use the following lemma which states that every element
of 1.(Y) is a multiplier for S:.

LEMMA 38.6. If feS: and ®el.(2), then there exists g€ SZ such
that g = C,DJ?.

Proof. Let f belong to S, and denote by M the collection of all

®el.(Y) such that gDJo”e (S?)°. Then M is a Banach space under the
norm

el =@+ llglls, where g=of .

To show M = [1.(2), it suffices by (3.5) to show that for 4 C X, the
characteristic function ® of 4 is an element of M. To establish
this, we note that the net {fx D(F): E"** c 4} is Cauchy in S?, so
there is a function ¢ in S’ such that

lim |lg —f+D(E)|ls, =0.

Epfinite~y

We conclude that g; = @,](2' and hence, ® belongs to M.
THEOREM 3.7. Sic «,.

Proof. Suppose f belongs to si. Then for pec,(d)cl.(2), go}
belongs to (S:)° and hence to (4%)° by (8.6). Therefore fe &, by
(3.4).

We now restrict our attention to the case of A = L,(G) for 1 <
p < . As before we write D, = D,; we also write S, =S, and
Z, = Z,. To compare D, and S, we use the following.
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LEMMA 3.8. Let 1=p<oo. If feL,G) and |[flls, < o, then
fes,.

Proof. Let f belong to L,(G) with || f{ls, < eo. Suppose f has
Fourier series

f~ 2 d, tr(4,,U) .
For ¢ € L,(G)* and any nonvoid finite ¥ — Z*+, we have
3,9, (AU )| Z 115 1ls, 191l -
Hence, we see

sup | 3 @(d, tr(A,, U)) | <o,

pfinite-z+ ] JjeF

which implies
2 | P, (A, T ) | < oo .

Thus the Fourier series of f is weakly subseries Cauchy and, since
L,(G) is weakly complete, the series is weakly subseries convergent.
Therefore, by the Orlicz-Pettis theorem ([2], p. 60, or [6], p.19) it is
norm convergent and unconditionally convergent to some ge¢ L,(G).
Comparing transforms, we see that f = ¢ and consequently, f belongs
to S,.

Finally, we state the main result of this section, generalizing
the abelian result of Bachelis.

THEOREM 3.9. Let 1 < p < . Then we have
(i) D, 8, and
(ii) =, = 8.

Proof. Observe that [ Flls, = [ £llp, for every feD,, and that
| flls, 2l fllz, for every fe <. The theorem now follows from
(3.8).

4. 4~ as a source of examples. Throughout this section G
will denote .55~ = [y, &%, where .&; is the symmetric group on three
symbols. Using this group we demonstrate that Bachelis’ result
does not extend to the non-abelian case.

THEOREM 4.1. Let G = A~ and 1 £ p < . Then
(i) D,= 8, if and only if »p = 2, and
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(ii) D, = L, if and only p = 2.

Proof. By (1.5, 1ii) and (3.9), we have
L{G) =D, 8, < Ly(G) .
Suppose p = 2. Observe that (ii) follows from (i) because
D,cS,cL,.

Note also that || flls, = || fll», for every fe D,. Hence to prove that
D, # S, it is enough to find sequences {f™} in D, and {g™} in T(G)
such that

(1) Hfm)*g(mﬂzz
PN

1% 1l 11 £ 1,

We select these sequences as follows. Let o be the representation

class on .&4 of dimension 2 (see [4], 27.61). For f and ¢ in T,(%%)
which will be specified later, form

o a8 B —— oo,

Fo@ =11 F@)

and

g(n)@) = glg(xk) s
where e G is given by & = (v, ®,, --+). Then f™ and g™ are
elements of T, (G) where ¢ is the element of ¥, given by
Ui"("” =U0Q - ®@U/ for every ze G .
It is easily verified that
W s, = LS =171
g™l =1{f=gl,
and
/\) 1A
g™ fle =117 1% .
Hence, to show (1) it suffices to find f and ¢ in T,{(.5%4) such that

Hf" g Hp
= >1.
g1l
Let g = 2u{? + 2iu,? and note that ||§ll. = 1. The rest of the
argument divides into two cases.
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Case 1. 1 < p < 2. In this case we let f = 2y, so that fxg =
g, and we compute

D 1/
11 = 2[2 : ?] ’ (see [4], 27.61) .

Also, we have

Lol =2[Lr 202V 2T]"

and therefore we conclude

WS gll — r=iz 5 1
g lls 1171

Case 2. 2<<p <co. In this case we let f =2u/? +2u”. Then
Fog= —2u + 2u” and so we have

if = v*e‘(%)”p and  [[fxgll, = 2V§<f}é‘>m ’

o

Therefore, we conclude

Hf" g Hr = gip 5 1,
a

The question naturally arises as to whether D7 is equal to &,.
The next example shows that in some cases the answer is no.

THEOREM 4.2. If G = %4 and 1 = p < 4, then D, = 2, if and
only if »p = 2.

Proof. By (1.5,1l1) and (3.3, ivj we have

D:= 2, = LG .
Suppose p == 2. Since D;C &, and || ||, = [p, on D, to show

that D; #+ 27,, it suffices to find sequences {f™} in D: and {g™} in
T(G) such that
L g™ 1l
T |
A I |

As in the proof of (4.1) we construct the sequences by choosing f
and g on 54 as follows. First, let f = 2y,. Then fxg = g for any
ge T4, and || fll,=2[(2°4+2)/6]Y?. Also we have f™ = 2%y,. and
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[ ey = 1 F™ |l = [fll;- As before, it suffices to find ge T,(5%)
with the property that

el
N

Again we consider two cases.

Case 1. 1<p<2. Letg=2u? + 2ius’. Then as in (4.1), Case 1,
we have

H g Hp — 9Qi/r—if2 1.
G ~

Case 2. 2< p< 4., Let g =2u% + 2u). Then {||§ll.. =1 and

Lol = 2[2YE]".

Therefore we see

Lol _[2:32)7 o
IFINEaR [2p+2] -

Finally, we observe that for G = %4> we have the following.
THEOREM 4.3. K(G) & S; -

Proof. Since || fll. = || fllxe for f is K(G), it follows that

K(G) = Sk CSei -

Also, since || fllsp, = I f llxe for f in K(G), to show that K(G) =
Scw)» we need only find fe T,(%%) such that

1 lleoy < g

Il

If we let = uf + uy, then we have |[f(l. =13 and || f|lxy= 2.
Hence, the proof is complete.

The techniques used to prove (4.1) — (4.3) can also be applied to
show the following.

THEOREM 4.4. If G = 5 and 1 < p < o, then
Z(G) = Li(G) if and only if p = 2.
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5. Open questions.

(6.1) Is T(G& dense in D,? If so, then it can easily be shown
that D,, is isometrically isomorphic to D,. One easily shows that
the density of T(G) is equivalent to the condition that S, = D,.

(5.2) Another question of interest is whether or not D, is self-
adjoint (that is, closed under f— f, where f(x) = f(™)) whenever
A is. Equivalently, is D, a left ideal in &, (2) when A is self-
adjoint?

(5.3) Are there any conditions on a compact non-abelian group
G sufficient to imply that D, = S, for p = 2?

REFERENCES

G. F. Bachelis, On the ideal of unconditionally convergent Fourier series in LP(G),
roc. Amer. Math. Soc., 27 (1971), 309-312.

M. M. Day, Normed Linear Spaces, Academic Press, Inc., New York, 1962.

S. Helgason, Multipliers of Banach algebras, Ann. of Math., (2) 64, (1956), 240-254.

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer Verlag,
New York, 1970.
5. J.T. Marti, Introduction to the Theory of Bases, Springer Verlag, New York, 1969.
6. G. L. Seever, Measures on F-spaces, Trans. Amer. Math. Soc., 133, (1968), 267-280.

000 g

Received July 24, 1971 and in revised form June 6, 1972.
UNIVERSITY OF OREGON

AND

SiMMoN COLLEGE, BoSTON, MASS.






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

C. R. HoBBY

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 43, No. 1 March, 1972

Alexander (Smbat) Abian, The use of mitotic ordinals in cardinal

AFIERIMETIC . ..ot 1
Helen Elizabeth. Adams, Filtrations and valuations on rings.............. 7
Benno Artmann, Geometric aspects of primary lattices . .................. 15
Marilyn Breen, Determining a polytope by Radon partitions .............. 27
David S. Browder, Derived algebras in L1 of a compact group . ........... 39
Aiden A. Bruen, Unimbeddable nets of small deficiency .................. 51
Michael Howard Clapp and Raymond Frank Dickman, Unicoherent

COMPACHfICALIONS ...\ vt vttt e e ettt et 55
Heron S. Collins and Robert A. Fontenot, Approximate identities and the

SEFICELOPOLOZY « . o o e e 63
R.J. Gazik, Convergence in spaces of subsets............................ 81
Joan Geramita, Automorphisms on cylindrical semigroups ................ 93
Kenneth R. Goodearl, Distributing tensor product over direct product. . . . .. 107
Julien O. Hennefeld, The non-conjugacy of certain algebras of

OPCFALOTS . . o v o e ettt e et e et e e e e ettt 111
C. Ward Henson, The nonstandard hulls of a uniform space . .............. 115
M. Jeanette Huebener, Complementation in the lattice of regular

1OPOLOGIES . ..o 139

Dennis Lee Johnson, The diophantine problem Y? — X3

polynomialring ............... ... i
Albert Joseph Karam, Strong Lie ideals .................
Soon-Kyu Kim, On low dimensional minimal sets. . . . . ..
Thomas Latimer Kriete, III and Marvin Rosenblum, A Ph

theorem with applications to M(u, v) functions . . ...
William A. Lampe, Notes on related structures of a unive
Theodore Windle Palmer, The reducing ideal is a radical .
Kulumani M. Rangaswamy and N. Vanaja, Quasi projecti

module categories............. ... i,
Ghulam M. Shah, On the univalence of some analytic fun
Joseph Earl Valentine and Stanley G. Wayment, Criteria f

SPUCES v vv ettt
Jerry Eugene Vaughan, Linearly stratifiable spaces. . . ...

Zbigniew Zielezny, On spaces of distributions strongly re,
to partial differential operators ....................


http://dx.doi.org/10.2140/pjm.1972.43.1
http://dx.doi.org/10.2140/pjm.1972.43.1
http://dx.doi.org/10.2140/pjm.1972.43.7
http://dx.doi.org/10.2140/pjm.1972.43.15
http://dx.doi.org/10.2140/pjm.1972.43.27
http://dx.doi.org/10.2140/pjm.1972.43.51
http://dx.doi.org/10.2140/pjm.1972.43.55
http://dx.doi.org/10.2140/pjm.1972.43.55
http://dx.doi.org/10.2140/pjm.1972.43.63
http://dx.doi.org/10.2140/pjm.1972.43.63
http://dx.doi.org/10.2140/pjm.1972.43.81
http://dx.doi.org/10.2140/pjm.1972.43.93
http://dx.doi.org/10.2140/pjm.1972.43.107
http://dx.doi.org/10.2140/pjm.1972.43.111
http://dx.doi.org/10.2140/pjm.1972.43.111
http://dx.doi.org/10.2140/pjm.1972.43.115
http://dx.doi.org/10.2140/pjm.1972.43.139
http://dx.doi.org/10.2140/pjm.1972.43.139
http://dx.doi.org/10.2140/pjm.1972.43.151
http://dx.doi.org/10.2140/pjm.1972.43.151
http://dx.doi.org/10.2140/pjm.1972.43.157
http://dx.doi.org/10.2140/pjm.1972.43.171
http://dx.doi.org/10.2140/pjm.1972.43.175
http://dx.doi.org/10.2140/pjm.1972.43.175
http://dx.doi.org/10.2140/pjm.1972.43.189
http://dx.doi.org/10.2140/pjm.1972.43.207
http://dx.doi.org/10.2140/pjm.1972.43.221
http://dx.doi.org/10.2140/pjm.1972.43.221
http://dx.doi.org/10.2140/pjm.1972.43.239
http://dx.doi.org/10.2140/pjm.1972.43.251
http://dx.doi.org/10.2140/pjm.1972.43.251
http://dx.doi.org/10.2140/pjm.1972.43.253
http://dx.doi.org/10.2140/pjm.1972.43.267
http://dx.doi.org/10.2140/pjm.1972.43.267

	
	
	

