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This paper is an investigation of conditions on a module
A under which the natural map

A®{ΠC*)—

is an injection. The investigation leads to a theorem that
a commutative von Neumann regular ring is self-injective if
and only if the natural map

(ΠFa) <g> (ΠGβ) —> Π(Fa <g> Gβ)

is an injection for all collections {Fa} and {Gβ} of free modules.
An example is constructed of a commutative ring R for which
the natural map

R[ls]]®R[[t\]->R[[s,t]}

is not an injection.

R denotes a ring with unit, and all j£-modules are unital. All
tensor products are taken over R.

We state for reference the following theorem of H. Lenzing [2,
Satz 1 and Satz 2]:

THEOREM L (a) A right R-module A is finitely generated if
and only if for any collection {Ca} of left R-modules, the natural
map A(x) ΠCa-+ Π(A® Ca) is surjective.

(b) A right R-module A is finitely presented if and only if for
any collection {Ca} of left R-modules, the natural map A® ΠCa—+
Π(A (x) Ca) is an isomorphism.

THEOREM 1. For any right R-module A, the following conditions
are equivalent:

(a) If {Ca} is any collection of flat left R-modules, then the
natural map A® ΠCa-+ Π(A® Ca) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map A (x) Rx —* Ax is an injection.

(c) If B is any finitely generated submodule of A, then the
inclusion B~+ A factors through a finitely presented module.

Note that condition (c) always holds when R is right noetherian,
for then all finitely generated submodules of A are finitely presented.

Proof, (b) => (c): If R is finite, then it is right noetherian and
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(c) holds. Thus we may assume that R is infinite.
Let /: F —> A be an epimorphism with FR free, and set K — kerf.

There is a finitely generated submodule G of F such that fG = B.
We have a commutative diagram with exact rows as follows

(Diagram I):

K x) RΛ A(g)Rx

- ^ Aλ

-^ o

DIAGRAM I

Since G is finitely generated, Gx ^ φ'{F®Rx). A short diagram
chase (using the injectivity of φ") shows that (G Π K)x ^ φ{K®Rx).

card (G) ^ card (R) because R is infinite, hence card (G Π K) ^
card (X). Thus there is a surjection a^ ga of X onto G Π K. The
element # = {ga} in (G Π iΓ)x must be the image under φ of some
element ht (x) rL + + hn (x) rw in K® Rx. It follows easily that
G f) K is contained in the submodule H of K generated by hl9 , hn.
Note that G Γ) H = G Γ) K.

G + H is contained in some finitely generated free submodule FQ

of F. The map / induces a monomorphism of G/(G Π H) into A, and
this monomorphism factors through the finitely presented module
FJH. Since fG = B, the inclusion B —• A also factors through Fo/H.

(c)=>(a): Consider any x belonging to the kernel of the natural
map φ: A (x) ΠCa -+ Π(A (x) Ca). There is a finitely generated submodule

DIAGRAM II
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B of A such that x is in the image of the map B (x) ΠCa —> A (x) ΠCa.
By (c), the inclusion B—>A factors through some finitely presented
module E.

We have a commutative diagram as follows (Diagram II):
φf is an isomorphism by Theorem L, and f is a monomorphism

because all the Ca's are flat. Another diagram chase now shows that
x = 0.

COROLLARY. Suppose that R is {von Neumann) regular. For
any right R-module A, the following conditions are equivalent:

(a) If {Ca} is any collection of left R-modules, then the natural
map A (x) ΠCa —* Π(A (x) Ca) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map A (x) Rx —* Ax is ίnjective.

(c) All finitely generated submodules of A are protective.

Proof, (b) ==> (c): If B is a finitely generated submodule of A,
then Theorem 1 says that the inclusion B —> A factors through a
finitely presented module E. E is flat (because R is regular) and
hence is protective. Thus B can be embedded in a projective module.
Since R is semihereditary, B must be projective.

(c) => (a): All the CJs are flat (since R is regular), and all finitely
generated submodules of A are finitely presented, so this follows
directly from Theorem 1.

THEOREM 2. Assume that R is a commutative regular ring. Then
the following conditions are equivalent:

(a) If {Fa} and {Gβ} are any collections of free R-modules, then
the natural map (ΠFa) (x) (ΠGβ) —> Π(Fa (x) Gβ) is an injection.

(b) There is a set X of cardinality at least card (R) such that
the natural map Rx (x) Rx —> RXxX is an injection.

(c) R is injective as a module over itself.

Proof, (b) => (c): By [1, Theorem 2.1], it suffices to show that
any finitely generated nonsingular J2-module B is projective.

[1, Lemma 2.2] says that we can embed B in a finite direct sum
Qι Θ Θ Q«ι where each Qι is a copy of the maximal quotient ring
Q of R. Then B can be embedded in a direct sum Bx 0 0 Bn,
where Bi is a finitely generated i?-submodule of Qi9 Since R is
semihereditary, B will be projective provided each Bi is projective.
Thus without loss of generality we may assume that B is an R-
submodule of Q.

Let &!, •••, bn generate B. Since R is an essential submodule of
Q, there is an essential ideal I of R such that bj ^ R for all i.
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Since R is commutative, the multiplications by the elements of /
induce homomorphisms of B into R. Together, these homomorphisms
induce a homomorphism /: 2? —• R1. Q is a nonsingular iϋ-module be-
cause it has the nonsingular 22-module R as an essential submodule.
Thus no nonzero element of B is annihilated by 7; i.e., f:B—+Rτ

is an injection. Since card (I) ^ card (R) ^ card (X), there must
also be an embedding of B into Rx.

Since the natural map Rx ® Rx —> (Rx)x is injective by (b), the
corollary to Theorem 1 says that all finitely generated submodules
of Rx are protective. Thus B must be protective,

(c)=>(a): By [1, Theorem 2.1], all finitely generated nonsingular
iϋ-modules are protective. Since RR is nonsingular, ΠFa is non-
singular; thus all finitely generated submodules of ΠFa are protective.
By the corollary to Theorem 1, the natural map (ΠFa) (x) (ΠGβ) —>
Πβ[(ΠFa) 0 Gβ] is an injection. Likewise, each of the maps (ΠFa) (g)Gβ~-+
Πa(Fa (g) Gβ) is injective. Thus the map (ΠFa) (x) (ΠGβ) — Π(Fa (g) Gβ)
must be injective.

In particular, Theorem 2 asserts that if R is a countable com-
mutative regular ring which is not self-injective, then the natural
map Rx ®RX —>RXxX is not an injection for any infinite set X. For
example, let Fu F2, be a countable sequence of copies of some
countable field F; let R be the subalgebra of ΠFn generated by 1
and 0.F*. R is obviously a countable commutative regular ring.
Since ΠFn is a proper essential extension of RR, RB is not injective.

If N is the set of natural numbers, then the natural map
RN (g) RN —> RNxN is not an injection. Thus the tensor product of
two one-variable power series rings, J2[[s]] (g) i?[[ί]], is not embedded
in R[[s, t]] by the natural map.
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