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SOUSLIN'S CONJECTURE AS A PROBLEM
ON THE REAL LINE

A. P. BAARTZ AND G. G. MILLER

This paper is concerned with properties of real sets whose
existence is related to Souslin's conjecture. One of these
results is subsequently used to show that Souslin's conjecture
is second order determined, i.e., ( ^ h-2 SC) V {% \-2 ~ SC).

By Souslin's conjecture (SC) we mean: every linearly ordered set
with at most countably many pairwise disjoint intervals is separable.
(A linearly ordered set L is separable if it has a countable subset
such that between any two points of L there is a point of the subset).
We first display a subset of the power set of the real line R whose
existence is equivalent to ~ SC. Then we reformulate the conjecture
geometrically as a question concerning a single subset of R of a
certain type. Finally we point out that Souslin's conjecture is second
order determined.

E. Miller [4] proved that ~ SC is equivalent to the existence of
a Souslin tree, i.e., an uncountable tree of countable height and
countable width. A tree is a partially ordered set in which the set
of all elements below any given element is a chain. The height of a
partially ordered set P is the least cardinal m such that no chain in
P has cardinality greater than tn. A is an antichain if no two elements
of A are related. The width of P is the least cardinal π such that
no antichain in P has cardinality greater than π.

PROPOSITION 1.1. The existence of a Souslin tree is equivalent
to the existence of an uncountable collection of real sets such that

1. any two sets in the collection are either disjoint or one of them
is a subset of the other, and

2. if Ŝ  is any uncountable subcollection, then %? has two disjoint
members and two nondisjoint members.

Proof. Assume there is a Souslin tree S. Let / be a one-to-one
function from some uncountable subset of S into R. For each xeS,
let U(x) = {y: x ^ y), and let ^ = {f(U(x))ι x e S}. Then jT" has
the desired properties.

Conversely, if there is such a collection ^ , let A ^ B mean
β £ i , for A, 5 e ^ . Then ^ is a Souslin tree.

An application of Proposition 1.1 is found in §5. In the next
section we show how a Souslin tree can be represented as a single
subset of the line.
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278 A. P. BAARTZ AND G. G. MILLER

2* We first represent certain binary relations* For this purpose
let G c R and denote by G* the set of all those points xeG which
are midpoints of a nondegenerate segment whose endpoints are both
in G. We shall call G* the set of midpoints in G. Define a relation
α on G* by setting

xay iff x Φ y and there exists zeG such that
y is the midpoint of the segment xz.

Note that xz stands for [x, z] or [z, x] according as x < z or z < x.

PROPOSITION 2.1. a is a {strict) partial order for G* iff for all
elements x, y, zeG* we have

A. (asymmetry) if x and y are the respective midpoints of yv
and xu, and if ueG, then v & G.

B. (transitivity) if y is the midpoint of xu and z is the midpoint
of both yv and xw, and if u, v e G, then also w eG.

The proof is immediate since no point is both midpoint and end-
point of the same nondegenerate segment.

THEOREM 2.2. Let δ be any antireflexive relation on a set P of
cardinality no larger than that of the continuum. Then there exists
a subset G of the real line for which the relation a defined by (2.1)
is isomorphίc to δ.

Proof. Let / be a one-to-one function mapping P into a Hamel
basis for R. Let

(2.2) U = {2f(q) - f(p): p,qeP, pδq}

and

(2.3) G = UU 2f[P] U f[P] U {0} .

For each pe P, f(p) is the midpoint of the segment 2f(p)0, whose
endpoints belong to G. Thus f[P] c G*. If yeG*, on the other
hand, then there exist distinct points x, zeG, such that 2y = z + x.
Also, yeG. Writing x = cxaγ + c2a2 and z = c3a3 + c4a4, with a{ e f[P],
we have

cγ = 2 and c2 = — 1 if x e U ,

(2.4) c3 = 2 and c4 = - 1 if z e U ,

02*-i £ {0, 1, 2} and c2k = 0 otherwise .

Assuming now that yeU,y = 2a—b, we have 4α - 26 = 2y —
ΣCitti' a n d since a Φ b, (2.4) implies that only c1 — 2 = c3, aί = a = α3
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is possible. But this leads to c2 = — I = c4,θ2 = b = a4, and hence to
z — x, which contradicts our assumption.

The cases y e 2f[P] and y = 0 similarly lead to the conclusion
z = x. Thus by (2.3) we have y e f[P], and hence G*f[P].

To see that / is an isomorphism, let p, qe P, pdq. Then x —
2/(q) — f(p) is a member of UczG, and f(q) is the midpoint of the
nondegenerate segment xf(p). Thus f(p)af(q). Conversely, if zay
in G* = /[P], say z = f(p), y = /(«), then x = 2f(q) - f(p)eG by
(2.1). We use (2.3) and the independence of f[P] to show that x e U,
and again the independence of f[P] to see that pδq.

Comment 2.3. An obvious generalization of Theorem 2.2 permits
us to represent an arbitrary antireflexive relation in a vector space
of sufficiently large dimension over a field of characteristic 5 or larger.
Here again "y is the midpoint of xz" means 2y = z + x, x Φ Z. For
characteristic smaller than 5 we might mention that f[P] Φ G*.

COROLLARY 2.4. Let P be any partially ordered set of cardinal
number no larger than that of the continuum. Then there exists a
subset G of the real line such that P is isomorphic to the partially
ordered set G* of midpoints in G.

This follows directly from Proposition 2.1 and Theorem 2.2.

We are now ready to apply Theorem 2.2 to trees. In a slight
restatement of 2.1, A becomes: no segment with endpoints in G is
trisected by points of G; B can be summarized by the phrase: G is
midpoint transitive. Henceforth we assume that G has these two
properties.

Chains in G* are generating subsets of G* in the sense that any
two distinct points x, y of a chain generate a segment with endpoints
in G, one of x and y acting as an endpoint of the segment, the other
as the midpoint; i.e. if u = 2y — x, v = 2x — y, then ueG or v e G.
We call a subset X of G* segment free (antichain) if every subset of
X of cardinality ^ 2 fails to be generating. X is free (from above)
in G provided that for any two distict points x, y e Xand any u, v, z e G,
z is not the midpoint of both the segments xu and yv.

Combining these notions with 2.1 we obtain our main result.
Width bounds the cardinality of segment free sets and height that
of generating sets in G*.

THEOREM 2.5. The existence of a Souslin tree is equivalent to
the existence of a subset G of the real line whose set G* of midpoints
in G is uncountable and satisfies
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1. no segment with endpoίnts in G is trisected by points of G,
2. G is midpoint transitive,
3. segment free subsets of G* are free in G,
4. segment free subsets of G* are countable,
5. generating subsets of G* are countable.

Proof. 1. and 2. imply that a is a partial order, by 2.1. 3. is the
tree property, and 4. and 5. together with the fact that G* is un-
countable make the tree G* into a Souslin tree. Thus the existence
of G implies the existence of a Souslin tree, and if a Souslin tree
exists, then G exists by 2.4.

4* In this section we conclude by applying a real line character-
ization of Souslin's conjecture to obtain a foundations result. In [2]
and [3] the continuum hypothesis is shown to be second order deter-
mined, i.e.,

{%- \-tCH) V (3T \-2~CH)

where 3? denotes Zermelo's axioms with the axiom of infinity and
CH the continuum hypothesis. The reader is referred to Kreisel and
Krivine [3] for a detailed discussion.

A modification of the proof in Kreisel and Krivine applies to
Souslin's conjecture:

PROPOSITION 4.1. Souslin's conjecture is second order determined,
i.e.,

Csr h-2SC) v {%r \~2 ~ SC).

Proof. Let Cω be the collection of all hereditarily finite sets
without individuals, and for neω, let Cω+n+1 = Cω+n U <0*(Cω+n), where
& denotes the power set. From Proposition 1.1, Souslin's conjecture
states that any collection of real sets which under set inclusion forms
a tree of countable height and countable width is countable. We may
thus canonically formulate Souslin's conjecture as follows:

[ I c ^(Cω+1) A (x e X A y e -3Γ-— xΠy^ΦVxciyVycioo)

A ((YdX A ((xeY Aye Y-+x Π y = Φ)

V (xeYAye Y-+ xayvya x))) — f ^ Cω)] — Ϊ^Cω.

This is expressed by means of quantifiers over Cω+3, since one-to-one
correspondences between subsets of Cω+2 are elements of Cω+3. Con-
sequently [3; p. 192] we have ( r h-2 SC) V (%T h-2 - SC).
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ON SOLUTIONS IN THE REGRESSIVE ISOLS

JOSEPH BARBACK

Let f(x) be a recursive function and let Df(X) denote
the Nerode canonical extension of / t o the isols. Let A and
Y be particular isols such that Df(A) = Y. The main results
in the paper deal with the following problem: if one of the
isols A and Y is regressive, what regressive property if any
will the other isol have. It is shown that if A is a regressive
isol then Y will be also. Also, it is possible for Y to be a
regressive isol while A is not. In this event there exist re-
gressive isols B with Df(B) = Y and B ^ΛA. Extensions of
these results for recursive functions of more than one variable
are discussed in the last section of the paper.

1* Introduction* We will assume that the reader is familiar

with the primary definitions and results of the papers listed as re-
ferences. We will cite some particular definitions and results that
have a special role in the paper. E will denote the set of nonnegative
integers, Λ the collection of isols, Λ* the collection of isolic integers,
and ΛR the collection of regressive isols. If / is a partial function
from a subset of E into E then δf will denote its domain. If / : En —>
E is a recursive function then Df will denote the canonical extension
of / to the isols. Two sets a and β will be separated, written a | β,
if there exist disjoint r.e. supersets of a and β. j(x, y) will denote
the familiar recursive pairing function defined by,

j(x, y) = x + 1/20 + y)(x + y + 1) ,

and k and I the associated functions with the property j(k(x), l(x)) =
x. [px] will be the canonical enumeration for the collection of all
finite subsets of E, [6]. Associated with this enumeration is the
recursive function r(x) having the property r(x) = card px. We will
use a X to stand for union among sets (and also α + for a union of
two sets).

2«. Recursive functions of one variable* Let / : E—>E be a
recursive function. If / is a combinatorial function then its extension
Df will map Λ into Λ, and if / is an increasing function then Df

will map ΛR into ΛR. Each combinatorial function of one variable
will be increasing, but not conversely. The condition needed for Df

to map ΛR into ΛR is that / be an eventually increasing function, [1].

THEOREM 1. Let f:E—>Ebea recursive function and A and Y be

283



284 JOSEPH BARBACK

isols such that Df{A) = Y. If A is a regressive ίsol then Y will be
regressive also.

Proof. Assume A is a regressive isol. Let

9(0) = 0 ,

g(n + 1) = f(n) + g(n) .

Then g will be an increasing and recursive function. Hence its can-
onical extension Dg will map AR into ΛR. Since

g(n + 1) = f(n) + g(n) ,

it follows from the Nerode metatheorem for such identities (combining
[12, Theorem 10.1] and the representation of the canonical extension
of a recursive function [11, 4]), that

(1) D9(A + 1) = Df(A) +D9(A).

Because A is a regressive isol and g is increasing and recursive, each
of the isols A + 1, Dg{A + 1) and Dg(A) will also be regressive. In
addition, Y = Df(A) is an isol and from (1) it then follows

(2) Y^Dg(A + 1) and Dg(A + l)eΛR.

In view of a result due to Dekker [4, P8 (a)], (2) implies that Y will
be a regressive isol.

REMARK. If / is a recursive function of one variable then although
its canonical extension may not map every isol onto an isol, its value
may be an isol for some. In addition, it may also occur that the
value of Df(A) will be a regressive isol for an isol A which is non-
regressive. An example of such a recursive function will be given
in the following section. We want to show next that if this possibility
does occur, then there will be a regressive isol B such that Df(B) =
Df(A). The following lemma essentially gives this result, once the
connection is made between the canonical extensions of recursive
functions and recursive combinatorial functions.

LEMMA. Let f,g:E—>Ebe recursive combinatorial functions and
A and Y be isols which satisfy the identity,

(1) Df(A) = Y+Dg(A) .

If Y is a regressive isol, then there will also exist a regressive isol B
with,

(2) Df(B) = Y+Dg(B).
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Proof. Assume that F i s a regressive isol, and consider separately
the following three cases.

Case 1. A is finite. Then A will be regressive and we may set
B = A.

Case 2. A is infinite and Y is finite. Let Y = p e E. Set

h(x) = p + #(#), for x e E .

Then h will be a recursive combinatorial function, since the function
g is recursive and combinatorial. By a theorem of Myhill and Nerode
[11, Theorem 7], we also obtain,

(3) Dh(A)= Y+Dg{A) .

Combining (1) and (3) implies

( 4 ) Df(A) = Dh(A) ,

and since A is an infinite isol, it follows from (4) and a theorem due to
Myhill [8], that there will be infinitely many numbers n that satisfy

(5) f(n) = h(n).

Let m be the smallest number that satisfies (5), and let B = m. Then
B will be a regressive solution to (2), since

Df{m) - f(m)

= h(m)

= Dh{m)

= F + Z>,(m) .

Case 3. Both A and Y are infinite isols. Let φf and ^ be the
normal combinatorial operators, and let fo] and [di] be the sequences
of combinatorial coefficients that are associated with the functions /
and g respectively. Let aeA and rj e Y. Then a and η will each
be infinite and isolated sets, and also η will be regressive. We will
assume that

(6) η\a and η\φg(a) ,

for otherwise an easy modification may be made in the proof. Based
on their respective definitions, each of the functions ĉ  and di will be
recursive, and also
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Ψλoί) = (j(x, y) \px S a and y < cr[x)) ,

Φg{<*) = (J(x> y)\pxSa and y < dr{x)) .

From (1) and (6) it follows also,

(7) φf(a) = η + φg(a) .

Let ί) be a partial recursive function that establishes (7), i.e., p will
be defined on φf{a), will be one-to-one, and will map

( 8 ) p:<Pf(a)-+ V + <Pβ(<*) ,

one-to-one and onto.
Let yx be a regressive function that ranges over the set y]9

Our first aim is to define two particular sequences of subsets of
a and of η respectively, whose corresponding terms will share the
property appearing in (8). With each number n we will associate two
sets an a subset of a, and ηn a subset of rj. These sets are meant
to be the collections of those members of a and ΎJ respectively, that
we can effectively find if we start with the value of yn and use only
the regressive property of the function yx, the separability property
in (6), and the recursive and partial recursive properties that appear
in (8). Note that the inverse function p~ι of p will be well-defined
and partial recursive. The particular definition for these sets is as
follows; for ne E, the members of an and rjn are determined by re-
peated applications of the six rules below,

( i ) yn e ηn,

(i i) if yk e ηn then (y0, ., yk) £ ηn,

(iii) if yk e ηn and p~λ{yk) = j(x, u), then px £ an,

(iv) \ίau -- ,ake an, ρx = (al9 , αfc), y <ck, pj{x, y)eη and pj(x,

y) = ym, then ym e ηn,

( v ) if al9 , ak e an, px = (αx, , ak), y < ck and pj(x, y) = j(u,

v), then pu ξΞ:an,

(vi) if aly -",ake an9 ρx = (al9 , ak), y < dk and p~ιj{x, y) = j(u,

v), t h e n ρuξΞ=an.

Note that each of the sets Ύ)n will be non-empty, in view of (i). It
may occur that some of the sets an are empty, however this will be
true for at most only finitely many of the an. It is easy to see upon
a moments reflection that from the value of the number yn one can
effectively enumerate all of the members in each of the sets an and
ηn. It follows that each of the sets an and ηn (for any number n)
will be r.e. subsets of a and Ύ] respectively. Since a and η are each
isolated sets, we see that each of the sets an and ηn will be finite.
It will be useful to list some of these properties and also some that
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can be arrived at in an easy manner from the six rules above.

(9) (V»)[J?, Φ 0 ] and (Vn)(3k)[a,+k Φ 0] .

(10) (Vn)(3ί)[ί ^ n and η% = (y0, , yt)\ .

(11) tf0 £ #i S 2̂ S and Σ αn £ α .
0

(12) τj0 g ^ s % s and Σ % = 9
0

In addition, note that the six rules (i) — (vi) have been so defined so
have the following property; if one would simply know only the value
of yn, then the totality of those members of a and Ύ] that could be
found by using only the recursive and regressive features present in
(8) would be the two sets an and ηn respectively. It follows from this
property that, for ne E

(13) p: <Pf(an) —>rjn + <pg(an), one-to-one and onto.

For each number n e E, let the

torre number of ηn = the largest number t with ηt = ηn .

In view of (i) and the fact that each of the sets ηn is finite, it
follows that there will be infinitely many torre numbers. In addition
it is easy to see that if t is the torre number of ηn, then t ^ n and
rjt — rjn— (yOf . . . ? yt). Let tx denote the strictly increasing function
that ranges over the set of all torre numbers. Then

(14) η t χ = (y0, - - - , y t χ ) ,

(15) Vt0 £ Vh £ Vh S ,

(16) tx<k^ tx+ι = > ηh = ytχ+1, and

(17) v = %v*%-

In addition, by combining the remark prior to (13) with (16) and
the fact that yn is a regressive function, we can also see that ytχ

will be a regressive function (of x). This turns out to be a very
useful property. Another fact that is important to note here is pro-
perty A given below; it follows from (13), (16), the definitions of rjn

and its torre number, and the regressive property of ytχ.

Property A. If we are given the value of yk then we can effec-
tively determine whether k ^t0 or there is a number x such that tx <
k ^ tx+1. In the former event we could also find the value of ytQ,
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and in the latter event both of the numbers ytχ and ytχ+1 could be
found.

Combining (11), (13) and (15) gives,

(18) atQ SahSat2S > and

(19) p: φf{at) > ηtχ + φg{atχ) ,

one-to-one and onto, for each number x. Since φf and φg are combi-
natorial operaors, the inclusions appearing in (18) also imply that

Φf{atχ) S <PA<xtχ+1) ,

and

<Pg(atχ) S <PM*,+)

Therefore, in view of (15) and (19), we obtain for each number x e E,

(20) P' ( ? / K J
> (7*,fl - Vθ + (9>,(α«β+1) - ( ^ K ) ) >

one-to-one and onto.

We now begin to design a regressive set β whose recursive equi-
valence type will have the desired properties of the lemma. First
with each number ytχ a particular finite set βx will be associated. Let
the functions wx and ex be defined by

wx — cardinality of atχ ,

e0 = w0 ,

en+1 = wn+1 - wn .

Since ytχ is a regressive function and since from the value of ytχ we
can determine the complete set atχ (refer to the remarks appearing
before (13)), we see that from the value of ytχ alone, each of the
numbers wx and ex can be computed. Hence each of the mappings
Vtn —* wn and yt% —• en will have a partial recursive extension; in the
notation of [4] these properties are denoted respectively by

(21) ytn ^ * wn and yf% ^* en .

We will assume here that e0 ^ 1 (otherwise the proof would need to
be slightly changed). Then, by (18), it will also follow that en ^ 1
for each number n. For ne E, let

(22) δ. = U(Vtn,r)\r = 0,1, •• , e . - l ] .

Then [δn] will be a sequence of mutually disjoint nonempty sets. From
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(21) and (22), we see that by knowing the value of ytn we can effec-
tively find all the members of the set δn; this property will be denoted
by writing

(23) ytn^sn.

For ne E set

(24) βn = δ0 + δ, + + δn .

Then, in view of (23) and the regressiveness of ytn, it is possible to
effectively find all the elements of βn from the value of yt%. We will
denote this property by

(25) Vtn^*β»-

In addition, note that

(26) /3oS/Si a A>^ ••-, and

(27) card βx = card atχ for every x e E .

Let

β = Σ βn = Σ K .
0 0

We will assume here that the sets ΎJ and φg{β) are separated (otherwise
an easy change in the proof would be made), i.e.,

(28) V\Φa{β)-

Let B — Req β. The remainder of the discussion now is toward showing
that B will satisfy the desired requirements of the lemma, i.e., that
B is a regressive isol and that B satisfies (2). Observe that by (28),

η + φg{β) e Y + D9(B) .

Hence in order to complete the proof, it suffices to show that

(29) β is a regressive and isolated set, and

(30) φf(β) = V + Ψg(β)

For (29): Note that β will be an infinite set, since en ^ 1 for
each number n. Also, it is easy to see that if β contains an infinite
r.e. subset, then the set (yt(i, ytl, •••) would also then include an
infinite r.e. subset. But then the set η would contain an infinite r.e.
subset, yet we know that this cannot be true since it is an isolated set.
And therefore we may conclude that β will be an isolated set. We
know that the function ytχ is regressive. If we combine this fact
with (23) and the definition of β, then it is easy to see that β will
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be a regressive set, and in particular that a regressive enumeration of
its members will be

O(Vto, 0), -,j(ytc, e0 - 1), j(yh, 0), , j(yh, e, - 1) , . . . .

For (30): Recall that

(31) β - Σ βn where βn = δ0 + . . . + δn .
0

Because φf and ^ are combinatorial operators, it follows from (26)
and (31) that,

(32) φf(β0) s φf{βλ) £ . and

(33) φg(/30) £ ψa(βd £ and 9>,(̂ ) = Σ ^ ( ^ J
0

and also, in view of (19) and (27), that for n e E,

(34) card φf(βn) = card ^ ίw + card φg(βn)

Combining (15), (32), (33) and (34) gives

(35) card <ρf(β0) = card rjtQ + card φg(β0), and

card (^/(/β,+1) ~ 9/(/9,)) - card (τ]tk+1 - ηtk)

+ card (φg(βk+1) -

Now we can define a partial function,

Q Ψλβ) > V + <Pg{β) >

based on the previous two equations. Let

V <Pλβo)—*-+ Vto + Ψg(βo) ,

Q (<PΛβk+i) - φf{βk)) —*— (Vtk+1 ~ Vtk) + K ( A + 1 ) - φa(βk)) »

where we write — *—> to mean that the related mapping is to be
order preserving. From (35) and (36) it follows that the mapping q
is well-defined, and from (12), (32) and (33) that q will map φf{β)
onto η + φg{β) in a one-to-one manner. To verify (30), it suffices to
prove that q will have a one-to-one partial recursive extension. Be-
cause the sets φf(β) and η + φg{β) are isolated, it follows from a
theorem due to Dekker [4, Proposition 9(6)], that q will have a one-
to-one partial recursive extension, if both q and q~ι have partial
recursive extensions. It suffices therefore to verify this latter property,
and this will be our approach here. We will consider first the mapp-
ing q.
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Let w e ψf{β). We now describe a procedure whereby, with the
possible exception of finitely many such w, one can effectively compute
the value of q(w). From w first find the particular numbers x and
u with

(37) w = j(x, u), ftSβandu< cr{x) .

Note that if px is nonempty then each of its members can also be
found. Moreover, since φf is a normal combinatorial operator, it
follows that for all but possibly finitely many w e φf(β) the corre-
sponding finite set px appearing in (37) will be nonempty. From now
on let us assume that ρx is nonempty. Members of px will be of
the form j(ytk, v), and for each such member we can find the corre-
sponding values of yt]c and v. In addition, the values of tk and ft
can also be determined, by using the regressive properties of yn and
ytn. Let ft* denote the largest value of ft such that j(ytk, v) e pxf for
some number v. Then, it is easy to show that

w e Φλβo) , if ft* = 0, and

w e φf{βk*) — Φf{βk*-ι)> if ft* ^ 1 .

We know, by (25), that from the value of yt]cM we can effectively find
all the members of the set βh*. In addition, note that if ft* ^ 1 then
also the members of the set β^^ can be found, for we may regress
down from yt]c^ to yt}c,_1 and apply (25). In a similar manner, in view
of (14), it follows that from the value of yt]^ we can find all the
members in the set

ηh , if ft* = 0, and

Vtk, ~ Vtk^ if ft* ^ 1

Finally, by combining these properties with the fact that the normal
operators φf and φg are each recursive, it can be seen that the
members in each of the sets below can be effectively determined,

φf(β0) and ηtQ + φg(β0), if ft* = 0 and ,

P/GS*) - Φλβv-i) and

(Vtk. ~ Vtk*J + (<PM - <Pa(βr-i))> if ft* ^ 1 .

It follows directly from this property and the definition of q, that
the value of q(w) can now be computed. Therefore, there will be a
procedure that is effective and which will enable one to compute q(w)
for all but a possible finite number of w e ψf{β). It is readily seen that
this feature implies that the mapping q will have a partial recursive
extension.
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An approach very similar to the previous one can be employed to
show that the mapping q"1 will also have a partial recursive. For
this reason we will omit the main details for doing this, and will
only mention the two essentially new observatians that we would
have been required to make. The first is that given any number
w e rj + φg(β) one can effectively determine whether w erj or we φg(β)
This property follows from the separability of the sets η and φg{β)
given in (28). The other observation is that if w eη, then one can
effectively find the particular numbers s9 k*, tk* and yt]^ that are related
to w in the following way, w — ys and

w e ηtk. , if A* = 0 ,

w G (Vtk* ~ Vt^)* if &* ^ 1 .

This particular property follows from (14), (16), Property A and the
regressive properties of the functions yn and yt%. The importance of
the second property lies in the fact that it means that from the value
of any w eη, one can effectively find yt^ and therefore also deter-
mine the appropriate sets,

β t Q a n d Ύ)H , if A* = 0 ,

βtk,, βtk^, Vtk* and ηtk^l9 if A* ^ 1 .

It is then with these two observations that a similar approach, as
with q, will lead to showing that q~ι will have a partial recursive
extension.

In view of the remarks made up to this point, we see that the
mapping

Q' Ψλβ) > V + <Pg(β)

will have a one-to-one partial recursive extension. This verifies (30)
and complets the proof of the lemma.

THEOREM 2. Let f:E—>E be a recursive function and A and
Y be isols such that

(1) Df(A) = Y .

If Y is a regressive isol, then there will also exist regressive isols B

such that,

D
f
(B)= Y.

Proof. Let us assume that Y is a regressive isol. Let / + and
/ " be the positive and negative recursive and combinatorial functions
that are associated with / (refer to [11]). Then for every number
x e E, f(x) = f+(x) - f~(x), and also
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Df(A) = Df+ (A) -Df- (A) .

Therefore, by (1), it also follows that

= Y+Df- (A) .

If we now apply the previous lemma to this equation, we see that
there will be a regressive isol B such that

Df + (B)=Y+Df- (B) ,

and from this identity it also follows that Df{B) — Y.

REMARK. Theorem 2 is our principal result and it is easy to
observe that it follows almost directly from the lemma. It turns out
that, as a consequence of the manner in which the lemma was proved,
a slightly stronger form of both the lemma and the theorem can be
established. We would like to state without a proof the particular
form that is related to the theorem. It involves the Nerode canonical
extension of the familiar binary relation ^ (among numbers) to the
isols. The extension procedure is introduced in [12], and for the
relation <J its extension will be denoted by ^Λ. It can be shown
that the regressive isol B constructed in the proof of the lemma (in
each of the cases considered there) is related to the isol A by B ^Λ

A. Based on this fact one can obtain the following result.

THEOREM A. Let f:E-^E be a recursive function and A and
Y be isols such that Df{A) = Y. If Y is a regressive isol, then there
will exist regressive isols B such that B ^ΛA and Df(B) = Y.

3* An example* It is possible that the canonical extension of a
recursive function may map an isol that is nonregressive onto an isol
that is infinite and regressive. We would like to give an example
of such a function. First some definitions are needed.

If a and β are two sets of numbers, then a ^ * β will mean that
either a is a finite set and card a ^ card β, or else both a and β
are infinite sets and there is a partial recursive function p such that,
a £ δp, p(a) = β and p is one-to-one on a. If A and B are two isols
then A ^ * B will mean that there are sets ae A and βeβ such that
oc ^ * β Let min (α, b) denote the familiar recursive function minimum
(α, 6), and let jDmin denote its canonical extension to Λ2. min (α, b) is
not an almost combinatorial function, and therefore its canonical
extension will not map Λ2 into Λ. On the otherhand, it is proved in
[3] that Dmin will map Λ% into ΛR. In addition, by combining results
in [3] and [4], one obtains for A,BeΛR,
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Dmln(A, B) = A — A ^ * 5 .

Concerning isols and regressive isols the following property due to
Dekker [4] is also needed; if S and T are any isols, then

(*) S ^ T and TeΛB=>SeΛR.

In the result below we will construct the kind of example that was
described earlier. We note that the functions j(x, y), k(x) and l(x) that
appear in its proof refer to those particular recursive functions in-
troduced in §1.

THEOREM 3. There is a recursive function h(x) and an isol C
such that Dh(C) e AR and yet C $ AR.

Proof. Define

h(x) = min (k(x), l(x)) .

T h e n h w i l l b e a r e c u r s i v e f u n c t i o n , a n d f o r a, b e E

hj(a, b) = min (α, b) .

Therefore also,

DhD5{U, V) = Dmin (U, V), torU,VeΛ.

Select A, B e ΛB such that

(1) A^*B and A

the existence of such a pair of regressive isols is proved in [2]. Then
it follows

DMA, B) = Dmin (A, B) = A,

and in addition, if we let C = Dό{Ay B), then also

(2) Dh(C) = AeΛB.

The function j(x, y) is recursive and combinatorial, and therefore its
canonical extension will map Λ2 into A. In particular, we see that

(3) C = DS(A, B)eA.

Let us now verify

(4) C = Dά{A,B)eAR=> A + BeAR.

First consider the implications,
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Dj(A, B)eΛR=> 2Dd(A9 B) e ΛR

— 2A + (A + B)(A + 5+1)64

= > A + BeΛB .

The first two implications are clear. The last one follows from (*)
and the property,

A + B ^ 2A + (A + J5)(4 + β + 1) .

Together they imply (4). In view of (1), (3) and (4) we obtain C e
Λ — ΛB9 and if we combine this property with (2) the desired result
follows directly.

N. B. The fact that the familiar j function is combinatorial we
first learned from some unpublished notes of Erik Ellentuck. Once
this property is pointed out it is easy to show, and we will leave it
for the reader.

4* Recursive functions of several variables* We would like to
describe some of the results that can be obtained for recursive func-
tions of more than one variable that are similar to those given in § 2.
First let us note some features that distinguish the one and more
than one variable cases. We know that for a recursive combinatorial
function of one variable, its canonical extension will map regressive
isols onto regressive isols. On the other hand, even for recursive
combinatorial functions of two variables, it need not be true that
their canonical extension will map pairs of regressive isols onto re-
gressive isols. For example, Dekker showed in [4] that it is possible
for both the sum and the product of two regressive isols to be an
ίsol that is non-regressive. The characterization of those recursive
functions of two variables whose canonical extensions will map re-
gressive isols to regressive isols was given by Mathew Hassett in
[9]. The following is a special case of a theorem also due to Hassett
[8].

THEOREM B. (Hassett) Let f:En-+Ebe a recursive and com-
binatorial function. Let Au , An be n regressive isols whose sum
Aι + + An is also regressive. Then the value of Df(Au , An)
will be a regressive isol.

Note that when n = 1 in Theorem B one obtains the earlier result
mentioned about recursive combinatorial functions of one variable.
Based upon the procedure for representing the canonical extension of
a recursive function (in terms of the canonical extensions of recursive
combinatorial functions) and applying Theorem B, analogues of Theorems
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1 and 2 can be obtained for functions of more than one variable. We
conclude the paper with statements of these two theorems.

THEOREM C. Let f:En—>E be a recursive function and Al9 •••,
An and Y be ίsols with Df{Au , An) = Y. If the sum Aλ + +
An is regressive, then the isol Y will also be regressive.

THEOREM D. Let f: En—>E be a recursive function and Al9 •••,
An and Y be isols with Df{Au An) = Y. If Y is regressive, then there
will be regressive isols Bly , Bn such that the sum B1 + + Bn

will be regressive and also Df(Bl9 , Bn) = Y.
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HOMOTOPY AND ALGEBRAIC if-THEORY

BARRY DAYTON

A notion of homotopy is described on a category of rings.
This is used to induce a notion of equivalence on the categories
of projective modules and to construct a iΓ-theory exact
sequence. The topological i£-theory exact sequence is then
obtained from the algebraic Ko, Kx sequence.

1* Homotopy* In this section we describe the homotopy notion
and the notion of equivalence it induces on the categories of projec-
tive modules.

A cartesian square of rings is a commutative diagram of rings

(*) Jλ, \
> Λ Q

where A = {(al9 α2) e Aγ x A2\fι(a^ = /2(α2)} and hiy h2 are restrictions
of the coordinate projections. We will further assume that fλ is sur-
jective. If S%Γ is a category of rings and F: Sf —* 3ίΓ is a functor
we call F cartesian square preserving if the functor applied to a
cartesian square gives a cartesian square.

DEFINITION 1.1. Let SΓ be a category of rings. A homotopy
theory Sίf for J ^ is an ordered quadruple (I, cQ, cl9 π) where I is a
cartesian square preserving functor and c0, ̂ : /—> 1^, π: 1^ —>I are
natural transformations such that co(A)π(A) = 1,1 = cι{A)π(A) for A e

For a homotopy theory £$f — (I, c0, cl9 π) on 3ίΓ and f,g:B—+A
morphisms in ̂ ί define / — g if there exists a morphism h: B-+IA
in J^~ such that / = coh, g — cjι\ h is called a homotopy of / to g.
Let = be the smallest equivalence relation on 3Γ(B, A) containing
— if / ~ g we say / is homotopic to g.

Note that a homotopy theory gives rise to a homotopy category,
i.e. a category whose objects are those of ,.yΓ and whose morphisms
are homotopy classes of morphisms.

Let £f be an arbitrary category and G: J%Γ —> =2f be a covariant
functor A homotopy theory £έf — (I, c0, clf π) on 3ίΓ is called compatible
with G if G(π(A)) is an isomophism for each A e 5ίΓ. Note that if
Sίf is compatible with G then G(c0) = G(O = G{π)~ι consequently if
f ~g9 then G(f) = G(g).

297
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For any ring A let E(A) denote the category of finitely generated
protective right A-modules. Given a ring homomorphism f: A—*B
denote by /: E(A) —> E(B) the covariant additive functor defined by
f(M) = M <&A B on objects M of E(A) and f(a) = a (x) 1 on morphisms
of E(A). It is well known that if M is A-projective then M®AB is
J?-projective.

If AQ9A19 -",An,B0,- -,Be are rings, if fiiAi-i-'+Ai and gi:Bi-1-+Bi

are ring homomorphisms, if Ao — Bo = A, An = Be = B and if /»/»_! •••/! =
^e^e-i ••• î> we denote by </χ, •• ,fjgι, •••, ge) the canonical natural
equivalence /» /i --• & &; it is straightforward to verify that

,9e\/fl, -",/n\ = //l, " ' , /n

that

g l 9 •••, g e

whenever h: B-^C and that

for fe: C —> A where the subscript M means that the natural equivalence
is evaluated at the module MeE(C).

DEFINITION 1.2. A homotopy theory ^f = (J, cQ, cl9 π) in 3ίΓ in-
duces an ^^-equivalence —^ in each category £(A), A 6 .^^ as follows:
given Λf, NeE(A) write ikΓ ~ îNΓ if there is a QeP(/A) such that
M ^ ôQ, -JV" ^ îQ and let = be the smallest equivalence relation on
the set of isomorphism classes of objects in E(A) containing ~ ^ If
M = ̂  iV we say that the modules are equivalent mod-^t

The homotopy theory β^ in j % ^ also induces an equivalence rela-
tion = ̂  in the set Iso(ikΓ, JV) of isomorphisms M —• iNΓ of A-projectives
by letting ^ 0 ^^r^i denote that there is an isomorphism θ: πM —>πN
such that

for j1 = 0, 1 and letting —^ be the smallest equivalence relation con-
taining ~ st? on the set Iso(M, N). If φo~^Φi we say the isomor-
phisms are equivalent mod έ%f.

Note that if Mf -~^-> M » JV > iV' are isomorphisms and if ^0 =

φι mod Jg^ then also μφoω — μφ,ω mod Sίf. It is not difficult to show
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that if /: A —• B is a morphism in 3£~ then M s iSΓmod Jg^ in f (A)
implies /M" = fN mod £{f in P(J5) and ̂ 0 ~ & mod 3ίf implies fφ0 =
/^mod ^ Γ in £(J5). It is also easily seen that if / = g: A—>B and
MeP(A) then /M = gM mod <£r in P(B).

Given a ring with unit R, an i?-algebra will mean a unitary iϋ-
algebra. If A is an iϋ-algebra, then α: i2 —• A will denote the unique
i?-algebra homomorphism such that α(l) = 1. In addition to the above
results we then have:

LEMMA 1.3. Let 3ίΓ he a category of R-algebras and R-algebra
homomorphίsms and let £$f = (J, c0, cjή be a homotopy theory on J%ΐ
Let f ~ g:A-+B in 3Γ, let M, Ne£(R) and let φ e Iso (άM, dN).
Then

\a, f I M \ b / N \a, g

in Iso (bM, bN).

Proof. We may assume f ~ g Letting h: A —+ IB be a homotopy
from / to g, define ω:πbM-^π$N by

ω =
6, πIN \a, hiM

It is easily verified that co shows that the two isomorphisms are
equivalent mod Sίf.

Equivalence mod £ΐf works well with cartesian squares. If (*) is
a cartesian square we can construct the fiber product category
E(A) xEUΰ)P(A2), [2, p. 358] in which objects are triples (M, φ, N)
where Me P{A^), Ne P(A2) and φ'.^M-^f^N is an isomorphism in
P(A0); and the morphisms (M, φ, N)-+(M', φ', N') are pairs (a, β)
where a: M-+M' e£(Ad, β: N-+ N' e£(A2) and φ\fa) = (ftβ)φ. By
Milnor's theorem [2, p. 479] the functor F: E{A) -+ P(AX) x P{AQ) P(A2)
given by F(M) = (h.M, (hJJhJ^M, h2M) and F{a) = (hγa, h2a) is an
equivalence of categories. Making this identification, the following
is a projective module analogue of a theorem on vector bundles. [1,
Lemma 1.4.6].

PROPOSITION 1.4. Let ^f = (/, c0, tjz) be a homotopy theory on
^Γ andj*) a cartesian square in 3ίΓ. Let Me E(A), Ne E(A) and
φ0 ~ φ,: AM-^λNmod £ίf. Then (M, φ0, N) = (M, φl9 N) mod J T in
£(A).

Proof. Assume φ0 ̂ ^ Φi and let ω: πf1M—»τtf2N show φo~^Φι-
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Define ω':ίf1πM-yίf2πN by

ft)' =

Since

IhΔ I//2

IAι JίU IA0

is by hypothesis also a cartesian square we have (πM, ω\ πN) e P(IA)
and direct calculation shows that Cj(πM, ω', πN) ρ& (M, φh N) for j =
0,1.

2* A connecting homomorphism* In this section we obtain an
explicit formula for a connecting homomorphism useful in constructing
algebraic if-theory exact sequences.

Let KQ, Kx be the algebraic if; functors [2, p. 445]. If 3ίΓ is a
category of iϋ-algebras and ϋJ-algebra homomorphisms define K^A) =
Ki(A)/lm Ki(a). If /: A —•> B is a morphism in 3ίΓ then f°a = b and
we let Ki(f): K^A) —• K^B) be the induced map. It is simple to verify
that Ko, Kx are functors on J%Γ and moreover that K^A) is isomor-
phic to the usual reduced group whenever A is an augmented ϋί-algebra.

THEOREM 2.1. Let £ίf be a homotopy theory on a category
of R-algebras compatible with Ko. Let

B >R A >R

Uo /1 Uo
•I ψ /. ψ

iJl > u^o Λ.! * -Γio

6β cartesian squares in J%7 A: ^ —+ A1 such that fh~g and
0. Then there is a unique group homomorphism 0: KQ(B) —> KQ(A) such
that

8[(StM, φ, N)] = IUM, φ(
LV \ b

u g /M

for M,NeE(R).

Proof. For Q = (b.M, ψ, N) e E{B) define

DQ = (aM, φ(^-) , N) 6 P(A) .
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Once one has established
( i ) If Q, & Q2 then DQ, ~ DQ2 mod 3έf.
(ii) D{QX 0 Q2) ™ DQX 0 DQ2

(iii) Z>(6Λf) - dM
(iv) every element of K0(B) is of the form [Q]

it follows easily that d is well defined, unique and a group homomor-
phism. Because proofs of assertions (ii)—(iv) are themselves straight-
forward and do not depend on homotopy, we will prove only ( i ) .
Suppose then that (a, β): {bxM, φ9 N) —• ($M', φ\ N') is an isomorphism.
Then we have φ' = ao(β)(φ)g(a~1). By Lemma 1.3

&i, gi *•

A direct computation gives

so

6lf

where

Therefore (using Proposition 1.4)

, N') = UM', ao(β)(Φ)(ψA /(7), JSΓΛ mod\ \b gl Ju gl M' \ \bl9 gl M

Since (7, β~ι) is an isomorphism from this latter module to

\ \bl9 glM J

the assertion ( i) is proved.

3* An exact sequence* In this section we use the homomorphism
of 2.1 and the standard Koy Kt exact sequence to construct a 5-term
exact sequence.

An ϋί-algebra A is called proper if the morphism K0(a): K0(R)—*
K0(A) is injective. We note that either of the following two conditions
is sufficient to insure that an iϋ-algebra A is proper:

(i) A has as an augmentation, i.e. there is a e: A —> R such that
ea = 1^
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(ii) R is a principal ideal domain and A is a commutative R
algebra.

LEMMA 3.1. Let (*) be a cartesian square of proper R-algebra.
Then there is an exact sequence

— K0(A)

> KM 0 KM > KM

which is functorial with respect to transformations of cartesian
squares.

Proof. Since

R >R

R >R

is a cartesian square, by [2, p. 481] we have the commutative diagram

0 0 0

Xι(Λ) -

I
K,(A) —

I
KX{A) ~

i
0

-> K^R) 0 KX{R)

1
i
I
0

i > #,(£)

I
I

1 • ^ ( A o )

I
0

> Ka(R) •

> Ka(A) >.

o ~

~ 1
0

K0(R) φ K,(E)

J
KQ{AX) Q)JC/Ao)

£o(Λ) Θ ̂ o(Λ)

i
0

• Λ.(Λ)

0

where the columns and the first two rows are exact. An easy chase
shows that the third row is exact.

We wish to give an explicit formula for the morphism d. For
this we have:

LEMMA 3.2. Let A} AQ and Aι be proper R-algebras and

f

be a cartesian square. Then the connecting homomorphism of 3.1 is
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given by

S[dQM, a] = \(aM, a(^J) , M\\ for MeE(R) .
LΛ \ a0 IM JΛ

Proof. Since the full subcategory of P{A0) with objects d0M, M e
P(R) is coίinal, .Ki(Ao) and hence K^AQ) is generated by elements of
the form [d0M, a] [2, p. 355]. But

3[α0M, a] =
\α, / , /'/if \ α0 /ifJ

- \(faM, (—^—) a(a'f''f) , SUM)] - [aM]
L\ \α, ε, ajM \ aQ IM JΛ

from [2, 4.3 p. 365] since [aM] e Im K0(a).
In order to apply 2.1 we need

LEMMA 3.3. Under the hypotheses of Theorem 2.1 the diagram

^ £ ^ 0 = 0

Proof.

aS'Ifi'M, a] = {(6, M,

^ / ) )] = 3[δ0Λί, a]

Also since ^o(-^i) = 0 it can be seen that if

[N] e K0(B), [N] = [(&>, φ, N)}, M, Ne P(R) .

Thus

Φ, 0 .

THEOREM 3.4. Let J%~ be a category of proper R-algebras and
be a homotopy theory on 3ίΓ compatible with Ko. Let
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r

(**)
R-

/
R
/ h

be a diagram in 3ίΓ where fh = g, all other squares commute and
the vertical squares are cartesian* If K^C^ = KQ(B^) = 0 then

KQ(C) ̂ ^K0(B) — K0(A)

is exact

Proof. From 3.1 and 3.3 we get a commutative diagram

1 /
/

K0(C)

KJB) K0(Bl)=0

KΛf)

where the rows are exact. A diagram chase gives the result.

4* The topological if-theory exact sequence* In this section
we use 3.4 to construct the topological i£"-Theory exact sequence.

Let R denote the real or complex numbers. For a compact
Hausdorff space X let CX be the ring of continuous R-valued functions
and for a continuous function/: X—> Yletf*: CY—>CXbe the induced
ring homomorphism. Denote the one point space by * and take 3ίΓ
to be the category of rings CX and ring homomorphisms. We will
consider ^ίΓ to be a category of C* = R algebras. Define J: J Γ —>
3ίΓ by JCX = C(X x /) where / denotes the unit interval and J(f) =
( / x 1)*. Define cQ,clfπ by i0*, if, π* where is:X—+I is given by
ij(x) = (a?, j) and π(x, t) = α?, TΓ: X x I-+X. It follows easily that Jg^ =
(J, c0, tu π) is a homotopy theory on J%Γ. We recall that Kξ{X) =
ifo(CX) where iΓ0

Γ is topological iΓ0 functor. If X is a pointed space
the reduced group as defined above coincides with the usual reduced
group. It follows from standard results on vector bundles [1, Lemma
1.4.3] and on the correspondence between vector bundles over X and
protective modules over CX that β^ is compatible with Ko

τ. Alterna-
tively it can be easily proved directly that if M, NeE(X) then M s
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AT mod £έf if and only if M & M.
We then have

THEOREM 4.1. Let X be a compact Hausdorff space, A a X a
closed subspace. Let SA, SX denote the suspensions of A, X respec-
tively. Then there is an exact sequence

KO

T(SX) > Koτ(SA) > KO

T(X/A) > Kί(X) > KO

T(A)

Proof. Consider the diagram

SX- — SA v XIA

where TX denotes the cone on X and h is any continuous function.
Applying the functor C we get a diagram of the form (*) and it is
not hard to show that the vertical squares are cartesian. Since TA
is contractible hi ~ j so i*h* = i*. Thus theorem (3.4) applies to
give the desired exact sequence.

The long exact iΓ-theory sequence follows in the usual manner
by splicing sequences of this form together.
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WEIGHTED CONVERGENCE IN LENGTH

WILLIAM R. DERRICK

This paper studies the lower semicontinuity of weighted
length

( * ) liminf 1 fds ^ \ fds ,

where the sequence of curves {γn} converges uniformly to the
curve γ, and / is a nonnegative lower semicontinuous function.
Necessary and sufficient conditions for equality in (*) are
obtained, as well as conditions which prevent γ from being
rectifiable. Requirements are given for the attainment of the
weighted distance, from a point to a set, and the families of
functions, for which weighted distance is attained or (*) is
satisfied, are shown to be monotone closed from below. Finally,
the solutions to the integral inequality

*) lr(*)-r(O)l s ( fds,
Jr[o,ί]

are shown to be compact if the initial values γ(0) lie in a
compact set.

Let 7 be a curve in Euclidean m-space Em and / be a real-valued

function on Em. The (/)-weighted length of 7, \ fds, has proved of

fundamental importance in establishing the path-cut inequality for
condensers [2], [3] and the relationship between capacity and extremal
length [5], [8]. Theorem (2.4) provides necessary and sufficient condi-
tions for weighted convergence in length, and (2.10) gives conditions
under which the weighted distance, from a point to a set, is attained.
Corollary (2.6) is a useful special case of [8, Lemma 3.3]. In (3.1) the
family of functions, for which weighted distance is attained, is shown
to be monotone closed from below, and Theorem (3.2) establishes the
compactness of the set of solutions to the contingent equation (**),
similar to a result of Filippov [4].

2. Convergence theorems*

NOTATION 2.1. Let Em denote Euclidean m-space consisting of
all m-tuples x = (xl9 , xm) of real numbers with inner product
(&, v) — Σ*U %iVi> for all x, y m Em and norm \x\ = <α?, x}1'2. Through-
out this paper, points in Em will often be denoted by the letters x
and y, whereas the letters s, t will be reserved for real numbers. The

307
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complex plane is designated by the symbol ^.
Let Int A, cl A, BA denote the interior, closure, and boundary of

the set A, respectively. The open ball of radius t centered at x will
be indicated by the expression B(x, t).

A function f:Em-+En is Lipschitz on the set A in Em if there
is a constant M such that

\f(x)~ f(y)\^M\x-y\,

for all x, y in A. If n = 1, the gradient of /, grad /, will exist
Lm — a.e. in A, where Lm is the m-dimensional Lebesgue measure.
The Hausdorff 1-dimensional measure in Em will be denoted by H1 (for
its definition and properties see [1]). Then Hι(A) represents the length
of the set A in Em.

DEFINITIONS 2.2. Two functions 7: [a, b] -+ Em, 7* = [c, d] -> Em

are Frechet-equivalent if

infsup|7(£) - 7*(λ(ί))l = 0,
Λ,

where h: [a, b] —> [c, d] is a homeomorphism. A Frechet equivalence
class 7 of continuous functions into Em is called a curve in 2£m, and
each member of the class is called a parametrization of 7.

The length of a curve 7 is given by

Hί(j) = s u p Σ |7(ί{_i) — 7(ί|)| ,

where 7: [a, b] —> i?™ is any parametrization of 7 and TΓ is a partition
of [α, δ]. Note that £P(7) < £Γί(7), unless the set of multiple points
of 7 has iP-measure zero (see [7, p. 125]). A curve 7 is rectifiable
if H*(y) < 00. In this case we can write

Hi(v) =

A rectifiable curve can be parametrized with respect to arc-length
(see [6, p. 259]); we denote this parametrization by 7(s) Note that
|grad7(s)| = 1, H1 - a.e. in [0, m(j)], since \Ύ(S) - 7(8*) | ^ \s - s
implies that |grad7(s)| ^ 1, H1 — a.e., and

0

If / : Em —> E1 is a Borel-measurable function and 7 is a rectifiable
curve, define (as above)

\fdH1 = J V(7(ί)) I grad 7(01 cίί ,
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then in the event 7 is parametrized by arc length,

fdIP = f(7(s))ds .

r Jo

In particular, if 0 <S S ^ Hί(y), we define

[ fdH1 = \Sf(Ύ(s))ds .
JΠSl Jo

A curve 7 is locally rectίfiable if H*(7 0 cl B(0, k)) < 00, for all
k = 1, 2, 3, , where 7 Π cl B(0, k) are the subcurves of 7 with images
in cl B(0, k).

THEOREM 2.3. Let {Ύn(s)} be a sequence of rectifiable curves in
Em, such that Hi(yn) ^ L > 0 and 7«(0) —>70. Let ys be an accumula-
tion point of the set {7W(S)}, 0 < S ^ L. Then some subsequence {ynj}
converges uniformly on [0, S] to a curve 7 containing 70 and j s such
that for every nonnegative lower semicontinuous function f: Em —> E1,

(1) lim inf [ fdH1 ^ ( fdH1 .
^ ° ° J "/'%iL5] J r

Proof. Since all but finitely many points of {7W(S)} lie in
2?(7o, S + 1), so does 7<?. By selecting a subsequence and reindexing
we can assume 7»(S) —> 75. Each 7W is Lipschitzian with constant 1,
so {7W} is equicontinuous on [0, S], and uniformly bounded by |70 | +
S + 1. By Ascoli's Theorem, some subsequence {ynj} converges uni-
formly on [0, S] to a function 7: [0, S]-^Em. Clearly 7 is a curve
from 70 to 7S1 and is Lipschitzian with constant 1. Thus, |grad 7| ^ 1,
H1 — a.e., and by Fatou's lemma and the lower semicontinuity of /

lim inf ( fdH1 ^ Γ l ί m i n f /(? (t))dt >
i->~ Jr W i C5] Jo i->co % J

S \Sf(v(t))dt ^ [ /ώίfx.
Jo h

COROLLARY 2.4. Assuming the hypotheses in Theorem (2.3), the
condition

(2) lim Γ|grad yn.(t) - grad τ(ί) |dΐ = 0 ,
i-00 Jo J

(3) lim ( fdH1 =
i->°°Jr% i[5]

for every continuous function f: Em -+ E1.
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Proof. Let M be a bound for / on B(y0, S + 1). Given ε > 0,
the uniform convergence of {Ίnj} and (2) imply that, for sufficiently
large j ,

\ fdH1 - \ fdW ^ Γ foΎ - foΊ\\gΐ^Ί \dt
rnj h Jo J

^ e(S + Λf) .

Thus (2) implies (3). Conversely, if / ΞΞ 1, then

S = limf dH1 = Γ | grad7(ί) |dί ^ S ,
i—J?-wi[5] Jo

and it follows that | grad 7 | = 1, H1 — a.e. By the triangle inequality,

I grad ynj — grad 7 |2

= 4 - | grad Ύnj + grad 712 ^ 4(2 - | grad yn. + grad 71) ,

so Schwarz's inequality yields

( 4) Γ f J grad 7^. - grad 71 dtϊ ^ 4S^2S - Γ | grad 7n,- + grad 71 dί) .

But {ynj + 7} converges uniformly to 27 on [0, S], so Theorem
(2.3) implies

(5) liminf Γ[grad7Λ, + grad7|dί ^ 2? |grad7|dί = 2S .
j-*oo Jo J Jo

Combining equations (4) and (5) we find

0 <£ lim inf ( i | grad 7». — grad 71 dί)
i-»oo \Jθ ^ /

/ r s \2

^ lim sup (1 I grad 7» — grad 7\dt)
j->oo \ J θ ° J

= AS (2S - lim inf ΓI grad j n . + grad 71 dt) ^ 0 ,
\ i->oo Jo J /

which yields (2).

EXAMPLE 2.5. Let 7Λ: [0, 2π] —> ^ be given by 7Λ(s) = (eins)/n.
Note these functions converge uniformly to the constant function
y(t) = 0. Although (1) holds, (3) clearly does not, and

.(£) - grady(t)\dt = [2Z\eint\dt = 2π .
J

COROLLARY 2.6. Lei {7w(s)} be a sequence of rectifiable curves in
Em such that 7%(0) -* 70 and Ίn{sn) —> ys, 0 < sn ^ S < 00. Then there
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is a subsequence {7nj} and a curve 7 containing 70 and ys such that

(6) lim inf \ fdHι^\fdHι,
i-~ hnjίsnj~] h

for every nonnegative lower semicontinuous function f: Em —> E1.

Proof. Let ΊZ be the restriction of jn to [0, sn]. Extend 7* to [0, S]
by setting 7t(t) = 7*(sJ, for sΆ ^ t ^ S. Each 7* is Lipschitzian with
constant 1, so, as in Theorem (2.3), some subsequence converges uni-
formly on [0, S] to a curve 7 containing 70 and 7S, and having Lipschitz
constant 1. By passing to a subsequence, we can assume sn — >s* in
[0, S]. Then y(s*) = 7* since

17(8*) - Ίi3(sn)\ ^ \7(s*) - 7n* (5*)| + I** - ^ , ! — 0 .

For every ε > 0, sΛj. > s* — ε for large j, so by Fatou's Theorem

lim inf ί /d£P ^ lim inf Γ "/(τϊ-(ί))^

^ Γ*~f/(7(ί)dί ^ ( /diί 1 ,
JO Jϊls*~ε]

from which the result follows.

THEOREM 2.7. Let {7«(£)} &β α sequence of curves in Em such that
Hi(7n Π cl B(0, k)) SLk< °o, for all n, k = 1,2, •••, and 7.(0) -> %•
Then some subsequence {7nj} converges uniformly on compact subsets
to a curve 7 containing 70 such that

( 7 ) liminfί fdHι^\ fdH1 ,

/or ê er?/ nonnegative lower semicontinuous function f: Em —> Eι.

Proof. There exists an integer K such that 70 and all 7Λ(0) lie
in B(0, K). In each closed ball cl J3(0, k), k >̂ if, reparametrize a
restriction of 7W by arc length

?**: [0, sΛw] -> 7Λ ,

where 0 < sfe% g Lfc is either the first real number such that 7kn(skn)
lies in dB(0, k) or fl"i(7Λ), if no such number exists. If denumerably
many 7» He in some 5(0, ft) the proof follows by Corollary 2.6. Other-
wise, delete all yn which lie in 5(0, ft + 1) Then a subsequence of
{7(*+i)n(l)} converges to a point ^ in cl 5(0, if + 1), and Theorem 2.3
yields a subsequence {y(K+1)ni} converging uniformly on [0, 1] to a curve
71 containing 70 and p,. Delete all yn. lying in 5(0, K + 2). A sub-
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sequence of {7(̂ +2)̂ .(2)} converges to a point p2 in cl 5(0 + 2), implying
a subsequence, which we also denote by {7(̂ +2)Λi}> converges uniformly
on [0, 2] to a curve 72 containing 70 and p2. Continuing in this manner
we note that Ίk is an extension of 7y, for k > j , hence there is a
7: [0, 00) —• Em and a subsequence {7W.} obtained by Cantor's diagonali-
zation process such that {yn.} converges uniformly to 7 on compact
subsets of [0, co). By Theorem 2.3 we have that for every real number
S>0,

lim inf ί fdH1 ̂  \ fdH1 ,
j-,00 JrnΛS] JrίS]

for every nonnegative lower semicontinuous function, hence the proof
is complete.

REMARK 2.8. Observe, from the construction above, that 7 is
bounded if denumerably many yn lie in some .5(0, k), and is unbounded
otherwise, as a consequence of the hypothesis Hl(Ίn Π cl 5(0, k)) ^
Lk < °°.

Theorem 2.7 is true if we replace this condition by the requirement
that H*(yn Π cl 5(0, k)) < 00, for all positive integers n and &, since if
denumerably many Ί% lie in some 5(0, k) and no uniform bound exists
on their lengths, an argument similar to the rest of the proof above,
using curves of length ^ j , sequences of points {yn(j)}9 j = 1, 2, ,
and diagonalization, yields a subsequence {7̂ .} converging uniformly
on compact subsets of [0, <>o) to a curve 7 for which (7) holds. Of
course, 7 might then be a constant function as in Example 2.5.
Moreover, it is no longer true that 7 is unbounded if only finitely
many yn lie in each 5(0, k), as is seen in the next example.

EXAMPLE 2.9. In E2, select the points

n — 1 n — 1\ -, Λ n
) K = ( 1n n / \ ^ + 1

\ n +

Let Ίn be the polygonal arc obtained by joining the points al9 bly α2,
δ2, , an, bn9 cn be straight line segments in their given order. Clearly
fiΓi(7« Π cl 5(0, k))< oo, for all n, and 7n lies in 5(0, k) iff n g k - 2.
However, if we parametrize these arcs by arc length, then {yn} con-
verges uniformly on compact subsets of [0, oo) to the polygonal arc
7 joining the points al9 bu α2, 62,

LEMMA 2.10. Let K be a closed subsets of the bounded arcwίse
connected set A in Em, y a point in A — K, Γ the family of curves
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joining y to K in A, and f: Em —> E1 a positive lower semicontinuous
function. Then there is a curve 7/ in Γ such that

(8) ( fdH1 = inf [ fdH1 .

Proof. Assume the right side of (8) equals M< °o as otherwise
any 7 will do. Let {7*} be a minimizing sequence of curves in Γ.
Since f(x) ^ a > 0 on cl A, for sufficiently large n we have flϊ(7») ^
2M/a. Parametrizing these rectiίiable curves by arc length so that
7»(0) = y and Ύn(sn) belongs to K, for sn <* 2M/a, Corollary (2.6) and
the compactness of K imply the existence of a curve 7/ in Γ such
that

M ^ ί fdH1 ^ lim inf f fdH1 = M .

REMARK 2.11. If A is unbounded, the same result may be obtained
by requiring that the lower semicontinuous function / be bounded
below, by a positive constant, on A.

One may also weaken the requirement on the lower semi-continuous
function / by asking that it be nonnegative and satisfy

(9) Hι({x: f(x) < e}) = o(l) .

Then M > 0 and a minimizing sequence {yn} can be chosen, for M < oo
and sufficiently small ε, such that

Hi(Ύn) < o(l) + 2M/e .

The proof follows as before. Condition (9) can not be removed entirely
as is seen by letting A be the closed unit disk in &, K = dA, y = 0,
and / be the characteristic function on the complement of the set

{*(*): z(t) - (1 - r 1 ) ^ , 1 ^ t < oo} .

3* Some compactness theorems* Let 91 be the set of functions
/ : Em -> E1 for which Theorem 2.3 (2.6, or 2.7) holds, and S3 the set
of functions which permit the verification of Lemma 2.10. Clearly 21
and 35 properly contain the nonnegative and positive lower semi-
continuous function respectively, since the function values may be
changed on sets of ίΓ-measure zero without affecting (1) or (8).

THEOREM 3.1. Let {fk} be a nondecreasing sequence of functions
in % and f(x) = limkfk(x). Then f is also in 2t. The same result
also holds for 33 provided fx(x) ̂  a > 0 on cl A.

Proof. Let {7J be a sequence of curves satisfying the hypothesis
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of Theorem (2.3). Then by the Lebesgue monotone convergence theorem
and (2.3), we have

(10) f fdH1 £ lim sup (lim inf ί fkdHι) rg lim inf ί fdH1 ,

implying that / lies in 21. Let M equal the right side in equation
(8). There is nothing to prove if M = <>o, so let M< °o. For each
fk there is a curve yk such that

( fkdHι = inf ( fkdHι = Mk ^ M.
hk r h

Since

(11) M, = ( f dH1 < \ fjdH1 £Mkyj ^ & ,
J Tj J rk

the sequence {Mk} has a limit ikf * ^ M. Moreover

)rk

so the curves {yk} satisfy the hypothesis in Corollary (2.6). Hence
there is a curve 7 such that (6) holds for each/*. Thus by (10) and (11)

M ^ ( fdH1 ^ lim sup (lim inf ( fjdH1)

^ lim sup (lim inf Mk) = M* ̂  Λf .

Now let A be a subset of Em, 0 < S < ^, f: Em -> E?1 a nonnega-
tive lower semicontinuous function, and

®. = suf, S) = {7:7(0) G A, 17(8) - 7(0) 1 ^ f /dirι, 0 ̂  s ^ s } .
I his] )

Then ®^ is a subset of the Banach space of all continuous functions
on [0, S] with the sup norm.

THEOREM 3.3. If A is compact, then 2)^ is compact.

Proof. Let {yn} be a sequence of curves in ®^. By Theorem (2.3),
some subsequence, which will also be denoted be {yn}, converges uni-
formly on [0, S] to a curve 7, with 7(0) in A, and satisfies

[ fdH1 ^ lim inf ( fdH1 ^ | Ύ(S) - 7(0) |, 0 ^ s ^ S .

Reparametrizing 7 by arc length (Hi(j) ^ S) and extending it to
[0, S], as in the proof of (2.6) shows that 7 belongs to ®^.
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COLLECTIVELY COMPACT AND SEMI-COMPACT
SETS OF LINEAR OPERATORS IN

TOPOLOGICAL VECTOR SPACES

M. V. DESHPANDE AND N. E. JOSHI

A set of linear operators from one topological vector
space to another is said to be collectively compact (resp.
semi-compact) if and only if the union of images of a neigh-
bourhood of zero (respectively every bounded set) is relatively
compact. In this paper sufficient conditions for a set of
operators to be collectively compact or semi-compact are
obtained. It is proved that if Tn-> T asymptotically, where
X is quasi-complete and Tn are ΫF-compact then {Tn — T)
is collectively compact. The final section deals with collec-
tively weakly compact sets. It is proved that in a reflexive
locally convex space a family of continuous endomorphisms
is collectively weakly compact if and only if

- {K*: E* > JS7J,}

is collectively compact.

The concept of collectively compact sets of linear operators on
normed linear spaces was introduced by Anselone and Moore [3].
This concept was studied in greater detail by Anselone and Palmer
[1, 2]. Some of the results in these papers were extended to more
general spaces in [4]. In this paper some further generalizations
are obtained.

2* Let X and Y be topological vector spaces and £f [X, Y],
the set of continuous linear operators on X to Y. The underlying
scalar field will be assumed to be the field of complex numbers,
unless otherwise stated.

DEFINITION 2.1. A subset JtΓcz^f [X, Y] is said to be collec-
tively compact (respectively, weakly compact, totally bounded) if and
only if there exists a neighbourhood V of zero in X such that
J%ΓV= {Kx: Ke JΫ7 xe V} is relatively compact (respectively weakly
compact, totally bounded) in Y.

REMARK. It is obvious that ,5ίΓ collectively compact ==> Sfc~ col-
lectively weakly compact. However, if 7 is a Montel space, the
reverse implication is also true.
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PROPOSITION 2.1. Let 3ίί<z.Sf\X, Y] be collectively compact and
Y, a quasi-complete locally convex space. Then the following state-
ments hold.

(a) The convex hull of 3ίΓ is collectively compact.
(b) The balanced hull of <3ίΓ is collectively compact.
(c) The absolutely convex hull of 3ίΓ is collectively compact.
(d) The closure of 3$Γ in the pointwise topology, and therefore in

£?* [X, Y] is collectively compact.

(e) The set (ΣLi KKn: Kn e 3T, Σ?=i I K\ ^ 6, b > 0, N ^ oo} is
collectively compact, the convergence of the series being in J5?b[X, Y].

Proof, (a) Let $SΓ be the convex hull of ST. As ^T is col-
lectively compact, there exists a neighbourhood V of zero in X such
that ,.sf~V is relatively compact in Y. Now,

where bar denotes the closure. Since Jϊ^V is compact and Y is
quasi-complete, ϊζWΨ) is compact [9, 20.6(3)]. It follows that

is collectively compact. The proofs of (b) —(e) are similar to those
in [1].

PROPOSITION 2.2. Let X, Y and Z be topological vector spaces

and :yΓ c £? [X, Y], ^// c Sf [Z, X], ^T c £f [ Γ, Z] then:

(a) ,9ιί collectively compact and ^ equicontinuous ==* ,^^/f
collectively compact.

(b) J%Γ collectively compact and <yίr relatively compact in the

S^b [X, Y] => Λ^. ίΓ is collectively compact.

Proof, (a) Since Sf is collectively compact, there exists a
neighbourhood V of zero in X such that SίΓV is relatively compact
in Y. Further, by the equicontinuity of ^ " , there exists a neigh-
bourhood W of zero in Z such that ^//Wa V. Hence

From this the assertion follows,

(b) See [4], Prop. 2.3 (b).

COROLLARY. If :?ιf c S^ [X, Y] is collectively compact and
^/f c £f [Z, X] is bounded where Z is barreled and X locally convex,
then S^Γ^/S is collectively compact.

, Y] with the topology of uniform convergence on bounded sets of X.
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Proof. For, if Z is barreled and X is locally convex then
c £ί\ [Z, X] is bounded if and only if it is equicontinuous.
It is proved in [1] that a compact set of compact operators on a

Banach space is collectively compact. We shall prove a similar but
slightly weaker result for topological vector spaces. For this, we
introduce the following definitions.

DEFINITION 2.2. A linear operator KeJ^[X, Y], where X and
Y are topological vector spaces, is said to be semi-compact if it maps
every bounded subset of X into a relatively compact subset of Y.

It is obvious that a compact operator is semi-compact. The con-
verse is also true if X is a quasinormed space.

DEFINITION 2.3. A set of linear operators .3Γ c ^f [X, Y] is
said to be collectively semi-compact, if and only if, for every bounded
set Bd X, ,%^B is relatively compact in Y.

It is clear that a collectively compact set of operators is collec-
tively semi-compact and the propositions proved so far, for collec-
tively compact sets, are also true for collectively semi-compact
operators if X is bornological and Y locally convex, because, a semi-
compact operator is bounded on bounded sets and therefore continu-
ous if the domain space is bornological.

We prove the following

LEMMA 2.1. Let J?~ be an equicontinuous family of operators
on a compact set ,9Γ into a topolological vector space Y. Let J^~ be
compact with respect to the topology of pointwise convergence. Then
the set J?~(.yr) = {f(K): / e J^~, Ke.yT} is compact.

Proof. ^~ is equicontinuous, therefore, f{K) is jointly continu-
ous, in the sense, that the map {^~ x J3Γ) —•> Y defined by
(/, K) —* fK is continuous relative to the product topology [8, 8.14].
Now j ^ ~ x 3ίΓ is compact, hence J^~' 3ίf] the continuous image of
J^ x ,9Γ is compact.

The following proposition generalizes the theorem 3.6 in [4].

PROPOSITION 2.3. Let X, Y be locally convex spaces, X borno-
logic. Let ,5ίΓ be a set of semi-compact operators, compact in
Sfb [X, Y]. Then 3ίΓ is collectively semi-compact.

Proof. Define a map /,: £f [X, Y] -> Y by fx(K) = Kx for
Ke ^f [X, Y] and each x e B, a bounded set in X. Consider the set
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— {fχ: x^B). We prove that ^ is equicontinuous Let V be
a neighbourhood of zero in Y. Then the set W = {K: KB a V) is a
neighbourhood of zero in j5fb[X, Y]. Now,

= {fx(K): fxejη KeW}

= {iΓα;: iΓe W, xeB}

= W(B)cz V.

This proves the equicontinuity of ^ 7 Now, the closure jP^ in the

pointwise topology is also equicontinuous. Also, J^K c ^ K = KB

which is compact by hypothesis on J%ΐ Hence j^~K is relatively

compact in Y, for each Ke ^%7 From this follows the compactness

of ~W \&Λ&, Problem H]. From Lemma2.1 we deduce that ^ ' ^ \ 5 Γ *

is compact. But j r £ = ̂ r c y χ Hence ^TB is relatively

compact. This implies that SίΓ is collectively semi-compact.

COROLLARY. If Y is complete, then every totally bounded set
SίΓ of semi-compact operators in J^?h [X, Y] is collectively semi-
compact.

Proof. In this case J2% [X, Y] is complete. Hence JUT is com-

pact. By the proposition <βΓ is collectively semi-compact. Then so

is

PROPOSITION 2.4. Suppose X, Y are locally convex spaces. Let Y
be reflexive. Then every set Sf of semi-compact operators bounded
in J?fb [X, Y] is collectively weakly semi-compact.

Proof. Since 3ίΓ is bounded in £fh [X, Y], ^ΓB is bounded for
every bounded set B c X. Since Y is reflexive, every closed bounded
set is weakly compact. [10, Th. 36.5]. The conclusion follows.

3* Convergence properties of collectively compact sequences of
operators.

PROPOSITION 3.1. Let X and Y be topological vector spaces, Y
sequentially complete. Let T, Tn e J^f [X, Y] for all n. Then:

(a) Tn—+ T in <2fh [X, Y] if and only if Tn—>T in pointwise
topology and {Tn — T) is totally bounded in Jίfb[X, Y].

(b) If, in addition, X is bornologic and Y locally convex, then
Tn->T in £fb[X, Y] and each Tn - T semi-compact => {Tn - T) is
collectively semi-compact.
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Proof, (a) It is evident that Tn-+T in £fb [X, Y] Tn~+T
pointwise and {Tn ~ T) is relatively compact, and hence, totally
bounded.

For the reverse implication assume that Tn ~ T-+* 0 in J*fb [X, Y\.
This implies that for a given neighbourhood V of zero in Y, and
bounded set B in X, there exists a sequence % such that (Tn. — T){B)
ςt V9 for each i = 1, 2, •••. Since {Tn — T) is totally bounded,
there exists a Cauchy subsequence {Tn.. — T} which must converge
in ^fb[X, Y] by completeness of Y. Because Tn — T—>0 pointwise,
it follows that Tn.. - T-*0 in £fh[Xf Y]. Therefore (Tnij - T){B)
c V, j > N, a positive integer. This is a contradiction.

(b) This follows from the fact that a totally bounded set of
semi-compact operators is collectively semi-compact if Y is a complete
locally convex space and X is bornologic (Cor. Prop. 2.3).

REMARKS. If Tn—>T pointwise and X is of second category, the
Banach-Steinhaus theorem implies that the {Tn} is equicontinuous,
and hence, the pointwise convergence is uniform on the compact sets
of X. On the other hand, as proved in (a) above, {Tn—T} totally
bounded and Tn—*T pointwise imply convergence in Jίfb [X, Y], i.e.
uniform convergence on bounded sets. This leads to the following
propositions.

PROPOSITION 3.2. Suppose Tn-^ T pointwise on X, where X is
bornologic and of second category. Suppose ^>Γ c J^ [X, X] is col-
lectively semi-compact. Then (Tn — T) K—+ 0 in £^h [X, X] uniformly
for Ke J^Γ

PROPOSITION 3.3. Let Tn-*T pointwise and J%Γ a £f [X, X] be
totally bounded in the pointwise topology. Suppose X is complete
and of second category. Then TnK—* TK pointwise uniformly for

Proofs. Similar to Propositions 3.1 and 3.2 in [2].

4* Asymptotic convergence and collectively compact sequences
of operators.

The concept of convergence of operator sequences in the uniform
operator topology in the normed spaces, is generalized in the follow-
ing manner in [5].

DEFINITION 4.1 A linear operator if on a topological vector space
E into itself is said to be the asymptotic limit of a sequence Kn of
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linear operators, if and only if, there exists a neighbourhood V of
zero in E, a sequence an of scalars —> 0 as n —•> ^ and a bounded set
BdE such that (i£ - Kn) F c αΛ 5, for n = 1, 2, . This mode of
convergence will be denoted by Kn -»K, and K will be called the F-
asymptotic limit of iΓn.

DEFINITION 4.2. A linear operator K on i? to itself is said to be
F-totally bounded if and only if F is a neighbourhood of zero and
KV is totally bounded in E.

DEFINITION 4.3. If K is the V-asymptotic limit of Kn and if
each Kn is F-totally bounded, K is said to be asymptotically F-total-
ly bounded.

PROPOSITION 4.1. If K is asymptotically V-totally bounded, then
K is V-totally bounded.

Proof. [5, 4.2-1].

PROPOSITION 4.2. Let T, T n e ^ [X, X] and let T be the V-

asymptotic limit of Tn where each Tn is W-totally bounded. Then
{Tn — T) is collectively totally bounded.

Proof. Tn-» T and each Tn T7-totally bounded implies T is W-
totally bounded (Prop 4.1.). Now, Tn -» T => there exists a sequence
an of scalars —> 0 as n —•> co, a bounded set Ba X such that

(Tn - T)(W)danB for all n .

Let F be any neighbourhood of zero. Choose a balanced neigh-
bourhood V1 of zero such that VΊ + V1 c V. Since B is bounded,
BczaV, for some scalar a. Therefore, (Tn - T)(W)czanaV1. We
can choose N such that | aan | < 1 for n > N. Hence (ΓΛ— Γ)(TΓ) c Vi
for n > N. It follows that

As (Γi — !Γ)(W) is totally bounded for each i, so is their finite
union. Hence, (Jί=i (Ά - T)(W) c Uf=i (^ + VJ for some AT, a
positive integer, and x{ e E. Hence,

U(Tn- T)(W)c:[J(xi+ V) .
n i — l

This proves the proposition.
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COROLLARY 1. Let T, Tne.Sf [X, X] where X is quasi-complete.
Suppose Tn is W-compact i.e. Tn(W) is relatively compact for some
neighbourhood W of zero in X. If Tn-» T, then {Tn — T) is col-
lectively compact.

Proof. Tn^> T and each Tn ΐ^-compact => T is TF-compact be-
cause X is quasi-complete [5, 4.2-1 Cor. 3] From the above pro-
position it follows that \Jn(Tn - T){W) is totally bounded. Hence,
the closure \Jn(Tn — T)(W) is bounded and closed and, therefore,
complete by the quasi-completeness of X. Thus, \Jn(Tn — T){W) is
totally bounded and complete, and therefore compact.

COROLLARY 2. If Tn-*> Ton a neighbourhood W of zero in X, and
each Tn is W-totally bounded, then {Tn — T) is collectively compact
if X is a Montel space.

Proof. From the Proposition 4.2 it follows that {Tn - T) is col-
lectively TF-totally bounded, and, therefore TF-collectively compact,
as X is a Montel space.

PROPOSITION 4.3. Let Tn -» T, where T+, Te^ [X, X]. If
^Γd^f[X,X] is collectively compact, then (Tn-T)K-»0 uni-
formly on J%<

Proof. Since J2Γ is collectively compact, there exists a neigh-

bourhood A of zero in X such that J ^ A is compact in X, and hence
bounded. Now, Γw-» T=> there exists a neighbourhood W of zero
in X, bounded set B a X, and a sequence an of scalar s — 0 such that
(Tn- T){W)aan B for all n. As STA is bounded, /^TAczrW for
some scalar r. Hence, (Tn - T)(STA)ci(Tn - T)(rW)(z(ranB), for
all n. Since an and B are independed of ^Γ, (Tn - T)K-»0, uni-
formly on ST.

5. Collectively compact sets in weak topology* In this section
we consider the inter-relation between a collectively compact set of
operators and its dual family.

PROPOSITION 5.1. Let E be a locally convex topological vector
space and Sf a family of continuous endomorphisms, uniformly
bounded on a neighbourhood V of zero in E. Let 3ίΓ* be the family
of dual operators. Then ^%Γ* considered as the set of mappings
{K*: E?—»E£*} is collectively compact, where E* is the strong dual
and E** the w*-dual of E.
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Proof. By hypothesis, SΓV = B is a bounded set in E. Con-
sider neighbourhood W of zero in E* defined by

W={f: feE*, Sup |<j/, /> | < l}
I yeB )

= {/: / e E*, Sup | <», # * /
xeV

K* e Jf

It then follows that

fe W=> \<x,K*f>\ < 1 for all xe V, and K*eJ?Γ*

= > i f*/e F°, the polar of V in E, for all ίΓ*e

v° .

Now, by the Banach-Alaoglu theorem [8, Th. 17.4], V° is w*-
compact in ϋ7*. Hence «.̂ Γ*W is relatively compact in Jξ/̂ *. This
completes the proof.

PROPOSITION 5.2. Le£ E be a semi-reflexive locally convex space
and 3ίf] a family of continuous endomorphisms on E. If 3ίΓ is
uniformly bounded on a neighbourhood V of zero in E, then 3ίΓ
considered as a family of operators from (Es*)f-+(E*)** is collectively
compact.

Proof. From Proposition 5.1 it follows that the family J£Γ* of
operators from E* —> E£* is collectively compact. Therefore, there
exists a neighbourhood W of zero in E* such that B = J?f* W is
relatively compact in E%+ and, hence, bounded in w*-topology. From
semi-reflexivity and from the fact, that a weakly bounded set is also
bounded in the initial topology [8, Th. 17.5], it follows that B is
bounded in E. From Proposition 5.1, it follows that

is collectively compact. Also x*3ίΓ = Jl^** by the continuity of each
Ke 3T. Hence the result.

COROLLARY. Let K be a continuous linear endomorphism on E,
a locally convex space. Suppose K is bounded on a neighbourhood of
zero in E. If E is reflexive, then K is weakly compact.

PROPOSITION 5.3. Let E be a locally convex, reflexive space, and
,9Γ a family of continuous endomorphisms on E. Let J%Γ* be the
corresponding dual family of endomorphisms on E*. Then ,3^f is
collectively weakly compact if and only if 3ίΓ* as the family of
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operators {K*: E*—>E**} is collectively compact.

Proof. Suppose jyίΓ* is collectively compact as the family of
operators {K*: Es*—+E**}. Then there exists a neighbourhood W of
zero in E*9 such that JVΓ*(W) is relatively w*-compact. This im-
plies, since E is reflexive and, therefore barreled, that J%Γ*(W) is
equicontinuous, [10, Th. 33.2]. Hence, there exists a neighbourhood
V of zero in E, such that J&T*(TF)c V°, the polar of V. [10, Prop.
32.7]. Therefore,

\<K*w,x>\*ζl,

for all xeV, K*e^T*, we W=>3Γ{V)c: W° .

From the reflexivity of E and the Banach-Alaoglu theorem,
is relatively ^-compact. This proves that 3ίf~ is collectively weakly
compact.

The converse follows from Proposition 5.1.

COROLLARY. Let K be a continuous endomorphism on a reflexive
locally convex space E. Then K is weakly compact if and only if
K*: ES*—>E** is compact.

This is a partial generalization of the Theorem 2.13.7 in [7].
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SOME H* SPACES WHICH ARE UNCOMPLEMENTED IN L*

SAMUEL E. EBENSTEIN

Let Tj denote the compact group which is the Cartesian
product of j copies of the circle where j is a positive integer
orω. If 1 ^ p ^ oo let Lp(Tj) denote the space of complex
valued measurable functions which are integrable with respect
to Haar measure on TJ. If j is finite we shall write n instead
of j . The subspaces Hp(Tn) of Lp(Tn\ i.e. the Hardy spaces
of Tn, have many well-known properties. A family of sub-
spaces Hp(Tω) of the Lp(Tω) is defined and they are shown
to have many of the same properties as the Hp(Tn). However
a major difference between Hp(Tω) and Hp(Tn) is observed.
If 1 < ί? < oo then Hp(Tn) is complemented in Lp(Tn), but
Hp(Tω) is uncomplemented in Lp(Tω) for 1 < p < oo unless
p=2.

Special properties of homogeneous functions in H1(Tω)^ Let j
lbe a positive integer or ω. If j is finite we shall write n in place
of j . We shall let Tn denote the compact group which is the Car-
tesian product of n circles, and Tω the compact group which is the
Cartesian product of countably many circles. The dual of Tn is the
direct sum of n copies of the integers, and the dual of Tω is the
direct sum of countably many copies of the integers. If g e Tn, then
we write

g = ( z l 9 z 2 , •••, z n )

where each z{ is a complex number of unit modulus. If g e Tω it has
a similar representation, but we must take a countable family, i.e.

g = ( z l 9 z 2 , z 3 , •••)

By abuse of notation if i g n S °°> we let Zt denote that ge Tn or
geTω which has the following representation:

g = (1, •••, 1,2,, 1, •••)

where z{ occurs in the ith place. We shall write mn for the normalized
Haar measure on Tn and m for the normalized Haar measure on Tω.

The dual of Tn can be written as Σ?=i^ and if xe^^Z then
we write

x = (xlf x2, , xn)

where each x{ is an integer. The dual of Tω can be written as ΣΓ=i Z,
and if x e Σf=i Z, then we write
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X = (XL, X2, X3, • • • )

where each xi is an integer, and for any particular x, only finitely
many α̂  are nonzero.

We define An c Σ£=i ^ and A c Σ?= 1 ̂  by

Aw = {x: Xf ̂ > 0 for all ί}

A = {x: Xi ̂  0 for all %} .

We need the following definitions to define Hp(Tj). Although the
definitions could be stated in terms of Tj it is easier to state them
in the context of arbitrary compact abelian groups.

DEFINITION 1.1. Suppose G is a compact abelian group with dual
group Γ. If 1 ^ p ^ oo let LP(G) denote the space of complex valued
measurable functions which are ptΆ power integrable with respect to
Haar measure on G. If E is a subset of Γ, f will be called an E-
function if feLι{G) and /(T) = 0 if jeΓ~E, where f(j) is the
Fourier transform of / evaluated at 7.

DEFINITION 1.2. Suppose 1 ^ p ^ oo then L|(G) = {f:feLp(G)
and / is an i?-function}.

DEFINITION 1.3.

The properties of Hp(Tn) are discussed in [7]. These spaces are
related to analytic functions in several complex variables which are
defined on the interior of the w-polydisc in Cn, and are subject to
certain growth conditions near the distinguished boundary Tn. If
3 = ω, there is no analogue of the interior of the π-polydisc. However
we still have many of the nice properties of Hp(Tn).

It is possible to imbed Hp{Tn) in Hp(Tω) in a natural way. We
have the following homomorphisms

πn: Tω > Tn

(£ 1 ? Z2, * , Zn, Zn+1 ) 1 > (Zίy Z2, Zn)

and πn induces an isometry In.

In:H
p(Tn) >Hp(Tω)

f I > f°^n

D E F I N I T I O N 1.4. Suppose fe H\Tn) and s i s a positive integer or
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0. Then the s homogeneous component off= nPs(f), where nPs(f)
is defined by its Fourier transform

( x ) i f Σ* 4 =

I 0 otherwise

That is if / has Fourier series

f(g) ~ Σ a.(g, x) ,
xeAn

then nPs(f) has the following Fourier series:

nPs(f)(g) ~ Σ a9(g, x) .
xe An

Then nP8(f) is a trigonometric polynomial since nP8(f) has finite support.

DEFINITION 1.5. Suppose fe H\Tω) and / = nPs(f) for some s.
Then we say / is homogeneous of degree s. The previous definition
is motivated by the following fact: If λ is a complex number of unit
modulus and we write λ to mean the point (λ, λ, λ, , λ) of Tn, then

f(χg) = v/(flf) for all geTn

if / is homogeneous of degree s. Clearly if / is homogeneous of
degree s its Fourier transform has finite support, so / is a trigonom-
etric polynomial and hence feHp(Tω) for 1 <; p ^ oo. It is easy to
show that nPs is a bounded linear operator from H\Tn) into Hp{Tn)
for each p. However it is not obvious that we can define an operator
Ps on H\TC0) which is analogous to nPs on Hι{Tn) because the sum
that should define Ps{f) for feH\Tω) is not necessarily finite. The
following lemma helps show that Ps can be defined as a bounded linear
operator from H\Tί0) into Hp(Tω).

LEMMA 1.6. Suppose s is a positive integer or 0, and 1 ^ p ^ °o.
Then there exists a projection Ps on Hp(Tύ)) with \\PS\\ = 1 satisfying:

0 otherwise

That is if f has Fourier series

f(g) - Σ CL*(9, ») >
xe A

then Ps(f) has the following Fourier series:

Ps(f)(g) - Σ a.(g, x) .
A

Σ
xe A
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Proof. Consider the following subgroup H of ΣΠ=i Z:

H = Ix: x e Σ Z and Σx{ = θ | .

But (ΣΓ=i Z)/H is a quotient group of Σ£=i ̂  and hence its dual which
we shall call D, is a compact subgroup of Tω. Let mΰ be normalized
Haar measure on D. Since D c !Γω, we can calculate the Fourier
coefficients of mD with respect to ΣΓ=i ̂  It is easy to calculate that

mD(x) = χH(x) for all x e Σ Z ,
4 = 1

where %#(#) is the characteristic function of the set H. If s is a
positive integer or 0, choose a yse Σ£U Z so that ΣΓ=i (2/.)* = s; then
for the measure ys{g)dmD{g)

(1 if j?(a? - 2/.) = 0

ysmD(x) = mD{x — ys) = -j i.e. l ' ^ = s

0 otherwise
Evidently for all s

\ \ys(g)dmD(g)\ = 1 ,
JG

so if fe Hp{Tω) we can consider f*{ysdmD) where * denotes the usual
convolution of a measure on Tω with a function which is in Hp(Tω),
hence in Lι(Tω). We have the following inequalities:

(2) \\f*{yAmD)\lίί\\fU \Vs{g)dmD{g)\ = 11/11,
JG

If we calculate the Fourier transform of f*(ysdmD)

f*(ysdmD)(x) = f{x){ysdmD){x) = Ps(f)(x) .

Since f*{ysdmD) and Ps(f) have the same Fourier transform they are
the same element of Hp(Tω), and so from equation (2)

= \\f*(ysdmD)\\p<ί

and this completes the proof.

DEFINITION 1.7. If fe Hv(Tω), then the s homogeneous component
offis Ps(f).

If / — P8(f) for some s, we say / is homogeneous of degree s.
This definition is justified by the fact that if / is a homogeneous
trigonometric polynomial of degree s on Tω, then we have

(3) f(\g) = Xsf(g) for all ( / G Γ
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whenever λ is a complex number of unit modulus and on the left we
write λ to mean (λ, λ, •••).

Suppose that / is a homogeneous function and that feH\Tj),
where j is a positive integer or ft), If j is finite, then / is necessarily
a trigonometric polynomial and the following lemma and theorem are
obvious. However if j = ω,f isn't necessarily a trigonometric poly-
nomial, and the following lemma and theorem require proof.

LEMMA 1.8. Suppose fe H^T") and that f is homogeneous of
degree s Then equation (3) is satisfied for almost all ge Tω and
almost all λ.

Proof. If / is a trigonometric polynomial there is nothing to
prove. Otherwise by using an approximate identity we can find a
sequence {/w}Γ=i of homogeneous polynomials all of degree s such that

in the norm of Hι(Tω). There exists a subsequence of {Λ}~=1 say
{fnj}?=i such that

lim f(g) =/(flf)a.e.

where a.e. means for almost all ge Tω with respect to Haar measure
on Tω. Tω x T is the product of the measure spaces Tω and T, and
so Tω x T is a measure space with the product measure.

Let

W = {(flr, λ) 6 Tω x T such that f(Xg) = λs/(#)} .

Then W is measurable and we wish to show that the measure of W
is 1. Now consider any fixed λe T; we have

lim fnj(Xg) =f(\g)

except for a null set of g. But for each j

fnj{\g) = \'fn.{g) ,

f(Xg) = lim/ (λff) = limλ /.,(ff) = λ'/fo)

except for a null set of g. So m(T7) = 1, which finishes the proof.

The next theorem is an application of a theorem about Λ(p) sets.
We digress for a moment to define Λ(p) set.



332 SAMUEL E. EBENSTEIN

DEFINITION 1.9. Let G be a compact abelian group with dual
group Γ. If p > 1 and Ea Γ we say E is a Λ(p) set if Lι

E{G) = L|(G).

DEFINITION 1.10. If A is a subset of Γ1 and n is a positive integer
we define An = {x e Γ; x — aλ + a2 + + an, where a{e A, 1 ̂  i ^ w).

THEOREM 1.11. Suppose G is a compact abelian group with torsion-
free dual group Γ. If E is an independent set in Γ, then Es is a
Λ(p) set for all p < °o and all positive integers s.

Proof. See [3, p. 28, Theorem 4].

THEOREM 1.12. Suppose fe Hι{Tω) and that f is a homogeneous
function of degree s where s is a positive integer or 0. Then fe Hp(Tω)
for 1 fg p < oo.

Proof. Let E = {zjΓ̂ i Then E is independent as a set in ΣΠ=i ^
and so Es is a /l(p) set for all p < oo, by Theorem 1.11. But since
feH^T") and / is homogeneous of degree s, f is an ^-function. By
applying Theorem 1.11 we obtain that feHp(Tω) for all p < oo, and
this completes the proof.

COROLLARY 1.13. Suppose fe H\Tω) and that f is a finite sum
of homogeneous functions) then fe Hp(Tω) for 1 ̂  p < oo.

Proof. By assumption / is a finite sum of homogeneous functions
so we may write

/=ΣP.(/)
s = 0

Since fe H\Tω) each Ps(f) e H\Tω) for 0 ̂  s ^ ft. By Theorem 1.12
each ps(/) e Hp(Tω) for 1 ̂  p < oo, so / is a finite sum of functions in
Hp(Tω) hence feHp(Tω).

Theorem 1.12 is really a theorem about Hι{Tω) rather than U{Tω).
In that context Theorem 1.12 is false. In fact Theorem 1.12 is false
even for L\T2) and hence for L\Tω).

If j is a positive integer or oo, we define homogeneity for arbitrary
functions in &(Tό) as follows: If fe L\T5), we say / is homogeneous
of degree s if

f(x) = 0 if x e Σ Z and 2Ό,\ ̂  s .

To show that Theorem 1.12 can't be extended to U{T), we shall
construct for every p > 1 and for every positive integer N, SL homo-
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geneous polynomial / of degree 0 on Γ2 such that

For given p > 1, find a trigonometric polynomial b defined on T such
that

where b{z^) has Fourier series

Define the polynomial / by

t

J\Z]_j Z2) — / i Cv]ζZ^Z2 .

λ -0

We wish to compute the norm of / in L\T2) and in LP(T2):

11/Hi = I 2l/(«i,

= \ 2 Σ α/b(̂ i)fc dm1(z1)dm2(z2) = I PILcZmsfe) = I Idm2(z2) = 1 .
Jϊ1 I fc^o Jr J Γ

The crucial equality in equation (4) is justified by the translation
in variance of dm^z^. By a similar computation we have

and this provides the desired counterexample.

2* A convergence theorem for Hp(Tω). By the M. Riesz theorem
on conjugate functions [8], if 1 < p < co and fe HP(T), then

/ = lim Σ α.sί > α« = ZOO

in the norm of HP(T). In our terminology this can be written

The next theorem gives an analogous result for Hp(Tω). The proof
uses a theorem about ordered groups so we digress for a moment to
define the relevant terms.
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Suppose Γ is a discrete abelian group and P is a subset of Γ
with the following properties:

1. If 7i G P and 72 e P then 7i + τ2 e P.
If — P denotes the set whose elements are the inverses of the

elements of P then we have
2. P n ( - P ) = {0}
3. Pl)(-P) = Γ.

Under these conditions P induces an order in Γ as follows: For 7i
and 72 elements of Γ, say 7X ̂  72 if 7i — 72 6 P. It is easy to check
that this is a linear order. A given group may have many different
orders corresponding to different choices of P with the three properties
above.

DEFINITION 2.1. Suppose G is a compact abelian group whose dual
group Γ is ordered. Let / be a trigonometric polynomial on G with
Fourier series

Σ
Define Φ(f) by

Φ(fK9)~Έar(g,Ύ).
rrer

We shall need the following generalization of the M. Riesz theorem
on conjugate functions. It is due to Bochner [1].

THEOREM 2.2. Suppose 1 < p < °o. Then there exists a constant
Ap, independent of G or the particular order in Γ such that if f is
a trigonometric polynomial on G, then

\\Φ(f)\\,^At\\f\\,.

THEOREM 2.3. Let 1 < p < « . Then if fe Hp(Tω)

lim Σ P.(f) = /
n—*oo s=0

in the norm of Hp(Tω).

Proof. Fix p. Define Yn by

Y.ω = Σ W ) iίfeH*(T»).

Clearly trigonometric polynomials are dense in Hp(Tω) and

lim YJf) = f
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whenever / is a trigonometric polynomial. It remains to show that
the family {Yn}t=ι is uniformly bounded on trigonometric polynomials,
i.e.

\\γjj)\\,^κ\\f\\,

/ a trigonometric polynomial where K is a positive constant independent
of n and /. Then by a standard argument in functional analysis, the
proof is complete. I shall show that the norm of Yn is majorized by Ap,
where Ap is the constant of Theorem 2.2.

Our first task is to induce an order in ΣΓ=i^ so that we can apply
Theorem 2.2. First choose a family {cZJΓ=i of real numbers which
satisfies the following properties:

1. d, = - 1 , -l<di< -n/(n + 1) for ίφl.
2. The set {dj is independent in the group sense as a subset of

the reals.
We define a homomorphism from Σ^U % ιr&° the reals by

τr:Σ >R

π is clearly a homomorphism; since the di are linearly independent,
it has a trivial kernel, i.e. if π(x) = 0 then x — 0. Define

P = ix: x e Σ Z and φ ) ^ θ | .

Then P satisfies the necessary properties to induce an order in ΣΓ=i Z.
If f(g) is an arbitrary trigonometric polynomial on Tω define a trigo-
nometric polynomial f^g) as follows:

Let /(βr) = Σαx(g, x) . Then

/i(#) = Z7n(g)f(g) = Σαx(g, -nz^g, x) = l α ^ , a? - ^ x )

and

Φ(fύ = Σ α»(̂ , » - ^ i )

If π(x — w î) ^ 0, then

0 ^ π(a? — nZί) = π(a?) + τr(—w^) = 7r(a?) — nπ(z^ = π(x) + n

and π(x) ^> —n. But 7r(a;) = ΣdiXif and by using property 1 of {dj it
is clear that π(x) ̂  — n if and only if Jα^ ̂  ̂ . So ^(/x) = Σαx(g, x — W2J.
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Then it is easy to compute that Σx{ ^ n

By Theorem 2.2 we have that

So we have

|| Yn(f)\\p = \\zΐΦ(fd\\p = \\Φf\\P <£

so the norm of FΛ is less than or equal to Ap and the proof is complete.

3* The complementation problem* The next theorem shows
that Hp(Tω) is uncomplemented as a subspace of Lp(Tω) if p Φ 2.
This is in contrast to Hp(Tn) which is complemented in Lp(Tn) except
when p = 1 or p = oo. Although other examples of uncomplemented
subspaces of an Lp space are known, Hp(Tω) has the advantage of
being defined in a concrete way.

DEFINITION 3.1. Let G be a compact abelian group. If fzU(G)
let /ff0 denote the go-translate of f where

fβQ(9) = f(Qo + 9)

LEMMA 3.2. Let G be a compact abelian group with dual group
Γ. Suppose 1 ^ p <. oo and that T is a bounded projection from
LP(G) onto LP

E(G). Then a linear operator Q can be defined by

Qif) = \ [T(fg)Udm(g) / e L>(G) ,

where the integral is the Bochner integral.

Q is the natural projection from LP(G) onto L|(G), i.e., if fe LP(G)
then Q(f) is defined by its Fourier transform as follows:

(x) x e E )

β otherwise)

Proof. The proof for the case G = T, Γ = Z, E = Z+, p = 1 is
given [4, page 154]. The proof in the general case is analogous.

THEOREM 3.3. Suppose p Φ 2, then Hp(Tω) is uncomplemented as
subspace of Lp{Tω).
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Proof. If p — 1 or p = oo, there is really nothing to prove.
There is a theorem in [4, pp. 154-155] which proves that H\T) is
uncomplemented in L\T), and that H°°(T) is uncomplemented in L°°(T).
Then since if^T) and Lι{T) can be isometrically embedded into H\Tω)
and Lι{Tω) respectively for i = 1, oo, the theorem is proved for p = 1
or £> = co. In any case the argument which follows is valid for p = 1,
and with slight modifications for p = oo.

Let S be the natural projection from Lp(Tω) into Hp(Tω) which
is defined on trigonometric polynomials by

S:Lp(Tω) >Hp(Tω)

f i > S(f)

where

f/(a?) if a; e A )

( 0 otherwise]

We wish to show that S can't be extended to a bounded operator
defined on all of Lp(Tω). To do this it is sufficient to find trigono-
metric polynomials fn on Tω such that

(5) II/JI, = 1

(6) \\S(fn)\\p = (l + e)n where ε > 0 .

By [8, p. 295, Ex. 2] we can find a trigonometric polynomial h defined
on T so that

Σ arf \\h\\P =

and if

Σ

then we have

||A+||, = l + e

where ε is some positive number which depends uporCp. Consider
the trigonometric polynomial r defined on T2 by

r(zlf z2) = h(zί)k(z2) = ( Σ «*«?)( Σ «*«?)

Define r+ by

r+(zl9 z2) = h+izjh+fa)
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Then it is easy to compute that

IMI, = \\h\\l = 1

\\r+\\, = (\\h+\\,y = (1 + εγ .

We define trigonometric polynomials on T" by

Λ = UK) ft = Ur)

where Ij and J2 were defined in equation (1). It is easy to check that

S(Λ) = UK) S(A) = Ur+)

and since It and J2 are isometries we have

\\S(fd\\,=

HS(Λ)II,=

By a similar argument we can construct trigonometric polynomials
fz, fi, and hence fn for any n and fn will satisfy equations (5) and
(6). This shows that the natural projection from Lp(Tω) into Hp(Tω)
isn't bounded. To finish the proof we must show there is no bounded
projection of any kind from Lp(Tω) into Hp(Tω) which is the identity
when restricted to Hp{Tω).
Suppose there exists S a linear transformation from Lp(Tω) into
Hp{Tω) which is the identity when restricted to Hp(Tω). Define a
linear operator Q by

Q(f) = \ [S(f9)]-9dm(g)

where the integral is the Bochner integral. Then Q is a bounded
linear operator from Lp(Tω) into Hp(Tω) and by Lemma 3.2 we have
that Q = S, where S is the natural projection from Lp(Tω) into Hp{Tω).
But we know that S isn't a bounded projection and this provides the
contradiction which finishes the proof.

We wish to thank Professor Henry Helson for his aid and encour-
agement in writing our thesis. We would also like to thank Professor
Alessandro Figa-Talamanaca for many helpful discussions.
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ON THE COMPLETION OF LOCALLY SOLID VECTOR
LATTICES

D. H. FREMLIN

Let E be a Riesz space (= vector lattice), with a locally
solid Hausdorff linear space topology. Then its completion
also has a Riesz space structure. In this paper it is shown
how a pair of important properties which may be possessed
by E are inherited by its completion.

In general this article will rest on the foundations of [4] and [5].
A linear space topology on a Riesz space E is locally solid if 0 has
a neighbourhood basis consisting of solid sets. In this case, the lattice
operations are uniformly continuous; consequently (assuming that the
topology is Hausdorff) they can be extended to the linear topological
space completion E of E, and E will also be a locally solid topological
Riesz space ([5, p. 235; 4, p. 108]). E is now a Riesz subspace of E,
i.e. a linear subspace which is also a sublattice.

My object is to show how two important and common properties
are preserved by the process of completion. Unfortunately, although
these properties have been studied by various authors (see e.g. [3]),
no satisfactory terminology has been devised. I hope that my use of
the words "Fatou" (§1) and "Lebesgue" (§5), suggested by the famous
convergence theorems, will prove acceptable.

1* Fatou topologies* Let E be a Riesz space and X a, topology
on E. I will call X Fαtou if (i) it is a linear space topology (ii) 0
has a base consisting of sets U which are solid and such that if
0 cz 4 g U and A j x in E (i.e. if A is nonempty, directed upwards,
and has x for its least upper bound), then xe U.

This property is exceedingly common. Consider, for example,
C(X) for any compact space X; the basic neighbourhoods of 0 are of
the form {x: \\x\\oo <Ξ ε}, and these all have the property described
above. Similarly, in all the Lp spaces, for 0 <£ p ^ °o, the usual
topologies are Fatou.

The most striking thing about Fatou topologies is Nakano's
theorem (see [2]). For its full strength this requires a further concept.
Let us call a linear space topology on a Riesz space E SL Levi topology
if every topologically bounded set A £ E which is directed upwards
has an upper bound in E. (For example, all the spaces adduced above
have Levi topologies. Also, the weak topology associated with a locally
convex Hausdorff Levi topology will always be Levi). Then: A Levi
Fatou Hausdorff topology on a Dedekind complete Riesz space is com-

341
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plete. For a proof of this theorem, see [4], Proposition IV. 1.5. ([4]
uses the phrases "locally order complete" and "boundedly complete"
for Fatou and Levi topologies respectively in Dedekind complete
spaces).

2* Extensions of Riesz spaces; the spaces C^X). Let E be a
Riesz space. I shall call a Riesz subspace F of E orderdense if, for
every x ^ 0 in E,

x = sup {y: y e F, 0 ^ y ^ x} .

An important consequence of this is that if A is a nonempty subset
of F and x = sup A in F, that is, if x is the least member of F
which is an upper bound of A, then x = sup A in E. It follows that
if F is orderdense in E, and G is orderdense in F, then G is order-
dense in E.

Let X be a compact extremally disconnected Hausdorff topological
space. Let C^X) be the set of all those continuous functions x from
X to the extended real line [—°°, °°] such that {t: — oo < #(£) < °°}
is dense in X. Because every continuous real-valued function defined
on a dense open subset of X has a unique extension to a member of
Coo(X) ([6, Lemma V 2.1]), CJ.X) has a natural Riesz space structure
under which it is Dedekind complete ([6, Theorem V. 2.2]). The point
is that every Archimedean Riesz space can be embedded as an order-
dense Riesz subspace of some C^X) ([6, Theorems IV. 11.1 and V.
4.2]).

[6] gives several properties of the space CΌo(X), but not the one
we shall need; so I set it out here.

PROPOSITION 1. Let X and C^{X) be as above. Let AgCo o(X)+

be a nonempty set such that for every x > 0 in C^X) there is an
neN such that

nx Φ sup y A nx .
yeA

Then A is bounded above in

Proof. Define w : X-+ [0, oo] by

w(t) = sup y(t)vteX.
yeA

Then w is lower semi-continuous. Define v:X—*[0, oo] by

v(t) = inf isupw(M): U a nhd of t\
[.ueU )
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for every teX. Then discontinuous ([6, Theorem V. 1.1]). My aim
is to prove that v G CL(X), i.e. that v is finite on a dense set.

Suppose that G g X is open and not empty. As X is compact
and Hausdorff, there is a continuous function x o n l such that x > 0
but x(t) = 0 V t G X\G. Now α? e CΌ^X), so there is an n G iV such that

wα; ^ sup y A nx ,
j / e i

that is, there is a £ > 0 in C^iX) such that

Of course z ^ %#, so z is finite everywhere and z(t) — 0 V £ G X\G. Let
if = {£: z(ί) > 0}; then i ϊ is not empty and i f S G.

But if ί G H, y(t) ^ rae(£) - z{t) V y e A, so w(ί) ^ nx(t) - z(t); and
as nx — z is continuous, v(t) ^ rac(ί) — z(ί) < °° V teH.

Consequently, {t: v(t) < oo} meets G. As G is arbitrary, v G CM(X)
and is the required upper bound for A.

3* THEOREM 1. Let E be an Archimedean Riesz space with a
Hausdorff Fatou topology. Let E be its linear topological space com-
pletion with its natural Riesz space structure. Then (i) E is an
orderdense Riesz subspace of E (ii) the topology on E is Fatou.

Proof. My method is to find a complete Riesz space extending
E which has the required properties.

( a ) Let X be a compact extremally disconnected Hausdorίf topol-
ogical space such that E can be embedded as an orderdense Riesz
subspace of C^X) (§2 above). Let & be the set of all neighbour-
hoods U of 0 in E satisfying the Fatou property in § 1, i.e. such that
U is solid and if 0 c A g i 7 and A f x in E then x G U. Then
is a base of neighbourhoods of 0. For each U e &, set

U = {wiweC^X), VxeE, \x\ ^ \w\=>xe U) .

Then ϋ is a solid subset of C^X). Note that U Π E = U.

( b ) Suppose that U and V belong to & and that U + U^V.
Then U + E? S V". For suppose that Wj, w2eϋ and that a G E is such
that I it? I <s 1̂ 1 + w2 |. Set t?i = |wi| Λ |a?| and v2 = |a?| — vλ ^ |w2 | .
Then At = {y:yeE,0^y<.Vi} | ^ for i = 1, 2, so Λ + A2 ] v, + v2 =
I a? I in J57. But Λ + A2 S U + 17 S F, so \x\eV and ί c e F . As a; is
arbitrary, wt-\- w2e V; as w1 and tί;2 are arbitrary, ZJ + USV.

( c ) It follows that if we set
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H= Π U aϋ,

then H is a solid linear subspace of Cco{X)y including E, and {U f) H:
U e &) is a neighbourhood basis at 0 for a linear space topology %
on H. As every U Π H is solid, £ is locally solid; as U Π E = Z7 for
every Z7 e ^ , £ induces the original topology on i?. Also, % is
Hausdorff, for if w e H and w Φ 0, there is an a? e ϋ7 such that 0 <
x <̂  I w I now if Ϊ7 e & is such that xg U, w £ U.

( d) If Z7e ̂ , 0 c A £ t^, and A j w in ^ ( X ) , then w £ U. For
suppose that xeE and that \x\ ̂  | ^ [ . Then

{τ/+ + w~: y e A} | w + + w" = \w\ ^ \x\ ,

so

{Ia?I Λ (y+ + r ) : | / G 4 } | |a;| .

Now set

B = {z: z e E, 1 y e A, 0 ^ z ^ \x\ Λ (y+ + w~)} .

Then B \ , and as E is orderdense in C^{X), B \ \x\. But if z e 2?
there is a 7/ e A such that

s g y+ + ^~ ^ /̂+ + y~ = 12/[ ,

so, as y eϋ, ze U. Because Ϊ7 e &, xe U. As a? is arbitrary, w eϋ.

(e) Consequently the sets U Π H all satisfy the Fatou condition,
and £ is Fatou. (Here we have used the fact that H is orderdense
in CL(X), so that if A ] w in H, then A ] w in

(f) It also follows that % is Levi. For suppose that A S if is
directed upwards, is not empty, and is bounded. Then of course
B = {y+: ye A} is directed upwards, and it is bounded because X is
locally solid. Now suppose that x > 0 in CΌo(X). Let Ue & be such
that .τ 6 £7. Let n > 0 be such that A gΞ w U. Now

{w-ι2/ Λ #: y e B)

is a subset of ϋ, directed upwards; so its supremum belongs to fj
and cannot be x. Thus supyeBy A nx is not nx, and B satisfies the
condition of Proposition 1; so B, and therefore A, is bounded above
in Co^X). Let z0 = sup A in C^iX); this exists as CΌo(X) is Dedekind
complete. If F G ^ , there is an m > 0 such that τrΓιA^ V, so by
(d) again m~]z0 e V i.e. zoemV. As F is arbitrary, zoeH, and is the
required upper bound for A in H.
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(g) Thus X satisfies the conditions of Nakano's theorem, and H
is complete. So E may be regarded as the closure of E in H. Because
E is orderdense in H, it is orderdense in E. Finally, it is easy to
see that the topology on E induced by X is Fatou, because X itself
is Fatou and E is orderdense in H.

REMARK. Of course the condition "Archimedean" in the hypotheses
of the theorem is redundant, because any Riesz space with a Hausdorff
locally solid linear space topology must be Archimedean. The same
applies to Theorem 2 below.

4* Counter-example* Suppose that E = C ([0, 1]), the space of
real-valued continuous functions on the unit interval. Give E the
topology induced by || ^ where

li - \^\x\dμLVxeE ,

μL being Lebesgue measure. Then || 1̂  is a Riesz norm so the topology
is locally solid. But it is not Fatou and E is not orderdense in its
completion L\μL).

5* Lebesgue topologies. I should now like to proceed to a
stronger condition, also fulfilled by many examples. Because it is of
great interest in many contexts, I give as general a definition as I
can. Let E be any partially ordered set. A topology X on E is
Lebesgue if, whenever A is a non-empty subset of E and either A \ x
or A I x in E, then x belongs to the closure A of A. We shall be
interested, of course, in linear space topologies on Riesz spaces; in
this case, X is Lebesgue iff 0 e A whenever 0 c A J 0.

Now the ordinary topologies on the Lp spaces, for 0 ^ p < ©o,
are Lebesgue; so is the norm topology on cQ(N). We note that the
exceptions are the L°° and C(X) spaces. However, the weak topology
XS(L°°, Lι) is Lebesgue; in fact it is the case that the Mackey topology
Xk(L°°, Lι) is Lebesgue. Of course, if X is Lebesgue and ® is weaker
than X, then © is Lebesgue.

Lebesgue topologies have many remarkable properties. I give one
of the simplest.

LEMMA 1. A Lebesgue locally solid linear space topology on a
Riesz space is Fatou.

Proof. Let U be any neighbourhood of 0; let V be a closed
neighbourhood of 0 included in U; let W be a solid neighbourhood of
0 included in V. The point is that W is solid ([4, Proposition IV.
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4.8]). But now W^U and W satisfies the Fatou condition because
the topology is Lebesgue.

6* THEOREM 2. Let E be an Archimedean Riesz space with a
Lebesgue locally solid Hausdorff linear space topology. Then the com-
pletion E of E also has a Lebesgue topology.

Proof. We know by Lemma 1 and Theorem 1 that E is order-
dense in E. Suppose, if possible, that A j 0 in E, A is not empty,
but that 0 ί A. Let U be a solid neighbourhood of 0 in E such that
A does not meet U. Let V be a solid neighbourhood of 0 in E such
that V+ V+ 7 i U. Fix xoeA and find ayoeE such that xQ - y0 e V;
without loss of generality, I may suppose that y0 ^ 0. Now

{Vo Λ (xo - %)+; xeA} t y0 Λ x0,

so if

B = {z: z e E, 3 x e A, 0 ^ z ^ y0 A (x0 - %)+} ,

B \ x0 Λ y0 in i?. Similarly,

C = {w: w e E, 0 ^ w ^ (τ/0 - ô)+} ΐ (yϋ - ^o)+ ,

and so B + C ] y0 in E. As the topology on E is Lebesgue, there
exist ze B and w e C such that

yQ — w — z e V.

But as V is solid, we V, so τ/0 — £ e F + V, and

x0 - z = 2/o ~ « + fco - 2/o) e V + F + F i C7 .

However, there is an x e A such that 0 ^ z ^ (x0 — x)+, and there is
an x^A such that xι S % Λ x0 ^ #o — z But ί7 is solid, so xι e U;
which is the contradiction we require.

7* Conclusion* I think that Theorem 1 is more surprising than
Theorem 2. Both Fatou and Lebesgue topologies are frequently mys-
terious; but when we require a topology to be both locally solid and
Lebesgue we are imposing such a powerful condition that we expect
agreeable results to follow quickly. The Fatou property is harder to
tackle. Its actual applications in Theorem 1, while certainly essential
(see §4), are buried too deep in the argument to be readily disentangled;
so it's not clear just what it is about Fatou topologies that makes the
theorem true.

Theorem 1 is reminiscent of the result in [1] that if E is any Riesz
space, then the canonical image of E in Exx or (E~)z is orderdense.
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In fact this can be deduced from Theorem 1, though (as far as I
know) only by an extremely involved route. But there may be some
hope that the techniques of [1] could be adapted to give a simpler
proof of Theorem 1.

Theorem 2 is more straightforward, and can be proved independ-
ently of Theorem 1 without much difficulty. If in Theorem 2 we
know that E is locally convex, there is a proof direct from the result
in [1] quoted above. But the hypothesis of local convexity doesn't
seem to help in Theorem 1.

Theorem 2 recalls the construction of the ordinary function spaces.
If the spaces L\ U etc. are thought of as completions of the space
S of equivalence classes of simple functions under the appropriate
norms, their properties can be deduced from the fact that each of
these norms induces a Lebesgue locally solid topology on S.
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ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR

ELEMENTS OF A VON NEUMANN ALGEBRA

HERBERT HALPERN

A closed two-sided ideal ^f in a von Neumann algebra
is defined to be a central ideal if ^ A%Pi is in ^ for

every set {Pi} of orthogonal projections in the center %* of J ^
and every bounded subset {A*} of KJ2'. Central ideals are
characterized in terms of the existence of continuous fields
and their form is completely determined.

If ^ is a central ideal of Jzf and A e J ^ then Ao e %*
is said to be in the essential central spectrum of A if Ao — A
is not invertible in Sϊf modulo the smallest closed ideal con-
taining ^ and ζ for every maximal ideal ζ of %*. It is shown
that the essential central spectrum is a nonvoid, strongly
closed subset of %? and that it satisfies many of the relations
of the essential spectrum of operators on Hubert space. Let
j y ~ be the space of all bounded ^-module homomorphisms
of J ^ into -S". The essential central numerical range of i e

with respect to ^ is defined to be Sέ^(A)={φ(A) \ φe
~, II Φ II ^ 1, 0(1) = IV, Φ(^) = (0)}. Here P ^ is the or-

thogonal complement of the largest central projection in *Jζ"
The essential central numerical range is shown to be a weakly
closed, bounded, ^-convex subset of %£. It possesses many
of the properties of the essential numerical range but in a
form more suited to the fact that A is in Ssf rather than a
bounded operator. It is shown that if Sf is properly infinite
and ^ is the ideal of finite elements (resp. the strong radical) of
J ^ then «-%S(A) is the intersection of JΓ with the weak (resp.
uniform) closure of the convex hull of {UAU~ι\ U unitary in

In a final section, we give some applications of these facts. We
extend a result of J. G. Stampfli [19] to show that the range of a
derivation on a von Neumann algebra is never uniformly dense. We
also prove a theorem on self-ad joint commutators using a calculation
of M. David [5]

2. Central ideals* Let J^f be a von Neumann algebra with
center %r. For any subset ^ of j / let {&) denote the set of all
projections of έ%f. Throughout this paper all ideals will be assumed
to be closed two-sided ideals. An ideal ^ in jzf is said to be a
central ideal or a ^-ideal if given a norm bounded set {A^ie 1} of
elements of ^ and a corresponding set {P{ \ i e 1} of mutually orthogo-
nal projections in ^ , then the sum Σ AtPif which exists in the strong
topology, is also in ̂  (Similar definitions were used by I. Kaplansky

349
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[22, §1] and M. Goldman [13; §4] in the theory of AWr*-modules;
however, here there is no canonical inner product.) Any ideal ^ in

is contained in a smallest central ideal < ^ > given by <^Ό =
i\ie I}\{Ai\ie 1} is a bounded subset of ^ and {P^iel} is a

mutually orthogonal subset of {%) of sum 1} ([19], remarks preceding
corollary to (a5) implies (al)). If ^ a central ideal in s*f and if A
is an element of Szf, then it is clear that there is an element P in
(X) such that APe^ and AQίJ^ for every Q in {%T) with
0 < Q ^ 1 — P. The following definition is now possible.

DEFINITION 2.1. Let jzf be a von Neumann algebra and let J^ be
a central ideal of Szf. Then P^ will denote the orthogonal comple-
ment of the largest central projection in ^. We notice that QP^ e
KJ^ for a central projection Q implies QP^ — 0.

We now describe central ideals with regard to finite element

PROPOSITION 2.2. Let s*f be a semi-finite von Neumann algebra
with center ^Γ, let ^ be a central ideal of Jϊf, and let jzfP be the
weak closure of ^ where Pe(^Γ). Then *J^ contains every finite
projection of s>f majorized by P.

Proof. Let F be a finite projection of j%? majorized by P. Let
Q be an element of {%) such that FQe^~ and FRZJ^ for
every R in (̂ Γ) with 0 < R ^ 1 — Q (preliminary remarks). We
note that Qr = 1 — Q ^ P. We obtain a contradiction by assuming
that Q' Φ 0. Since the weak closure of ^ is szfP and since linear
combinations of projections are dense in ^ there is a projection E
in J? with EQf Φ 0. There is an R in (JTQ') such that ER < FR
and F(Q' - R)< E{Q' - R). Either ER Φ 0 or E{Q' - R) Φ 0. Now
if ί?i2 Φ 0, there is nonzero S in ( ^ i ϋ ) and projections Eίf •••,£'„ in

j ^ such that ES = E,~ E2~ --- ~ En and FS ~ΣAEi< Ex. This

means that iΛS is in ^f. This is contrary to the choice of Q, so we
must assume that E{Q' — R) φ 0. But this also implies that F{Q' — R)
is in cJ^ So we must conclude that Q' = 0. Hence, we have shown
that every finite projection majorized by P is in ^

COROLLARY 2.3. An ideal in a finite von Neumann algebra is
a central ideal if and only if it is weakly closed.

Proof. If the ideal ^ in the finite von Neumann algebra
is weakly closed, then there is a central projection P in jzf such that

[9, I, 3, Theorem 2, Corollary 2]. Obviously the ideal
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is a central ideal of
Conversely, let ^ be a central ideal of s*f. Let P be the central

projection of s^f such that the weak closure of ^ is SzfP. Then
*J^ contains every finite projection majorized by P; in particular, it
contains P itself. So ^ — SsfP and ^ is weakly closed.

We now describe central ideals for an arbitrary von Neumann
algebra *$%f with center ^Γ. Let P be a projection in JΓ and let E
be a properly infinite projection in s%f majorized by P. (By conven-
tion we assume that 0 is a properly infinite projection in a finite
algebra ^Γ.) Let (^fp(E)) be the set of all projections in Szf given
by p (̂JST)) = {Fe (j*f) \F S P and QE < QF for some Q e {&) implies
QE = 0}. Let ^p(E) be the ideal generated by {J^P{E)).

We shall use the following lemma of F. B. Wright [32; §2].

LEMMA. Suppose & is a set of projections on a von Neumann
algebra Stf that satisfies the following properties:

(1) if Ee (jy), Fe^ and E <F, then Ee0>\ and
(2) if E and F are in &, then the least upper bound lub {E, F)

of E and F is in &.
Then the set of projections of the ideal generated by & is exactly &.

THEOREM 2.4. Let j ^ be a von Neumann algebra with center %.
In order for the ideal <J^ in Ssf to be a central ideal, it is a necessary
and sufficient condition that there exist a projection P in ^ and a
properly infinite projection E majorized by P with

REMARK. The sufficiency is an adaptation of the proof we gave
for a special case in an earlier paper [18, Proposition 2.1].

Proof. Let E be a properly infinite projection majorized by the
central projection P. We show that ^P{E) = ^ is a central ideal.
Let Pi and P2 be orthogonal central projections of sum 1 such that
jzfPι is a finite algebra and SsfP2 is a properly infinite. It is suffi-
cient to show that ^ P * is a central ideal in StfPi (i — 1, 2). How-
ever, we have that ^P{ is generated by p ^ P J = {Fe {APZ) \F S PPi9

EQP, < FQ for some Q in {STPi) implies EP{Q = 0}. Now setting
Eι = EPi9 we obtain a properly infinite projection in JzfPi so that
<J^Pi — ̂ 'PP. (Ei). Hence, there is no loss of generality in assuming
that j y is either finite or properly infinite.

Let j y be finite. Then E = 0 and pS(0)) - {Fe (A) \F^ P}.
Hence J^ = stfP and so ^ is a central ideal.

Now assume that s^ is properly infinite. There is no loss of
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generality in the assumption that P = 1. We show that ^ satisfies
properties (1) and (2) of the lemma of F. B. Wright. By the defini-
tion of (^) is clear that it satisfies property (1). Now let Ex and
E2 be in p ^ ) . Since lub {El9 E2} - E,<E2 [21, Theorem 5.4], we have
that lub {Eu E2} — Ex is in {^) by (1). So there is no loss of gener-
ality in the assumption that Eί and E2 are orthogonal. There
is Q 6 (%T) such that QE, < QE2 and (1 - Q)E2 < (1 - Q)E,. Since
Q(E, + E2) G {^) and (1 - Q)(EL + E2) e (J^) implies that Eλ + E2e
(<J^), there is no loss of generality in the assumption that Ex < E2.
There is a Q e (5Γ) such that QE2 is finite and (1 — Q)E2 is properly
infinite. Hence, we may assume that either E2 is finite or properly
infinite. If E2 is finite, then Et is finite since EL < E2 and so EL + E2

is finite. [9, III, 2]. If Q is a central projection with Q£r<Q(Ef

1+£r

2),
then QE is finite and so QE = 0. So we are left with the situation
that Ei < E2y EXE2 = 0, and E2 is properly infinite. Because E2 is
properly infinite, there are projections Fu F2 satisfying the relations:
F, ~ F2 ~E2, F,F2 = 0, and F, + F2 = JS?2. [9; III, 8, Corollary 2].
We have that E, + E2 ~ E, + F2 < F2 + F2 = E2. By property (1) of
the lemma, we conclude that Et + E2 e MH Hence {^) satisfies
properties (1) and (2) of the lemma and this means that the set of
projections of the ideal ^ generated by (^) is precisely {^). Now
we show ^ is a central ideal. Let {Ai\iel} be a bounded set in
^ and let {Qi\iel} be an orthogonal subset of (̂ Γ) of sum 1. For
every ε > 0 and every iel there is a projection Ft in (J?) such that
|| Ai - AtFi\\ ̂  ε. Then Σ F&i = JF7 is in (^"). Indeed, if EQ < FQ
for some Q in (JT), then #(QίQ) -< F(QiQ) = F^Q) for every iel.
Thus (£rQ)Qί = 0 for every i e I and EQ = Σ (^Q)0* = 0. This means
that Fe(^). However, we have that

^ lub II A, - AtFtW ̂  ε .

Since (Σ AiQi)F is in ^ and since ^ " is uniformly closed, we have
that Σ AiQi 6 ̂ ί This proves that ^ is a central ideal.

We now show that every central ideal ^ is of the form ^yP(E).
Given a nonzero P e {%) it is sufficient to prove that there is a pro-
perly infinite projection E in Ssf, a nonzero Q in (^Γ), and an Re(^)
with R^Q^P such that ^R{ER)Q = *J*Q. Indeed, suppose we
have verified this statement. Let {P^iel} be a maximal set of
mutually orthogonal nonzero central projections such that for each
Pi there is a properly infinite projection Eί9 and a Q̂  e (JΓ) majorized
by P< such that ^.{EQ^P, = ^ P , . By the maximality of {PJ, we
conclude that Σ Pi = l Setting ^ = Σ^ίO< (r^sp. Q = Σ Qi) we
obtain a properly infinite (resp. central) projection i? majorized by Q
such that ^Q{E) — J?. In fact, since J^q(E) and ^ are generated by
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their respective projections, it is sufficient to show that (<J%(E)) =
But we may verify immediately that {Jf~Q{E))Pi == (^.(EtQi)), and so
we have that Fe (*J%(E)) if and only if FP, e (^.(E^)) = {J^Pi) for
every P< since <J%{E) is a central ideal by the first part of this theorem.
However, the ideal ^ is also a central ideal and thus F e {J^{E)) if
and only if Fe(^). So it is sufficient to verify the required state-
ment. We do this in the next paragraph.

Let P be a nonzero element in {%)• Since we are looking for a
nonzero central projection Q majorized by P, we may assume at the
outset that P = 1 and that either jzf is finite or j y is properly in-
finite. If J ^ is finite there is a Q in (%T) with J? = jfQ (corollary
2.3). Then we verify immediately that J? = *J%(0). Hence, we may
assume that s?f is properly infinite. Suppose that there is a pro-
jection P Φ 1 in {/£) such that AP = A for every A in Jf. Then
we have that ^Λ(0)(l - P) = 0 = J^{1 - P). So we may assume that
^ is weakly dense in s/. Now suppose that P y Φ 1. Then the
nonzero central projection Q — 1 — P^ is in ^X This means ^Q —
jzfQ = ^ξ(O). Hence, we may pass to the case that P, = 1. By
making a further reduction if necessary, we may assume that 1 is
the sum of an infinite set {Ei\iel} of orthogonal, equivalent, σ-finite
projections [9, III, 1, Lemma 1]. Let S^(I) be the family of all subsets
s of J such that there is a nonzero projection Ps in ^Γ with

for every nonzero Q e (3fPs). The family S^{I) is nonvoid since Ie
<9*{I) with Pj = 1. There is an sQ e 6^(1) such that Card sQ ^ Card s
for every seS^(I). We may assume that PSQ = 1. Let ^{E^ie s0} =
E; we notice that ί7 is a properly infinite projection of central support
1. We show that J\{E) = J^{E) is equal to ^A First we prove
that {Jf) c {^(E)). Let F e ( J ' ) If EP < FP for some Pe(^),
then by choice of s0 we have that EP = 0. So Fe(^(E)) by defini-
tion and hence {<J^) c (^(E)). To show the converse relation
(Jf(E)) c (Jf) we consider two cases: (i) Card s0 is finite, and
(ii) Card sQ is infinite. For case (i) we have that E is a σ-finite
projection of central support 1. Then we have that {Jf{E)) is
exactly the set of finite projections of ,jy [9; III, 8, Corollary 5].
But by our preliminary reduction J?r is weakly dense in s>f and
therefore contains all finite projections of .$/ (Proposition 2.2). So
{J^{E))(Z{,^). Now we consider case (ii). Let Fe(^(E)). Since
J^ is a central ideal, there is a P e (%) such that PFe J^ and
QF<t^ for every nonzero Q in (^Γ(l — P)). We obtain a contradic-
tion by assuming 1 — P Φ 0. Because J^ contains all finite projec-
tions (Proposition 2.2), we have that F(l — P) is properly infinite
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with central support 1 — P. We may find a nonzero projection Q in
(JΓ(1 — P)) such that FQ is the sum of a set {F^ies} of orthogonal,
equivalent, properly infinite <7-finite projections [9; III, 1, Lemma 7].
We have that Fι ~ E3Q for every ies and j esQ. [9; III, 8, Corollary
5J Since Σ Wι Ii e s} = FQ <EQ = Σ {#<QIί e s0}, and since Card s0 is
infinite, we have that Card s ^ Card s0 [9; III, 1, Lemma 6]. If Card sQ^
Card s, we would have a contradiction in that EQ •< î Q and EQ Φ 0.
Thus Cards Φ Cards0. But if s' is a subset of £f{I) with Cards'-
Cards, then Σ {EM e s'}Q' - FQ' for every Q' in (3TQ) and so
Σ f ^ K e s ' J Q ' g ^ for every nonzero Q' in (JTQ). This contradicts
the choice of s0. Hence, 1 — P = 0 and F G ( ^ ) . So in case (ii) we
have (^(E)) c (^^). Therefore, we have completed the crucial step,
and so there is an Ee {Ssf) and a Q e {%) with ^ ^

Now let JE be a properly infinite projection majorized by the central
projection P in the von Neumann algebra j&l Let Q be the central
projection of j y such that jzfQ is equal to the weak closure of
^P(E) = J^ Then it is clear that J%(EQ) = J ί We say a representa-
tion ^p(E) for a central ideal ^ is in canonical form if szfP is the
weak closure of

PROPOSITION 2.5. Lei ^P{E) and <J%(F) be two central ideals of
a von Neumann algebra Szf that are represented in canonical form.
Then ^P(E) = J?Q{F) if and only ifP=Q and E ~ F.

Proof. If P = Q and E ~ F, then it is clear that ^~P{E) =
Now let J?p{E) = *J%{F) = <J?~. Since jzfP = weak closure

we have that P = Q. Now let R be the largest central projec-
tion majorized by P such that RE — ϋ?F. Suppose R' = P — R Φ 0.
There is a central projection R" majorized by R! such that R"E <
R"F and (R - R")F < {Rr - R")E. If R" Φ 0, then SR"F < SR'Έ
for some central projection S implies that SR"F — 0. Otherwise, we
would have that SR"E — SR"F and so R would not be the largest
central projection with RE — RF. This means that R"E e ^\ Hence
R"E = 0 and so J^R" = jzfR". This means that FR" = 0 and con-
sequently that ER" — FR". This is a contradiction. A similar con-
tradiction arises if R' — R" Φ 0. So we must have that R — P, i.e.,
E~F.

REMARK 2.6. In the sequel we assume all representations of
central ideals are in canonical form.

COROLLARY 2.7. Let szf be a von Neumann algebra and let ^
be a central ideal of Szf given by ^ = <Jp{E) in canonical form.
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Then in order that P> — 1, a necessary and sufficient condition is
that P be the central support of E.

Proof. If the central support of E is Q, then from the definition
of uJ*p(E) = ̂  it is clear that P — Qe^Λ This means that P ; Φ 1
if P - Q Φ 0. Conversely, if 1 - P^ Φ 0, then (1 - P^)E = 0. But
(1 — PJ) <̂  P and thus E cannot have central support P.

Let j y be a von Neumann algebra with center ^Γ. Let Z be
the spectrum of ^Γ. Let CC(Z) be the set of order-continuous func-
tions of Z into the set of cardinal numbers. J. Tomiyama [30]
showed that there is a dimension function D of stf into CG(Z) such
that D{E) ̂  D{F) if and only if E < F. W. Wils [31] described the
range of D in CG(Z) as being a certain subset A of functions in CC(Z).
Although it is not important in the sequel, one may see that the set
of projections of a central ideal J^P{E) satisfies a certain dimension
relation relative to P and E. We therefore feel justified in introducing
a name for the following relation.

DEFINITION 2.8. Let Jf be a central ideal in a von Neumann
algebra j^< Let P be a central projection and let £ be a properly
infinite projection majorized by P with J^ — J^P{E). A projection F
in j y is said to have dimension greater than that of Jf if F has
central support Py and if F > EP^ (in symbols, dim F > d i m ^ ) .

The following proposition characterizes the projections whose di-
mension is greater than the dimension of ^y.

PROPOSITION 2.9. Let j y 6e α w^ Neumann algebra and let
be a central ideal of .S>/. Then a projection F of ,s>/ has dimension
greater than that of J?7 if and only if F has central support P^ and
FQ e J^ for some central projection Q implies FQ — 0.

Proof. Let T be the center of Jf. Let E e (j^) and let P e
so that KJ^P(E) represents J^ in canonical form. First let F e {jy)
with central support P^ such that QF e Jf for some Q e {%*) implies
QF = 0. There is an R e (βtr) such that RE < RF and such that
RΈ < R'F for R e (Z(l - R)) implies R = 0. Then FP(1 - R) e
*yp{E) by definition and so FP(1 — R) = 0. Thus we obtain that
FPR = FP. So EP^ = EPP^ < FP ^ F, i.e. dim F > dim jr.

Conversely, let dim F > dim J^. Then by definition we have that
F has central support P^. Let Qe(^f) and let QF^Jf. We have
that EPy<F implies that EQPj,ej^ (lemma of F. B. Wright).
Since EQPy < EQP^, we have that EQP^ = 0 and thus QPP^
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By definition of P^ we find that QPP^ = 0. Also ^ ( 1 - P) = (0)
and so QF = QPF + Q(l - P)F - 0.

Now we can give some examples.

EXAMPLE 2.10. In a factor algebra, every ideal is a central ideal.

EXAMPLE 2.11, In a semi-finite algebra j ^ , the ideal ^ generated
by all finite projections of Szf is a central ideal. If J ^ is finite,
then w^ = j ^ ; if j y is properly infinite, then ^ = ^Ί(E), where £"
is a properly infinite projection of central support 1 for which there
is a set {PJ of mutually orthogonal central projections of sum 1 such
that EPi is σ-finite for every P4 [8; III, 1, Lemma 7]

EXAMPLE 2.12. If s>f is a properly infinite von Neumann algebra,
then the strong radical ^ (i.e. the intersection of all maximal ideals)
is a central ideal with ^

3* The essential central spectrum* Let Suf be a von Neumann
algebra with center ^Γ. If ^ is an ideal in J ^ let j ^ ( ^ ) denote
the algebra j ^ reduced modulo ^ and let A ( ^ ) denote the image
of an element A under the canonical homomorphism of s%f int
The algebra j ^ ( ^ ) is a C*-algebra under the norm
gib {|| A + B\\ IBe ^}. If ζ is an element in the spectrum Z of ^ let
[ζ] denote the smallest ideal in Szf containing ζ. For simplicity we let
j^([ζ]) and A{[ζ\) be denoted by the symbols jy(ζ) and A(ζ), respec-
tively. Then J. Glimm [12; Lemma 10] has shown that for fixed A e
j& the map ζ —> || A(ζ) || is continuous on the spectrum Z. For every A
in j ^ a n d ζ i n ^ , the norm ||A(ζ)|| is equal to HA(ζ)|| = glb{||AP|| | P G

and PA(ζ) = 1}. Here PΛ denotes the Gelfand transform of P. If
and ^ are ideals in «j^ then the algebraic sum <J\ + ^f is also an

ideal of *s*f. In the sequel we denote the sum ^ + [ζ] of an ideal ^
and the special ideal [ζ] formed from ζe Zby **F(Q. For an element A
in J^f9 we denote the spectrum of A(<J^(ζ)) in Ssf{^(Q) by SpA(^"(ζ)).

The next lemma is used repeatedly.

LEMMA 3.1. Let j&f he a von Neumann algebra, let %* be the
center of Jzf, let Pe {%), let Z be the spectrum of %, and let ^ be
a central ideal of Jϊf. If A is an element of Sz? such that fA(ζ) =
\\A(^(ζ)) || vanishes for every ζ in the support of P given by supp P =
{ζeZ\PA(ζ) = 1}, then the element AP is in

Proof. For every ζ in supp P and ε > 0 there is a Bζ in ^ such
that ||(A - J%)(ζ)|| < e. Hence there is a Pζ in ( r ) with Pζ

Λ(ζ) = 1
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such that 11(A — Bζ)Pζ\\ < ε. Using the fact that supp Pi s compact,
we may find a set Pl9 •••, Pn of orthogonal projections in %* of sum
P and a corresponding set Blf , Bn in J? such that

IIAP - Σ BΛII = lub ||(Λ - 5«)P<|| < e .

Since J? is closed, the element AP is in

We characterize those ideals ^ for which ζ —> ||^4(^^(ζ))|| is con-
tinuous on Z for every A in

THEOREM 3.2. Lei j ^ 6e α wm Neumann algebra, let %* be the
center of j ^ αraZ Zeί Z be the spectrum of %*. Let *J^ be an ideal
of s^f. In order that fA(ζ) = ||A(^^(ζ))|| be a continuous function on
Z for every A in Ssf, a necessary and sufficient condition is that ^
be a central ideal of S^.

Proof. The sufficiency follows by a proof that is virtually the
same as the one we gave in the corollary of (a5) implies (al) of [19].

Conversely, let fA be continuous on Z for every A in J%?. We
show that Ssf is a central ideal. If {Ai\iel} is a bounded subset
of ^ and if {P{ | i e 1} is an orthogonal set in (^) of sum 1, then
we prove that A = Σ ^ P * is in J ^ Indeed, the set Ui{ζeZ\ P£ (ζ) = 1}
is a dense set of Z on which fA{ζ) vanishes since fΛ(ζ) = \\Ai{^(ζ)) \\ —
0 whenever Pf(ζ) = 1. By the continuity of fA, we see that/^ vanishes
on Z. Hence, the element A is in ^ by Lemma 3.1.

REMARK 3.3. If ^ is the strong radical of a properly infinite
von Neumann algebra, then ^ ( ζ ) = ̂  + [ζ] is the unique maximal
ideal which contains ζ [24 and 15, Proposition 2.3].

Now we prove the main result of this section. It is convenient
to separate the following lemma.

LEMMA 3.4. Let % be a commutative von Neumann algebra and
let Xl9 •••, Xn be closed sets which cover the spectrum Zof ^Γ. Then
there are orthogonal projections Rι<f , Rn in (JΓ) of sum 1 such that
{ζ e Z\Rm = l}czXi for l^i^n.

Proof. Let {Pi \ i e 1} be a maximal set of nonzero mutually or-
thogonal projections such that for each ie I there is an i(j) with
1 ^ ί(j) ^ n so that Yi = {ζ e Z\P£(ζ) = 1} c Xi{j). We obtain a con-
tradiction if P - 1 - Σ Pi * 0. Indeed, the set Y = {ζ e Z\PA(ζ) = 1}
is nonvoid and is covered by the closed sets Y Π Xίy , YΠ Xn. By
the Baire category theorem one of the set Yf)Xm has a nonvoid
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interior in Y. This means that there is nonzero projection Q in 3ί
such that {ζ G Z\ QΛ(ζ) = 1} c YΓΊ Xm* This contradicts the maximality
of {Pi}. We must have that Σ Pi = l The remainder of the proof
consists in adding the projections P{. Let J, = {i el\ F< c X̂  } for
1 ^ i ^ ft and let j?y = Σ {Pi \i e I, - U {I* 10 £ k ^ i - 1}} for l^j^n.
Here Jo = 0 . Then it is clear that i2lf i?2, , Rn satisfy the require-
ments of the lemma.

THEOREM 3.5 Let j^f be a von Neumann algebra with center %Ί
let ^ be a central ideal of Jzf, and let A be an element of Szf. Let
Xo be a closed subset of the complex plane C such that the intersection
S(ζ) of Xo with the spectrum (resp. left-spectrum, right-spectrum, the
intersection of the left-spectrum and the right-spectrum) of A{<JΓ(Q)
is nonvoid for every ζ in the spectrum Z of %*. Then there is an
element Ao in the center of JY such that A£(ζ) e S(ζ) for every ζ in Z.

Proof. We first prove that there exists Ao in %" such that A£(ζ)
is in the intersection S(ζ) of Xo with the spectrum SpA(^(ζ)) of
A(*f(ζ)) for every ζ in Z. Since SpA(^(ζ)) is contained in SpA,
there is no loss of generality in assuming Xoa Sp (A). We prove the
theorem by an approximation argument that involves decomposing
the space Z.

For every compact set X in the complex plane, let X(Z) = {ζ €
Z\Xf] S(ζ) Φ 0}. We show that X(Z) is closed in C. Let {ζj be a
net in X(Z) converging to ζ. Let a{ e S(ζ<) Π X] by passing to a
subnet, we may assume that {αj converges to ae XΠ Xo* Arguing
by contradiction we show that a e Sp A{^{Q). If a
then there is a 5 e Stf with

\\(B(a- A ) -

\\((a~A)B~l)(^(a))\\ = 0.

By Theorem 3.2, we see that there is a ζ* and a{ such that

and || ((α, - 4 ) 5 - 1)(^^(Q) | | < 1. This means that a,
and this is contrary to assumption. So α e X{Z) and X{Z) is closed.

We now begin the approximation argument by decomposing Z
into subsets on which we shall approximate Ao. Suppose we have,
for every m less than or equal to the natural number n, constructed
sets of integers Im = {1, 2, , pm} such that for every s in I1 x x
Im = I(m) there is a compact subset X{s) of C of diameter ^ 2~m and
a P(s) in (%*) which satisfies the following properties:
(1) For s e I(m), U {X(s; j) \j e Im+ί} = X(s) whenever 1 ^ m < n and
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( 2 ) Supp P(s) = {ζ G Z\ P(β)Λ(ζ) = 1} c X(s)(Z) for every s e I(m) (1 g
m ^ %); and
( 3 ) for s e I(m), {P(s; j) \j e Im+ι) is a set of orthogonal projections of
sum P(s) whenever 1 < m < n and {P(j) \j e 1(1)} is a set of orthogonal
projections of sum 1.
We shall construct a set J n + 1 = {1, •• ,pw+i}> compact sets Z(s)(se
I O + 1) = Ii x x I«+i) of diameter g 2~(%+1) in the complex plane,
and projections P(s)(s e I(n + 1)) in %: which satisfy (1), (2), (3).
Indeed, let {Γ^i G Iw+1} be compact sets of diameter <; 2~(n+1) which
cover Xo. Let X(s, j) = X(s) Π Y, for s G I ( » and j e In+ι. Then
{X(s)\se I(m), m — 1, 2, , ^ + 1} satisfies property (1). Now let s
be fixed in I(n); we have that U {X(s; j)(Z)\j e In+1} = X(s)(Z). Since
supp P(s) is contained in X(s)(Z), the sets X(s; i)(Z) Γ) suppP(s)(i e JΛ+1)
form a closed cover of suppP(s). By the Lemma 3.4, there are or-
thogonal central projections P(s; j) (j G Jn + 1) of sum P(s) such that

for every j e In+1. Thus P(s)(sel(n + 1)) satisfies (2) and (3).
We continue by induction to construct I(ri), compact sets X(s)

(s G I{n)) of diameter <Ξ 2~w, and central projections P(s) (s G I(n)) satis-
fying (1), (2), and (3) for every n = 1, 2, . We notice that if X(s)
is void then P(s) = 0.

We now construct the approximating elements. Let n = 1, 2,
be fixed. If s G J(w), let a(s) e X(s) if X(s) is non-void, and α(s) = 0
if X(s) is void. Let An = Σ Ms)P0) I s G I(W)}. Then An is an element
in the center of Ssf.

We show that {An} is a Cauchy sequence. Indeed, we have that

\\An - AΛ+1 | | - lubflKA, - An+1)P(s)\\ \sel(n + 1)}

since Σ (P(s) \s e I(n + 1)} = Σ {P(s) Is G I(n)} = = 1 . However, if
s G I(% + 1) is of the form s — (V; j) with s' G I(^) and i G J W + 1 , then

n - An+1)P(s)\\ - ||(α(s') - α(S))P(s)|| <£ 2 -

since α(s) e X(s') whenever P(s) ^ 0. Hence, we obtain that

\\An A%+1 | | ^ 2

for every n = 1, 2, and so {A%} is a Cauchy sequence in ^Γ.
We show that the limit Ao of {An} satisfies the requirements of

the Theorem 3.5. Let ζ be an arbitrary point in Z. Given ε > 0 we
show that there is aeS(Q such that |ΛΛ(C) — a\ <* e. Since S(ζ) is
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closed and since ε > 0 is arbitrary, this will mean that A0

Λ(ζ)eS(ζ).
Let m be a natural number with 2~w+2 < ε. Then | ΛΛ(Q - A£(ζ) | S
\\A0 - Am\\ < 2~1s. There is an sel(m) such that P(s)Λ(ζ) = 1 since
Σ {P(s) I s e I(m)} = 1. By property (2), we have that ζ is in X(s)(Z).
So there is an element a in X(s) such that α e S(ζ). However we have
that A£(ζ) = α(s)eX(s), and so \a(s) — a\ < 2"m since the diameter
of X(s) is less than 2~m. Now we obtain that |A0

Λ(ζ) — a\ ^ ε, and
by the preceding remarks that A£(ζ) eS(ζ) This completes the proof
for the case of Xo Π Sp Ap^(ζ)) Φ 0 .

We may prove the existence of an element Ao in 3f such that
(Ao — A)(^{Q) is not left (resp. right, left nor right) invertible
in jy(w^(ζ)) and A0

Λ(ζ) e Xo by the same proof we just gave for
an invertible element by using the additional fact that, for any ele-
ment B in a Banach algebra & with identity, the set of all complex
a such that a — B is not left (resp. right, left nor right) invertible
is a non-void compact set ([26; 1.5.4 and 1.4.6]; also cf. [11; Theo-
rem 3.1]).

The following definition is now meaningful.

DEFINITION 3.6. Let j y be a von Neumann algebra, let %? be the
center of Sxf and let Z be the spectrum of ^ . Then the essential
central spectrum %? — Sp^ A of an element A in Jzf with respect
to the central ideal ^ is the set of all Ao in 3f such that Ao(ζ) e
SpA(w^(ζ)) for every ζ e Z . The left-essential (resp. right-essential)
central spectral %£ — Sp!̂ A (resp. %* — Sp!>A) of A with respect to
^ is defined in a similar manner. The intersection 3£ — Sp^A =
( ^ - Sp!>A) Π {%* — Sp;>A) is called the two-sided essential central
spectrum of A with respect to

REMARK 3.7. All sets defined in Definition 3.6 are non-void (Theo-
rem 3.5).

REMARK 3.8. For every Ao e %* — Sp^ A, we have that A0(l —
PJ) = 0. Since (%* - Sp̂ -A) U ( ^ - SpS A) c ^ - Sp^A, the projec-
tion 1 — P^ annihilates the other essential central spectrums.

We note that these definitions correspond to the usual ones if Ssf
is the algebra of all bounded operators on a Hubert space and J? is
the ideal of compact operators.

PROPOSITION 3.9. Let s*f be a von Neumann algebra. Then the
essential (resp. left-, right-essential) central spectrum of an element
A in Ssf with respect to a central ideal ^ is closed in the strong
operator topology.
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Proof. Let {AJ be a net in the essential central spectrum of A
with respect to ^ which converges strongly to Ao in the center 3?
of jy. There is a net {Pn} of mutually orthogonal central projections
of sum 1 such that for each Pn there is a sequence {Ai(n)} in Uί{AJ
with lim Aiin)Pn = AQPn (uniformly) [28; Corollary 13.1]. Since Afw(ζ) e
Sp A(^~(ζ)) for every ζ in the spectrum iΓof %* and since Sp A(^(Q)
is closed, we have that A0

Λ(ζ) e Sp A(^~(ζ)) for every ζ in the dense
subset X = U.{ζeZ|Pί(ζ) - 1} of Z [7]. Let {Q be a net in X
which converges to ζ in Z. If A0

A(ζ) g Sp A(^(ζ)), then there is a J5
in j ^ with

||(J5(A0 - A) - l)(w^(C))|| - ||((Λ - A)B - l ) (^(ζ)) | | = 0 .

This means that there is a ζ* with

II (B(A0 -A)- l)(^(ζ,)) || < 1 and \\(A0 - A)B -

and thus that A0

Λ(Q is not in S p A ( ^ (£,-)). Hence, we must have
that AΛ(ζ) is in Sp Ap^(ζ)) for every ζ in the closure Z of X. This
proves that %* — Sp^A is strongly closed.

The statements concerning the left- and right-essential central
spectra are proved in an analogous fashion.

For future reference we note some simple facts in the following
proposition.

PROPOSITION 3.10. Let s$f be a von Neumann algebra with center
%* on the Hubert space H, let ^ be a central ideal in jzf, let P1

and P2 be orthogonal projections of sum 1 in %Γ, and let A be an ele-
ment of J^f. Let s^fi be the von Neumann algebra SsfPi with center
%Ί — %Pι on the Hilbert space PiH, let J?\ be the central ideal ^Pi
in J^i, and let Ai be the element APi in j ^ for i — 1, 2. Then
%- - Sp^A - {B, + B2\Bi e %\ - Sp^A*, i = 1, 2}.

REMARK. A similar statement holds for the left- and right-
essential central spectrums.

Proof. This follows from the fact that the spectrum of ^i is
{ζPtlζeZ, Pf(ζ) = 1}, where Z is the spectrum of T, and thus that
[ζPJ in jfPi is equal [ζ]P,.

We now restrict our attention to self-adjoint elements. We note
that the essential central spectrum of a self-adjoint element consists
of self-adjoint elements.

PROPOSITION 3.11. Let j%r be a von Neumann algebra, let %* be
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the center of Ssf, and let A be a self-adjoint element of s%f. Then
there are elements Cu and C% in the essential central spectrum % —
Sp̂ r A of A with respect to the central ideal J^ such that Ct ^ C ̂  Cu

for every C in %? — Sp^ A.

Proof. The set %" — Sp^ A is a monotonely increasing net in
%*. Indeed, if C and C are in %T - Sp^ A, then there is a Pe {%T)
such that lub {C, C"} = PC + (1 - P)C. Since PC + (1 - P)C is in
3? — Sp^ A (by 3.10), the set 3? — Sp^ A is monotonely increasing.
Then the least upper bound Cu of %* — Sp^ A is the strong limit of
elements in 3? — Sp^ A and so Cu is in the essential central spectrum
of A with respect to *J^ (Proposition 3.8).

In an analogous manner, we may show that % — Sp ̂  A is mono-
tonely decreasing and thus we may find a greatest lower bound Cx

for T - Sp^ A in T - Sp^ A.

PROPOSITION 3.12. Let s^ be a von Neumann algebra with center
%Ί let ^ be a central ideal of Saf, and let Abe a self-adjoint element
of s*f. Let Cu and Ct be the least upper bound and the greatest lower
bound of the essential central spectrum of A with respect to ^ respec-
tively. Then C£(ζ) = lub Sp A(^(ζ)) and Cf(ζ) = glbSp A{J^(ζ)) for
every ζ in the spectrum Z of %*.

Proof. Since Cί(ζ) 6 Sp A(^(ζ)) for every ζ e Z, we have that
C£(ζ) ^aζ = lubSp A{J?{Q), for every ζeZ. Conversely, we obtain
a contradiction if we assume that aζ — C« (ζ) = 2ε > 0 for some ζ e Z.
Indeed, let E be the spectral projection of A — Cu corresponding to
the interval [ε, + °°). Because (A — Cu)(l — E) ̂  ε(l — E), we have
that E(^(ζ)) Φ 0. Hence, there is a P e ( ^ ) such that PA(ζ) = 1
and # ( ^ ( 0 ) ^ 0 for all C in suppP= {ζ'eZ|PΛ(ζ') - 1} (Theorem
3.2). Since εE^(A-Cu)E, we have that Sp ( A - C J p ^ ζ ' ) ) n [ε, + oo)^
0 for all ζ' G supp P. Reducing to the algebra jzfP with center ^P,
we see that S(ζ') = Sp(Λ - Cu)P((^P)(ζf)) Π [e, +oo) i s non-void for
every ζ' in the spectrum X of ^ P . Because J^P is a central ideal
in j^fP, we may find a ΰ ί n J such that (PP)Λ(ζ') e S(ζ') for every
ζ ' e l (Theorem 3.5). If D is an arbitrary element in %*-Sp^(A-CJ,
then PB + (1 - P)Z) = 5 ' is in JT - Sp^ (A - Cu) (Proposition 3.10),
and consequently, the element B" = J5' + Cu is in ^ — Sp^ A. But
we have that B"P + Cu(l - P) is in % - Sp^ A (Proposition 3.10)
and that B"P + Cu(l - P) ̂  Cu + εP. This contradicts the definition
of Cu. Thus we must have that C£(ζ) = lub Sp A(^(ζ)) for every
ζeZ.

A similar proof holds for Cu
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The following proposition shows that if Ao is in the essential
central spectrum of A with respect to ^ then AQ — A is small on a
large subspace with respect to

PROPOSITION 3.13. Let s^ be a von Neumann algebra, let ^ be
a central ideal of Ssf, let A be a self-adjoint element of Ssf, let Ao be
an element of the essential central spectrum of A with respect to ^
and let ε>0. If F is the spectral projection of Ao — A corresponding
to the interval [ —ε, ε], then FPe^ for some central projection P
implies Pe^ (i.e. P ^ 1 - PJ).

Proof. Let P be a central projection with PFe^Λ We show
We may assume that P Φ 0. Let ζ be a point in the spectrum

of the center of sf such that PA(ζ) — 1. We have that

(Ao - A)(jr(Q) = (Ao -

If (1 - F){J?(Q) Φ 0, then (Ao - A){^{Q) is invertible in
Since this is not possible, we have that l(^"(ζ)) = 0. This means
that P e ^ ( ζ ) . Since ζ with the property PΛ(ζ) = 1 is arbitrary in
the last relation, we have that Pe^ by Lemma 3.1.

We now characterize the essential central spectrum of a self-
adjoint element in terms of the canonical form of a central ideal (cf.
Remark 2.6ff. and Definition 2.8).

PROPOSITION 3.14. Let j y be a von Neumann algebra with no finite
type I direct summand, let ^ be a central ideal of Sf, and let A be
a self-adjoint element in Szf. An element Ao is in the essential central
spectrum of A with respect to <J^ if and only if there is an orthogonal
sequence {En} of projections in j y of dimension greater than dim ^
such that AEn(^) = EnA{^) and ||(A0 - A)En{Jr)\\ ^ rΓ1 for every
n = 1, 2, and Ao = AQP^.

Proof. Let Ao be in the essential central spectrum of A with
respect to *y\ There is no loss of generality in the assumption that
Py - 1 and that Ao = 0. [9; III, 5, Problem 7]. Let Fn be the
spectral projection of A corresponding to the interval [ — n~\ n~ι] for
n = 1, 2, •••; then we have that {Fn} is a monotonely decreasing
sequence of projections such that dimFu > d i m ^ (Propositions 3.13
and 2.9).

Let ^ be represented in the form J^ = ̂ S{E) (2.4-2.6). Now
let {Pi} be a maximal set of mutually orthogonal central projections
such that for each i there is a natural number j(i) with (Fk — Fk+1)Pi e

whenever k^j(i). This means that AFjWPieιJ*' since
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\\AFj{i)Pi(^)\\ = \\A

for arbitrary k ^ j(i). Hence, setting F = Σ FHi)Pi and P = Σ ;̂>
we obtain a projection F of central support P such that AF e ^ and
J57P -< F (Proposition 2.9). Since s$f has no finite type I direct sum-
mands, we may find a sequence {G'n} of orthogonal projections of
sum FP such that the central support of Gr

n is P and such that EP <
G'n. Indeed, there is a central projection R majorized by P such that
FR is properly infinite and F(P — R) is finite. In the first instance
FR is the sum of a sequence of mutually orthogonal projections each
equivalent to FR [9; III, 8, Corollary 2]. In the second instance, we
have that E{P — R) = 0. Indeed, E is a properly infinite projection
and E(P - R) is finite since E(P - R) < F(P - R). Now F(P - R)
may be written as the sum of a sequence of orthogonal projections
of central support P — R [9; III, 1, Theorem 1, Corollary 3].

Now, for every nonzero central projection Q majorized by P' =
1 — P and for every n — 1, 2, , there is a nonzero central projec-
tion Q' with Qr tί Q and a natural number m ^ n such that (Fm —
Fm+ι)Qr has central support Q' and EQf < (Fm - Fm+ι)Qf (Proposition
2.9). By induction we may find sets {Gnί\ieln} (1 g n < oo) of pro-
jections with the following properties:
(1) if Qni denotes the central support of Gni, then EQni < GniQni

(ieln;n = 1,2, •••);
(2) {Qni\ίe In) is a mutually orthogonal set of sum F ;
(3) for each ieln there is a natural number s = s(ϊ) ^ n with Gni =
(Fs - Fs+1)Qni; and
(4) iί i e Im, j e In, and QmiQnj Φ 0 then s(ί) < s(i) whenever m < n.
Here Jw is a countable indexing set with Im Π In Φ 0 for m Φ n.
Indeed, at the (n + 1) — st stage of the induction we work in algebras
of the form SsfQu. Qnin(ij e Iό) and then sum the appropriate pieces
together by summing over those pieces corresponding to the same
s(i). Setting G" = X {Gnί \i e In}, we obtain sequence of mutually
orthogonal projections of central support Pr such that EPr < G'n P',
AGZ = G' A, and \\AG':\\ S n~ι for every n = 1, 2, . . . . Setting En =
G'n + G" for n = 1, 2, •••, we obtain a sequence {ϋy of mutually
orthogonal projections of central support 1 such that

E < En, AE%{^) - EnA{^) , and

for every w.

Conversely, let {En} be a sequence of (not necessarily orthogonal)
projections which satisfy the conditions of the proposition for the central
element A*. Suppose there is a B in s*f with B(A0 — A){*J^{ζ)) =
1 Φ 0 for some ζ in the spectrum of the center. Then we have
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that

= \\B(A0 - A)En{^{ζ))\\ £ nrι\\B\\ ,

for every n = 1, 2, implies 112^(^(0) || = 0 for all sufficiently large
n. However, this means that \\En(*J^(ζ'))\\ = 0 for all ζ' in a neigh-
borhood of ζ since ζ'—• ||ϋ7»(w^(ζ'))ll is a continuous function of the
spectrum of the center into {0, 1} (Theorem 3.2). So there is a pro-
jection P in the center with PΛ(ζ) = 1 such that EnPe^ (Lemma
3.1). But this contradicts the hypothesis that d i m ^ > d i m ^ (Pro-
position 2.9). Consequently, the element Ao is in the essential spec-
trum of A with respect to

COROLLARY 3.15. Let jzf be a von Neumann algebra with no
finite type I direct summands and let ^ be a central ideal of Stf.
Then the essential central spectrum with respect to *J^ of a self-adjoint
element A contains Ao if and only if there is a sequence {En} of
mutually orthogonal projections of dimension greater than
such that ||(Ao — A)En\\ ^ n~ι for every n = 1, 2, and Ao =

Proof. There is no loss of generality in the assumption that Ao = 0
since every element in the essential central spectrum of A is self-
adjoint. Then there are orthogonal projections {Fn} such that dimFn>
d i m ^ A F . p H - FnA{Jf) and \\AFn{J^)\\ < (2n)"1 for every n =
1,2, ••• (Proposition 3.14). For every n there is a Bne^ with
\\AFn - BnFn\\ < {2n)~ι. There is a projection Gn e JF such that Gn ^
Fn and \\BnFn{l -Gn)\\^ {2n)~\ Let En = Fn - Gn. If Q is a central

projection with QEn e ̂  then QFn e *J^ and QP r = 0 and so dim En >
d i m ^ (Proposition 2.9.). But we have that

| |AS. | | ^ ||(A - Bn)En\\ + | | £ ^ | | ^ n"1 .

Thus {En} is the required sequence.
The converse is derived from Proposition 3.14 since

\\B\\ for every Be Ssf.

COROLLARY 3.16. Let s^f be a von Neumann algebra with no
finite type I direct summand and let ^y be a central ideal in jyi If
the left-essential (resp. right-essential) central spectrum of an element
A in sf contains Ao, then there is a sequence {En} of orthogonal pro-
jections in s$f such thai dim En > d i m ^ " and ||(A0 — A)En\\ ^ n~ι

(resp. ||(A0 — A)*£^n|| ^ n~ι) for every n — 1, 2, .

Proof. Since the essential central spectrum of (Ao — A)*(A0 — A)
contains 0, the Corollary 3.15 can be applied.
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REMARK 3.17. If j y is a finite type I algebra, ^ is a central
ideal, 4 e j ^ and Ao in the essential central spectrum of A with
respect to ^ then D. Deckard and C. Pearcy [6] showed that there
is an abelian projection E of central support P , in Ssf with (Ao — A)E~
0.

4* The essential central range* Let Szf be a von Neumann
algebra with center ^Γ. Then s^ may be considered as a module
over JΓ. Let J^~ be the ^"-module of all bounded module homomor-
phisms of Ssf into 3f and let jy~+ be the set of all elements of j ^ ~
which map j ^ + into ^" + . For a central ideal ^ of J ^ let Ea{^)^
{φesϊf~+\φ(^r) = (0) and 0(P^) = P^}. Here P^ is the orthogonal
complement of the largest central projection in ^X We notice that
EJ^) is the set of all states (i.e. elements φ of s$f~+ with (̂1) = 1}
of j ^ ~ which vanish on ^ whenever P^ = 1, or equivalently, if
i ^ = ^yP{E) (Remark 2.6), whenever the central support of E is equal
to P (Corollary 2.7). In particular, the set Ea{^) is equal to the
set of all states which vanish on J? whenever ^ is the ideal gen-
erated by the set of all finite projections or J? is the strong radical
of a properly infinite von Neumann algebra (Examples 2.11 and 2.12).
It is clear that EJ^) is compact in the topology of pointwise con-
vergence on s/ where is %? taken with the weak topology, i.e., in
the σw(j%f~, j^)-topology of j ^ ~ . If {φι \ i e 1} is any subset of Ea{^}
and {Pi\ie 1} is a set of orthogonal central projections of sum 1, then
Φ(A) = Σ P%Φ%{A) defines an element φ in Ea{^). Furthermore, we
see that Ea{^) is central-convex in the sense that Cφγ + (1 — C)φ2 is
in Ea(J^) for every φL and φ2 in Ea{^) and C in T with 0 ^ C £ 1.

DEFINITION 4.1. Lei j y δe α ^o^ Neumann algebra, let <J^~ be
a central ideal of Szf, and let A be an element of j%f. The set Sί^{A) =
{φ(A)\φe Ea(^)} will be called the essential central range of A with
respect to ^ We notice that JΓ>(A) is a central-convex, weakly com-
pact (and consequently uniformly closed) subset of the sphere in the
center of J%f of radius \\A\\ about the origin.

PROPOSITION 4.2. Let j^f be a von Neumann algebra, let ^ be
a central ideal of Szf, and let A be an element of Ssf. Then for every
ζ in the spectrum of the center of J^, the set J?y(A)(ζ) - {BA(ζ)\Be

is a compact set of complex numbers.

Proof. Since Sfy(A)(ζ) is bounded, it is sufficient to show that
(A)(ζ) is closed. If a is the limit of a sequence {φn(A)A(ζ)} where

φn e Ea{jF) for every n = 1, 2, , we show that a 6 J£>(A)(ζ). There
is no loss of generality in assuming that a — 0. We may assume
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that |^(A) Λ (ζ) | < rr1 for every n = 1, 2, •••• There is a sequence
{Pft} of central projections with \\φn(A)Pn\\ ^ n~\ and P*(ζ) = 1 for
every n = 1, 2, •••. Let Qo = gib {Pi ••• P J w = 1, 2, •••} and let Q,=
Pi(l - Pa), Q2 = PiP,(l - P3), then {Q, | i = 0, 1, 2, } is a sequence
of orthogonal central projections of sum Px. The homomorphism

+ QO0 + Σ {Q<Λ|i = 1, 2, •}

is an element of EJ^) and so

Ao = lim t .(A) = (1 - PdΦάA) + Σ {QiΦi(A)\i = 1, 2, ..}

is in Sέ^(A). Since (1 - PX)A(C) = 0 and Qf (ζ) - 0 for all i ^ 1,
either Q0

Λ(ζ) - 1 or Σ {Qi\i ^ ™}Λ(C) = 1 for all n = 1, 2, . . . In
either case A0

Λ(ζ) = 0 since | | Σ {Q*\i = 0, n, n+ 1, }A0|| ^ w"1. This
means that Oe

We need the following lemma. Its proof is a simple reworking
of [19; proof of corollary to (a5) implies (al)].

Lemma 4.3. Let s^f be a von Neumann algebra, let ^ be a
central ideal of Ssf, and let E be a projection in jtf. There is posi-
tive module homomorphism of the module <szf into its center which
vanishes on ^ and satisfies the relation φ(l) — φ(E) = 1 — Q where
Q is the largest central projection of Szf such that EQ

THEOREM 4.4. Let s$f be a von Neumann algebra. The essential
central range of a self-adjoint element A of j y with respect to a
central ideal ^ is the smallest central-convex subset of J^f which
contains the essential central spectrum of A with respect to <J^

Proof. Let %" be the center of J ^ let ζ be in the spectrum of
^Γ, and let φ be an element of Ea{^). Let φζ be the bounded linear
functional on j ^ defined by φz(B) = Φ(B)A(Q for all Bej^. If
Bl9 •••, Bn are in j y and Cl9 •••(?» are in ζ, then

^c(Σ Bid) = Σ CHQΦdBi) = o .

This proves that φζ vanishes on a dense subset of [ζ] and so vanishes
on [ζ]. Hence φc vanishes on <J*~(ζ). Now let d = gib ^ — Sp^ A
and Cu = lub & - Sp^A. We have that Cf (ζ) £ A{J^{ζ)) ^ Cί(ζ)
in j ^ ( ^ ( ζ ) ) . (Proposition 3.12). This means that

for all ζ with P* (ζ) = 1. Consequently, we have that Cz = CXP^ ^
φ(A) ^ CUP^ = Cu. So we may find a C in J with 0 ^ C ^ 1 such
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that CCi + (1 — C)CU = φ(A). Hence, the smallest central convex set
containing % — Sp^A contains ^S(A).

Conversely, to show the opposite relation we simply must show
that Ct and Cu are in J£>(A). We work with Cu. Given ε > 0, there
is a projection E in Stf such that E commutes with A, \\(CU — A)E\\ <
ε, and if EP is in ^ for a central projection P then P is in ^
(Proposition 3.13). There is a φ in Ea{^) such that φ(E) = P^
(Lemma 4.3). From the Cauchy-Schwarz inequality for elements of
A~+, we obtain

\\Φ(A)-cu\\ =
\\φ((A - CU)E)\\ + \\φ((A - Cu)(l - E))\\

^ ε + \\A-Cu\\\\φ(l-E)\\ = ε.

Because J>Γ>(A) is uniformly closed and because ε > 0 is arbitrary,
we have that Cue J%C(A). By a similar argument Cz e Sί^-(A).

COROLLARY 4.5. Let s$f be a von Neumann algebra. The essen-
tial central range of an element A in s$f with respect to a central
ideal ^ is equal to a set {Ao} if and only if A0P^ = Ao and A — Aoe

Proof. First let the essential central range 3Γ,\A) of A be
equal to A*. Then φ(A) = Ao for every φ e Ea{^). Hence φ(A + A*) =
Ao + At for every φe Ea{^). This means that the essential central
spectrum of A + A* — (AQ + Ao*) with respect to the ideal ^ is equal
to {0} (Theorem 4.4). Hence A + A* - (Ao + A^e^ (Proposition
3.12 and Lemma 3.1). Similarly we find that (A - A*) - (Ao - At) e ^.
Consequently, we have that A — Aoe ^y.

The converse is obvious.

The following remarks lead to a characterization of the essential
central range. This reduces to the known characterization of the
essential numerical range of the algebra of all bounded operators on
a separable Hubert space [11; 5.1]. Let j y be a von Neumann algebra
on the Hubert space H and let %? be the center of szf. Let E be
an abelian projection with central support P in the commutant JΓ' of
%: [cf. 9; I, §7]. For every Aej^, there is a unique τE(A) in
with EAE — τE(A)E. Then A —> τE(A) defines an element in
with τE{l) — P. For every projection P in 3? let VP{s*f) = {τE e

\E is an abelian projection in %*' of central support P}; for every
j^f let WP{A) = uniform closure {φ(A)\φe VP(J^)}.
We now need a version of the Toeplitz-Hausdorff Theorem.

LEMMA 4.6. Let s%f be a von Neumann algebra. Then, for
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every Ae<W and central projection P, the set {φ(A)\φe VP{Ssf)} is
central-convex.

Proof. There is no loss of generality in the assumption that
P — 1. Let E1 and E2 be maximal abelian projections (i.e. abelian
projections with central support 1) in the commutant %*' of the center
^ o f j / and let Ce %* with 0 ^ C ^ 1. Setting E = luh{Elf E2},
we obtain a projection E such that the reduced algebra %^ is the
product of homogeneous algebras of type In where n <£ 2. Indeed, we
have that lub [Eu E2} — Ex < Ex and so lub {Eu E2} — Eι is abelian.
So there is no loss of generality in the assumption that j ^ = %'t is
homogeneous of degree 2 since the degee 1 case requires no further
proof. Now we may write φ(B) = CτEl{B) + (1 - C)τE2(B) as φ{B) =
AiTFl(B) + A2τF2(B) where Flf F2 are orthogonal maximal abelian projec-
tions of sum 1 and Al9 A2 are elements in ^Γ+ with A1 + A2 — 1 [14;
§4]. So we may assume that Eγ and E2 are orthogonal of sum 1. Let
zi = τE. (i = 1, 2). Since it is sufficient to find a maximal abelian pro-
jection E with τE{A — τ2(A)) = Cτ^A — τ^A)), we may assume that T2(A) =
O Now there is a sequence {Pn} of orthogonal projections in %? such
that τ1(A)Pn is invertible in %TPn and ^ ( ^ ( 1 - Σ P ») = ° Because
the sum of abelian projections with orthogonal central supports is
again abelian, there is no loss of generality in the assumption that

The rest of this lemma is the classical Toeplitz-Hausdorff theorem.
Let U be a partial isometry of Szf with ί7* U = 2^ and ?7Z7* = E2

and let A = E1 + AJJ+ A2U*, where Alf A2 e %. There is a unitary
operator Fin JT with F| Ax - A* | = Ax - A*. Let Γ = y*A, + VA2.
There i s a ΰ e J with -1 ^ D ^1 such that

Dψ2T= C

[6]. Now, by direct calculation, we find that

E = D2E, + VD(l - D2YI2U+ V*D(1 - D2)1/2C7* + (1 - D2)E2

is a projection in j%f of central support 1 that vanishes on the range
of (1 — C2)U2Eι — VCE2. So E must be a maximal abelian projection.
Finally, by another calculation, we obtain that EAE = CE.

Let J ^ be a von Neumann algebra with center ^Γ. Let sf be
considered as a ^Γ-module and let S?f ~ be the ^Γ-module of all cr-weakly
continuous module homomorphisms of Ssf into ^Γ. Let Ĵ C1" = J^"~+ Π J^L
be the set of all normal (i.e. positive σ-weakly continuous) module
homomorphisms of j ^ into %*.

Now we can extend Lemma 4.6.
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LEMMA 4.7. Let sf be a von Neumann algebra, let P be a central
projection of Jzf, and let A e Szf\ then

WP(A) = {φ(A) I φ e J ^ + , φ(l) = P) .

Proof. First let φ e J^fj with ^(1) = P. We show that φ(A) e
WP(A). There is a monotonely decreasing sequence {An} of positive
elements in the center %" of J ^ and a sequence {En} of orthogonal
abelian projections in the commutant %'f of JΓ with central supports
{Pn} respectively such that lim An = 0 (uniformly), ΣAn = P (strongly),
En+1 < En, supp Pi = supp Ai (n = 1, 2, . . . ) , and φ{B) = Σ*AnτEn(B)
(strongly) for all S e J / ([16; Theorem 2] and [14; §4]). There is a
mutually orthogonal set {QJ in {%?) of sum P such that

limm Σ {A& \l^n^m} = PQt

uniformly (cf. [14, Theorem 4.1]). For each Qi we may therefore find
an mi with IIS^H ^ ε, where 5< = Σ {An\n ^ mj and where ε > 0
is a preassigned constant. Now there are abelian projections Fk(l ^
k ^ mi = m) of central support PQi such that ^ Q i ̂  Ffc. Since
supp Pfc = supp A£, we have that φt = Σ {-4*̂ 4 | l ^ & ^ m — 1} + -B»r̂ m

is equal to Σ {AhQiZEk\l ^ k ^ m - 1} + B{cFm. Since Σ {AkQi\l £
k ^ m — 1} + .B ζh = PQί, there is an abelian projection Gι in %' of
central support PQ^ such that τG.(A) — Φi(A) (Lemma 4.6). Notice
that

Now Σ Gι — G is an abelian projection of central support P and

\\φ{A) - τG{A)\\ ^ lublK^A) - τ^AjDQ.W ^ 2ε||A|| .

So ^(A) G WP(A) since ε > 0 is arbitrary and WP(A) is closed.
The converse relation is obvious since τE is a normal module

homomorphism.

PROPOSITION 4.8. Let Szf be a von Neumann algebra. Then the
essential central range of an element A in s^f with respect to the
central ideal ^ is equal to Π {WV(A + B)\Be^}. Here P = P^.

Proof. Let φeEa{J^). Let Q be the central projection in
such that s^fQ is a discrete algebra and s$f(l — Q) is a continuous
algebra. There is a net {φr

n} (resp. {ĉ }) of elements of {j%fQ)t (resp.
(J^(l - Q))ί) with ^ (Q) = P^Q (resp. ^ ( 1 - Q) = P^(l - Q)) such
that lim^CBQ) - (̂JSQ) (resp. lim^(B(l-Q)) = φ{B{l-Q))) uniformly
for every Bej^f. This follows from Theorem 5.4 (resp. Theorem 5.1)
of [17]. Then setting φnm{B) = Φ'n(BQ) + φZ(B(l - Q», we obtain a



ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR ELEMENTS 369

net {φnm} in JxC+ with φnm(ΐ) = P^ for all m, n and lim φnm{B) = φ(B)
(uniformly) for all Bes*r. Let Be^ and let ε > 0; then there is
a φmn with \\φwn(B))\\ ^ s and ||^W(A) - ψ(A)\\ ̂  ε since 0(5) = 0.
Since ε > 0 is arbitrary and since WP(A + B) is closed, we have that
Φ(A) e WP(A + i?) by Lemma 4.7. Since Be^ is arbitrary 0(A) e
n{T7P(A + # ) | £ G ^ } . SO J ^ S ( A ) C n {WP(A + £ ) | 5 e ^ } .

We now prove that the opposite inclusion relation is true. First
let A be self-ad joint. We show that 0 e Π {WP(A + B)\B = B* e J^}
implies that Oe J>&(A). Let ^Γ be the center of s^f and let Cu =
lub ^Γ — Sp^A. Suppose there is an a > 0 and a nonzero pro-
jection Q in % with Q ^ P and CUQ ^ -2αQ. We have that
(Cu - A){J^{ζ)) :> 0 for every ζ in the spectrum of %T (Proposition
3.12). If /+ (resp. —/_) is the function that is identity on the real
interval [0, oo) (resp. (—°o,0]) and 0 on the complement, we have
that f-(Cu — A) is a self-adjoint element in ^ (Lemma 3.1). How-
ever, by hypothesis there is an abelian projection E in %*' of central
support P with \\τE{f_(Cu — A) - A)\\ ^ a. On the other hand, we
have that

QτE(f-(Cu - A) - A) - QτE(f+(Cu -A)- Cu) ^ 2aQ .

This is a contradiction. Hence, we find that CuP^0. Since 1 — Pe ^
we have that Cu(l-P) = 0 and so Cu ^ 0 (cf. Remark 3.8). Similarly,
we obtain d = gib %: - Sp^ (A) ^ 0 and finally that 0 e J£S-(A) (Theo-
rem 4.4).

Now let A be an arbitrary element of s^ with 0 e Π {WP{A +
B)\Be^}. Let ^ - {|B| = (B*B)ll2\Be J3C(A)}. We note that ^
is a monotonely decreasing net in ^Γ+. Indeed, let I? and C be in

There is a central projection Q with Q|J5| + (1 - Q) \C\ =
\C\}. But the set ^C-(A) is central-convex and so JΪO(A)

contains D = QB + (1 - Q)C. Thus, we have that \D\ = Q\B\ +
(1 — Q)\C\ is in Sf. Thus ^ has a greatest lower bound 5 0 in ^ ' + .
We show JB0 = 0 by arguing by contradiction. Suppose there is a
point ζ in the spectrum Z of %* with J50

Λ(ζ) > 0. Then we may assume
that 50

Λ(Q = gib{CΛ(ζ) \Ce^} since #0

Λ(ζ) - gib{CΛ(ζ) | C e &>) holds on
a dense open set of Z [7]. There is a Ce J^>(A) such that |CΛ(ζ) | =
2?0

Λ(ζ) (Proposition 4.2). Then we may find a unitary Z7 in % such
that Ϊ 7 C = | C | . We have that Oe Π {WP(UA + B)\Be ^} since
U(WP(A + C7*5)) - TΓp(Z7A + B) and that £ 0 = glb{|5| \Be S
since jr,(UA) = USty{A). Furthermore, we have that \C\ e 3
Hence, there is no loss in generality in assuming that there i s a Ce
J£>(A) with CΛ(ζ) - £0

Λ(Q. Now let A, = (A + A*)/2 and A2 = (A -
A*)/2i. We show that 0 e Π { TΓp(Ay + S) \B = 5* e ^^} (1 ^ i ^ 2).
In fact, given ε > 0 and B = B* e <J^, there is an abelian projection i?
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with central support P in the commutant of % such that \\τE(A+B) | | ^
ε. Hence, we have that

\\τE(A + A* + 25)|| - \\τE(A + B) + τE{A + B)*\\ ̂  2ε .

Similarly, we may find an abelian projection F of central support P
such that \\τF(A — A* + 2iB) || ̂  2ε. Now by the preceding paragraph
we conclude that 0 e JϊS (As) (1 ̂  j ^ 2). Let φ be an element of Ssf~+

with 0(1) — P, 0(w*O = 0> and Φ(A^ = 0. However, every element of
the form aφ(A) + (1 - α)C (0 <: a ^ 1) is in ^t (A) and so there is
at least one a with 0 ̂  <* ̂  1 such that

\aφ(A)A(ζ) + (1 - α:)CΛ(ζ)| < CΛ(ζ) = B£(ζ) .

Indeed φ(A)A(ζ) is pure imaginary. This contradicts the choice of Bo.
Hence, we must have that Oe

PROPOSITION 4.9. Let j y he a von Neumann algebra', then Ao is
in the essential central range of Ae s^ with respect to the central
ideal J 2 " if A0P^ — Ao and if, given ε > 0, there is a projection E
with dimJ57>dim^^ such that \\E(A0 — A)E\\ S ε. Conversely, if
A G j y is self-adjoint and if Ao is in the essential central range of
A with respect to ̂  then there is a projection E in s*f with dim E >
d i m ^ such that \\E(A0 - A)E\\ £ ε.

Proof. The first statement follows from Lemma 4.3 and Propo-
sition 2.9 since the essential central range Sty{A) of A with respect
to ^ is uniformly closed.

Now let A be self-ad joint and let Aoe J^>(i). There is no loss
of generality in assuming at the outset that AQ — 0 and that P^• — 1.
Let ^ have the canonical form *J^ = ̂ p(F) (Remark 2.6). Let
ε > 0 be given. Let Cz = gib JT-Sp^A and let Cu = lub T - S p ^ A
where % is the center of J ^ Since Oe ̂ ty{A), we have that Ct ^
0 ^ Cu (Theorem 4.4).

Now let R be the largest central projection such that s/R is of
type I and *J^R = 0. Consequently, if G is a finite type I projection
majorized by 1 — R, then G e ̂ {1 — R) (Proposition 2.2). By Proposi-
tion 3.10 we may assume that either iί = l o r l — iϊ = l .

First suppose theat R = 1. We may assume that j y is equal the
commutant of its center [9; I, 8, Theorem 1]. Then there are abelian
projections Eγ and E2 of central support 1 in jzf such that

Hr̂ CA) - C,|| + Ilr^/A) - C.|| ̂  e .

(Theorem 4.4 and Proposition 4.8). There is a C in %* with 0 ̂  C £ 1
such that CCi + (1 — C)CU = 0, and there is an abelian projection E
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of central support 1 in j / such that τE(A) = CτEl(A) + (1 — C)τE2(A)
(Lemma 4.6). Thus, we obtain

\\EAE\\ ^ \\C\\ \\τEl{A) - d\\ + | |1 - C\\ \\τEi(A) - Cu\\ ̂  ε .

So we may assume that 1 — R = 1. Because the closure of every
open subset of the spectrum Z of % is open, we may find a sequence
{Pn I n = 0,1, 2, } of mutually orthogonal central projections of sum 1
such that

CιPn SL -n~1Pn < 0 < n~ιPn ^ CuPn

for n = 1, 2, , and Ct Cu Po = 0. We shall find projections En of
central support Pn such that FPn < En and \\EnAEn\\ ^ 4ε. Then we
shall have that E=^En has central support 1, F< E, and \\EAE\\ =

A ^ P J I ^4ε (cf. [9, III, §1]). Now, we have that ^ =

Λ = ̂ ppn(EPn) is a representation of the central ideal ^ of

% in canonical form. Since CxCnP^ = 0, there is a Pό in (^Po) with
PO'CZ + (Po - P0')Ctt = 0 (Lemma 3.4). Thus, we see that 0e^P0 -
Sp^0(APJ (Proposition 3.10) and so we may find the projection EQ

(Proposition 3.13). By reducing to an algebra S^Pn, we may assume
that Ct^ -a<0 < a ^ Cu (Proposition 3.10).

It is sufficient to show that every nonzero Q e {%") majorizes a
nonzero Re (%') such that there is a Ge (jy) of central support R
with FR < G and || GAG \\ ^ 4ε. Then the usual maximality argument
for the projections R may be employed to find the projection En. By
making yet another reduction to a direct summand of jy, we may
assume, without loss of generality, that there are natural numbers
m, n, and p such that

limp"1 + Cz|| ̂  v~ι ^ ε and \\np~1 - Cu\\ ̂  ε .

We now find n (resp. m) orthogonal projections Fι of dimension
greater than d i m ^ such that \\{Cι - A)Fi\\^ε (resp. \\(CU - A)Fi\\ g
ε). We normally would apply Proposition 3.14, however it is necessary
for the combined set of m + n projections to be orthogonal and so
the following additional argument is required. Let Aγ and A2 be ele-
ments of j^f+ such that A1 — A2 = A and AλA2 = 0. For every ζ e
Z, we have that -Cf(ζ) = | |A 2 (^(ζ)) | | and C£(ζ) = | |Λ(^(Q)II (Pro-
position 3.12). Let G1 and G2 be the domain projections of A1 and A2,
respectively. For definiteness, let G = Gλ. If Q is a central projec-
tion with GQ e ^ then Q — 0; otherwise, there is a ζ e ̂  with
G(w^(ζ)) = GQ(w^(ζ)) = 0 and consequently with 11^(^(0)11 = 0.
This implies that dim (? > dim ̂ Γ So there is a projection G' with
F ~ G' ^ G. We now restrict j ^ to the subspace of the Hubert
space determined by G to obtain the von Neumann algebra
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(cf. [9; I, § 2]). The set GJ?G = J^ is easily seen to be a
central ideal of s$fG since the center of s^G is ^G = %~G [9; III, 5,
Problem 7]. We have that Aλes>fG. Since the spectrum of %G is
the set X— {ζG\ζeZ}, we have that the smallest ideal [ζG] of
which contains ζG is G[ζ]G. We may now easily show that

[CGDII - infill A + B + C|| \Be^G, Ce [ζG]}

is equal to || Λ p ^ ζ ) ) || for every ζeZ. This means that CUG =
lub ^ — Sp^G Ai (Proposition 3.12). Therefore, we may find a set
Fu F2, , i77™ of mutually orthogonal projections in J%fG of dimension
greater than dim<J% such that

= FiA^e) and \\{CUG - A ^

for every i = 1, 2, •••, m (Proposition 3.14). Indeed, the algebra
has no finite type I direct summands. Thus, we may find orthogonal
projections Fl9 F2, •••, Fm majorized in szf by G — Gγ such that

F~G' < Fi9 AF^) = F,A{^) , and || (Cu - A)Fi{^) || ^ ε

for every i = 1, 2, •••, m. Likewise, we may find orthogonal projec-
tions Fm+1, -- ,Fm+n majorized by G2 such that F < Fi9 AF^J?) =
F , A ^ ) , and \\(d - A)Fi{^) \\ ^ ε for every ΐ = m + 1, , m + n.
Since Gx and G2 are orthogonal, the projections Fί, ' ,Fm+n are
mutually orthogonal. There are partial isometries 17̂ (1 ̂  i, i ^ m+π)
of j y which satisfy the following properties:

(1) Ui3-Ukι = δu Ukj (δ - Kronecker delta);
( 2 ) UiS= Ufc and
(3 ) Ua is a projection with ί7 — Z7« •< ί7^ for all i, j , k, I.

The element Er = (m + ̂ )~1 Σ Uϊi is a projection in Stf with E'~F,
i.e. dim _E" > dim ̂  Here, indeed, a calculation using (m + ri) x
(m + ̂ ) complex matrices suffices. Furthermore, using the fact that

for every i, we have that

||(m + nΓ Σ * (Σ {C^H(A - Cu)Ujk\k ^ m)

+ Σ {Uki(A - Q UjkIfc > m})pΠ ||

^ 2ε .

Now there is a ΰ e j ^ with \\EΆEf - E'BEf\\ ^ 3ε. In the ideal
Jf, we may find a spectral projection E" for E'B*BE' majorized by
E' so that ||5£"(1 - E") \\ ^ ε. If Q(E' - E") e JF for some Qe {%*),
then QEf e <J^ and consequently Q = 0. This means that
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dim {E'-E")

(Proposition 2.9). Setting E = E' — E", we obtain the relation

\\EAE\\ S \\E{A - B)E\\ + \\EBE\\ g 4ε .

REMARK 4.10. If j y is the algebra of all bounded operators on
a separable Hubert space H and ^ is the ideal of completely con-
tinuous operators, then Fillmore, Stampfli, and Williams [11, Theorem
5.1, Corollary] have obtained Proposition 4.8 without the added restric-
tion that A is self-ad joint. The theorem of Fillmore, et al., depends
on properties of Hilbert-Schmidt operators on separable H; however,
it is likely that the restriction can also be removed here.

Let s^ be a von Neumann algebra. Let U(s^) be the group of
unitary operators of s$? and let g7 be the set of positive real-valued
functions / of finite support such that Σ{f(U)\Ue U{Jϊf)} = 1. For
each / e g 7 and 4 in ^ let f A = Σ*{f(U)U*AU\Ue U(J^)} and
let 3iT\A) be the uniform closure of {f-A\fe&}. If 5 G . 3 T ' ( A ) ,

then J Γ ' ( J ? ) c j r ' ( 4 ) . Then the intersection ST{A) of ST'(A) with
the center is a nonvoid closed convex subset of the center ([8]; cf. also
[9; III, §5]). Furthermore the set SΓ'(A) (resp. J3T(A)) is central-
convex in the sense that CC, + (1 — C)C2 is in J%T'(A) (resp. *3Γ(A))
for every Cι and C2 in SΓ'(A) (resp. SΓ(A)) and C in the center
with 0 ^ C ^ 1 [19; proof, Lemma 6].

The following forms the basis for our analysis of Sί^(A).

PROPOSITION 4.11. Let j y be a von Neuman algebra and let A be
an element in JV. Let ζ be a point in the spectrum of the center of
Ssf. Then the set J?f(A)(ζ) — {BA(ζ) \Be :yΓ(A)} is a compact subset of
the complex plane.

Proof. Because Sί^(A){ζ) is bounded, it is sufficient to show that
contains an arbitrary limit point a. Due to the fact that

— a)(ζ) = <βΓ(A)(ζ) — a, there is no loss in generality in proving
that 0 e J%Γ(A)(ζ) whenever 0 is a limit point of Sf(A)(ζ). We proceed
to do this. For every n = 1, 2, •••, there is a function fn in the
subset g7 of real-valued functions on the unitary operators of s$? and
a central projection Pn of j ^ with P£(ζ) - 1 and \\{fn A)Pn\\ ^ 2~\
Let {Qi} be the sequence of orthogonal projections defined by Qx =
Px - P,P2, Q2 = P,P2 - P&Ps, , and let BeJΓ'(A). Then let Cn =
B(l - PJ + Σ {(frA)Q{\l ^i^n} + {fn+^A)Q'n (n = l,2, ..). Here
Qf

n = Pi PΛ + 1 is the orthogonal complement of (1 - P,) + Σ {Q |l ^
i ^ n). We notice that Cn e Sf'(A) for every n since 3ίΓ'(A) is central-
convex. However, the sequence {Cn} is Cauchy since \\Cn — Cn + 1 | | ^
max{||(Λ+1.A)Q;+1||, ||(Λ+2 A)Q!;+1||} ̂ 2 — ^ This means that {Cn} con-
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verges to an element C in SΓ'(A). We have that

||C(ζ)|| - lim IICUOH = lim ||((/.+1.A)Q;)(C)|| £ lim sup 2 - = 0

and thus C is in the ideal [ζ]. This means that ^T'(C) c [ζ]. How-
ever, we have that J?Γ'(C) c ST'{A) because CeJ5T'(A). This means
that ST{A) Π [ζ] Φ 0 , or equivalent^, that Oe

THEOREM 4.12. Let s$? be a properly infinite von Neumann
algebra, let ^ be the strong radical of Ssf, and let A be an element
of J ^ Then the set SΓ(A) is equal to the set SΓ^iA) = {φ{A)\φ is a
state of j ^ ~ with φ(^f) = (0)}.

REMARK 4.13. Here notice Ea{^) is the set of all states of
~ which vanish on

Proof. First let A be self-adjoint. We show that every element
C in the essential central spectrum of A with respect to ^ is in
Sf(A). There is no loss of generality in assuming for this that
C = 0. Then for every ε > 0, there is a projection E in j ^ such that

\\AE\\^ε and E~l

(Example 2.12 and Corollary 3.15).
There are orthogonal projections E' and Έ" of sum E such that

E' ~E" ~E [9; III, 8, Corollary 2]. By replacing E by E', we may
assume that || AE\\ ^ ε and E ~ 1 — E ~ 1. Then the element

2~1{{E - (1 - E))A{E - (1 - E)) + A) = EAE + (1 - E)A(1 - E)

is in 3ίΓ'{A). Now let Eu , En be orthogonal projections of sum E
with Ej.~ ••• ~ En ~ E9 and let Uu , ί7w be unitary operators in
j^f so that the domain support of (1 — 23)17* equals £?<. For every
unit vector x in the Hubert space, we have

i ^ n}\\

n~ιUϊι{l - E)A(1 - E)Uix\

E)UiEix\\

This proves that .3Γ'(A) contains an element of norm less than or
equal to ε + n~ι\\A\\. Because ε > 0 and n are arbitrary, the set
J2Γ(A) contains 0. This means that the essential central spectrum
of A with respect to ^f is contained in SΓ(A). Hence, the least
upper bound Cu and the greatest lower bound Ct of the essential
central spectrum are in Jf(A). Since Sty (A) is the smallest central-
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convex set containing Cz and Cu (Theorem 4.4) and since 3f(A) is
central convex, we have that ^j?{A)c<9Γ{A).

Now let A be an arbitrary element of j y and let φe Ea(^J?).
We may assume that φ(A) = 0. We show that 0 is in J%Γ(A)(ζ) =
{BA(ζ)\Be ,9Γ(A)} for every ζ in the spectrum of the center. Since
J3f(A)(ζ) is compact (Proposition 4.11), there is a C in j/ίΓ(A) with
\CA(ζ)\ = g\b{\a\\aeSr(A)(ζ)}. There is no loss of generality in
assuming CΛ(ζ) ^ 0. We obtain a contradiction by assuming CA(ζ) >
0. Indeed, we have that φ(A + A*) = φ{A) + Φ(A)* = 0. By the preceding
paragraph we conclude that 0 e ̂ Γ(2~1(A + A*)) and so there is a
sequence {/„} in the subset g" of functions on the unitary operators
of sxf with lim/% (2~1(A + A*)) = 0. We may also assume that
{fn ({2i)~\A — A*))} converges to a self-adjoint element 5 in the
center [9; III, §5, Problem 2]. Hence, the element iB is in SΓ(A).
However, we must have that BA{ζ) = 0. Indeed, if BA(ζ) Φ 0, then
the distance to the origin of the line segment L in the complex plane
with end-points CΛ(ζ) and iBA(ζ) is less than CΛ(ζ). However, this
contradicts the definition of C since Lc.T(A)(ζ) . So we must have
that CΛ(ζ) = 0, and hence 0e.2T(A)(ζ). The proof is now completed
by a compactness argument. Let ε > 0 be given. For every ζ in
the spectrum of the center, there a Cζ in <3Γ{A) and a central projec-
tion Pζ with Pζ

Λ(ζ) = 1 such that \\CζPζ\\ ^ ε. Due to the compact-
ness of the spectrum of the center, we may find CΊ, , Cn in SΓ{A)
and orthogonal central projections Pu , Pn of sum 1 such that

However, 3Γ{A) is central-convex and so X CiPi e SΓ(A). Since ε > 0
is arbitrary and since <5Γ(Ssf) is closed, we have that 0eJ5Γ(A).
This completes the first part of the proof.

Conversely, let C G . J ^ ( A ) . There is no loss of generality in
assuming C = 0. We find φ in Ea{^) with φ(A) = 0: Let ^0 be a
state of j ^ ~ that vanishes on J? (Lemma 4.3). Let {/„} be a
sequence of functions in g7 such that lim/% A = 0. Let φn be the
state of ESJ") given by ^n(S) - φo(fn B) for every ΰ in J ^ Due
to the compactness of the state space of jy~ in the <τπ/(j^~, s>f)~
topology, there is a subnet {φn.} of {φn} and a state ^ of j ^ ~ such
that {^Wi(5)} converges weakly to ό{B) for every B in j ^ Clearly,
the state φ vanishes on ^ . However, for every x and y in the
Hubert space, we have that

\(φ{A)x, y)\ = l i m j \ ( φ n . ( A ) x , y)\ < l i m s u p \\φQ\\ | | / n . A | | | | α ; | | \\y\\ - 0 .

This proves that φ(A) = 0, and so Oe JT>(A).

COROLLARY 4.14. Let j y δe α properly infinite von Neumann
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algebra and let A be an element of Jtf. Then the convex subset S
of the center is weakly compact.

Proof. For any central ideal ^ the set J3ty{A) is weakly compact
(Introduction, §4).

Let A be an element in the von Neumann algebra J^f. Define
^{A) to be the intersection of the weak closure of J%Γ'(A) with the
center of J^K Using the tools we developed here, we can extend the
theorem of J Conway [4] from the case of properly infinite factors
to pro perly infinite algebras with arbitrary centers. For this exten-
sion the following lemma is needed.

LEMMA 4.15. Let s%f be a von Neumann algebra on the Hilbert
space H. Let f be a σw(j^f~y s^)-continuous hermitian functional
on Sif~ (i.e. f(φ) is real for every φ in s$f~ which takes hermitian
elements of Szf into hermitian elements of the center). Then there
is an xe H and a self-adjoint A e j y such that f(φ) = (φ(A)x, x) for
every φ e

Proof. There are xl9 , xn, yl9 , yn in H and Al9 , An in
such that f(φ) = Σ (φ(Ai)Xi, y^ for all φ in j ^ ~ [17; §2, Introduction].
For each i there are zi3- (1 ^ j ^ 4) such that

where wXi>y.(B) = (Bxi9 yt) and wz = wz>z on the center of j y [9; I, 4,
Theorem 6 and III, 1, Theorem 4, Corollary]. Then there is an x in
H with wx = Σi,3wzi5 [9; III, 1, Theorem 4, Corollary]. For each ij,
there is a positive element Ci3 in the center with (BdjX, x) — (Bzijy zi5)
for all B in the center (Radon-Nikodym theorem). Thus there is an
element B = Σ MCn - Ci2 + i(Ci3 - Ci4)) in J ^ with f(φ) = (φ(B)x, x)
for every φ in j ^ ~ . If φ*(B) = ^(B*)* for # e j / ~ , then

(Φ(B*)*x, x) = f(φ*) = f(φ)~ = (φ(B)x,

for every φ in jy~ implies that f(φ) = (φ(B*)x, x) = {φ{B)x, x) for every
φ in jy: Hence, f(φ) = (Φ(A)x, x) for every φ in jy~. Here A =
2~1{B + B*).

THEOREM 4.16. Let szf be a properly infinite von Neumann
algebra, and let J^ be the ideal of finite elements of J ^ ; then C^{A) =

for every A in

Proof. One may prove the theorem using the same steps (with
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appropriate modifications) that Conway [4] employed in his proof for
factor algebras. We content ourselves with pointing out the appro-
priate steps. Let c<f be the set of all states of jzf~ such that φ(A) e
C^{A) for all A in jzf. For every Ae s^ and Aoe ^(A), there is a
φe^ such that φ{A) = Ao. This uses the σTF(j^~, j^)-topology in-
stead of the weak *-topology of the dual of j ^ [4; Lemma 5]. The
set C^{A) is equal to {0} for every A e ^ [4; Lemma 6]. Hence,
the set ^ is a subset of Ea{^). But if A is self-adjoint and φe
Ea(^/r)9 then φ(A) e r#{A) since the least upper bound and the greatest
lower bound of the essential central spectrum of A with respect to
*J^ are in C^{A) (argue as in [4; Lemma 4] based on Proposition 3.13)
and since C^{A) is central-convex (use the fact that ,9Γ'{A) is central-
convex). If there is φ0 in Ea{J?) but not in the σw(J&"~, J^)-compact
convex set ^ , then there is a σw(ssf~, jy)-continuous hermitian func-
tional on j ^ ~ which strongly separates φ0 from ^ . However, every
0V(jy~, j^/)-continuous hermitian functional / of jy~ is of the form
f(φ) = (φ(A)x, x) for some fixed self-adjoint A in J^f and some vector
x in the Hubert space. This contradicts the fact that φo(A) e ^(A)
and so that φo(A) = φ(A) for some φe^. Hence, ^ = Ea{J^) and

= i f (A).

COROLLARY 4.17. Let jy be a σ-finite properly infinite von
Neumann algebra; then Sf(A) = C^{A) for every A in

Proof. The ideal generated by the finite elements of s^ is the
strong radical of j^ ί The corollary then follows from Theorems 4.12
and 4.16.

5. Applications. Using the notions of essential central spec-
trum and essential numerical range, we can extend some theorems
on commutators and derivations to arbitrary properly infinite von
Neumann algebras. These theorems are known for the algebra of all
bounded linear operators on a Hubert space, which is generally
assumed to be separable, but the techniques employed there also
suffice here.

A linear map δ of an algebra is said to be a derivation if δ(AB) =
Aδ(B) + δ(A)B for every A and B in the algebra. S. Sakai [27]
proved that every derivation δ of a von Neumann algebra j ^ is inner
in the sense that there is an A in Szf such that δ(B) = AB — BA for
every B in j ^ The next proposition is due to J. G. Stampfli [29]
for the algebra of bounded linear operators on a Hubert space. His
technique suffices here.

PROPOSITION [Stampfli] 5.1. The range of a derivation on a von
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Neumann algebra is not uniformly dense in the algebra.

Proof. Since every von Neumann algebra may be written as a
product of a finite and a properly infinite von Neumann algebra, it
is sufficient to consider these two cases separately. If the algebra is
finite, then the range of the derivation is contained in the set of ele-
ments whose canonical operator-valued trace vanishes. So the range
of a derivation cannot be dense. If the von Neumann algebra s$?
is properly infinite and the derivation δ on Stf is given by δ(B) =
AB — BA, then we construct an operator that is not in the closure of
the range of δ. Let Ao be a central element such that (A — AQ){^f{ζ))
is neither left nor right invertible for all ζ in the spectrum of the
center. Here ^ is the strong radical of Szf (Theorem 3.5). Because
δ(B) = (A - A0)B - B(A — Ao) for all BeSsf, we may assume Ao == 0.
There are sequences {En} and {Fn} of mutually orthogonal projections
in Stf such that JS7W — 1 — Fn, \\AEn\\ ^ <nr\ and \\FnA\\ ^ n~ι for
for every n = 1, 2, (Example 2.12 and Corollary 3.16). Then there
is a partial isometry U in s$f with domain support E — Σ E* and
range support F — Σ ^ s u c h that £72̂  = F{ U. We show that a =
|| Ϊ7 — δ(jB) || Ξ> 1 for every Be *$$?. Indeed, for every n = 1, 2, , we
have that

| fg | | ^ ( C 7 - δ{B))En\\ + | | 2^(5)#JI ^ α + 2n"'\\B\\ .

Hence the open ball of radius 1 about U does not meet the range
of δ.

In [18], we showed that an element A in a properly infinite von
Neumann algebra Szf is a commutator in s/ (i.e. there are elements
B and C with A = BC — CB) provided 0 e SίΓ{A). We can also prove
that 0 e ^Γ(A) provided A = BC - CB and t{B*B - BB*) is a posi-
tive operator in Szf. Now an element A is said to be a self-adjoint
commutator if A = BC - CB with B = 5*. H. Radjavi [25] charac-
terized those self-adjoint elements in the algebra B(H) of all bounded
linear operators on a separable Hubert space H which are self-adjoint
commutators and J. Anderson [1] recently announced that he has
completely characterized self-adjoint commutators in B{H). We prove
a proposition in this direction for properly infinite von Neumann
algebras using a matrix calculation of M. David [5].

PROPOSITION 5.2. Let jzf be a properly infinite von Neumann
algebra and let A be a self-adjoint element in Szf. If 0 is in the
essential central spectrum of A with respect to the strong radical of

then A is a self-adjoint commutator in
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Proof. There is a sequence {En} of orthogonal projections with
En ~ 1 and \\AEn\\ ^ 1/nl for all w = 1, 2, ••• (Lemma 3.16 and
Example 2.12). Thus, \\EmAEn\\ ^ min{1/m!, 1/nl}. Then the matrix
calculation of M. David [5; Theorem 3] is applicable.

Acknowledgement. The author would like to thank Professor
Carl Pearcy for bringing J. G. Stampfli's result [29] to his attention
and for suggesting extending it to von Neumann algebras. He also
wishes to thank Professor Stampfli for a letter in which he outlined
his proof (cf. Introduction §5).

Added in Proof, August 2h, 1972. We have obtained a better
version of Proposition 5.2 by showing that A is a self-ad joint com-
mutator whenever 0 is in the essential central range of A.
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SUPERADDITIVITY INTERVALS AND BOAS' TEST

G. D. JOHNSON

A test is given for determining maximal intervals of
superadditivity for convexo-concave functions. The test is
then applied to several families of ogive-shaped functions.

1* Superadditive functions have been widely studied [8, 11] for
their own sake but have also found important applications in relia-
bility theory, e.g. [6]. However, tests for superadditivity were non
existent in the literature until Bruckner's work [3] in 1962. A more
constructive (hence more readily applicable) test due to Boas was
given in 1964 in a paper by Beckenbach [2] on analytic inequalities,
an area where superadditivity is of use (see [2] for a derivation of
Whittaker's inequality [12]). Boas' test is here viewed in the light
of Bruckner's result, strengthened, and applied to some families of
convexo-concave functions as suggested in [2].

2* Consider a continuous, real-valued function, /, of a real
variable, x e R. Then / is called "superadditive" on [β, b] c R if

f(x) + f(y) H f{x + y)

for every x, y, x + y in [β, b]. We normalize to the cases β = 0, b >
0. In this event, superadditivity implies /(0) <̂  0. The following
sufficient condition for superadditivity is due to Boas [2]:

THEOREM (Boas' Test). Assume f is nonnegative on [0, b] with
/(0) = 0 and f has a continuous derivative on [0, &]. If there are
numbers a ̂  6/2 and c < a such that

(0) f is star-shaped1 on [0, 2α],
1i) f is concave2 and satisfies fix/2) ^ f(x)/2 on [c, b],
(ii) /'(0)</'(δ),
(iii) f\x) — fib — x) has at most one zero in (0, a).

Then f is superadditive on [0, &].

A proof of the theorem can be made by considering separately
the cases:

1 / is "star-shaped" on [0, A] means for every x£[0, A], and every α?G[0, 1] it is
true that f(ax) S aJXx). For fe&lO, A] it is necessary and sufficient [4] that f(x) ^
f(x)/x for all a? 6(0, A].

2 The function / is called "convex" on [a, b] if for every x, y 6 [a, b] it is true that
f((x + y)/2) S (Λ%)+f(y))/2;fis called "concave" if - / is convex.

381
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(I) 0 £ x ^ α, 0 ^ y ^ a;
(II) x ^ a, y ^ a, x + y ^ b;
(III) £ < α < i / < δ , £ + # ^ 6.

It was conjectured that this test could be applied to finding super-
additivity intervals of such ogive-shaped functions as exp(— If ax)
(0 < a <£ 1); In (1 + xλ) and arctan xλ(X > 1). But it is easy to show
that for some of these functions, Boas' test does not apply: consider
In (1 + x2). A simple calculation shows that 1 ^ c ^ 2i/~2~ whereas
2a < 2 and hence a < c. It is our primary goal to modify Boas' test
so that it can be used to determine intervals of superadditivity for a
larger class of functions. Along the way we shall be able to determine
conditions giving maximal intervals of superadditivity, and finally a
tabulation of intervals of superadditivity is given for some of the
functions previously mentioned.

3* We are interested in determining intervals, [0, δ], of super-
additivity for a special class of functions, the "convexo-concave" func-
tions [1]: / is called convexo-concave on [0, B] if it is convex on [0,
c] and concave on [c, B], 0 ^ c ^ B. Already, / is superadditive on
[0, c] [4]; that is, 6 ^ c. Bruckner has characterized superadditivity
of such functions in the following way:

THEOREM [3]. The convexo-concave function, f, with /(0) ^ 0, is
superadditive on [0, b] if and only ifmaxo^x^b [f(x) + fib — x)] <; /(&).

The main difficulties in applying Bruckner's test are first in
obtaining the quantity "6", and second in taking the maximum on
the lefthand side. By requiring / e Cι[0, b] we can ameliorate the
second objection and turning to Boas' test we obtain a candidate for
b: namely, let b be the smallest positive root of f(x) = 2f(x/2).

THEOREM. Let f e C^O, b] be convexo-concave on [0, b] (0 < b < co)
with /(O) ̂  0 and"

( i ) fφ) ^ 2/(6/2),
(ii) / '(0)</'(δ),
(iii-a) f'(x) = /'(& — x) no more than once on (o, 6/2). Then f

is superadditive on [0, 6].

Proof. Consider the function g(x) Ξ f(χ) + f(b — x) — /(δ). Then
/(0) ^ 0 implies #(0) ̂  0. By (i) and (ii), #(6/2) ^ 0 and g'(0) < 0,
respectively. Suppose g is positive on (0, 6/2). Then it has a positive

3 It is important for generalizing to higher dimensions that condition (0) in Boas'
test has been deleted. See [6].
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maximum on (0, b/2). Therefore g'{x) — f'(x) — f'(b — x) has at least
two zeros on (0, 6/2), contrary to (iii-a). Finally, then, g(x) ^ 0 on
[0, 6/2] and—by symmetry of g about x — 6/2,

max [f{x) + f(b - x)] ^ f(b)

which, by Bruckner's theorem, shows / superadditive on [0, 6].

For the function f(x) = In (1 + x2) it is easy to check that (i),
(ii) are satisfied for 6 = 2τ/~2~. Condition (iii-a) is also straight forward:
it is true by Descartes' rule of signs.

Notice that for /(0) < 0, / is superadditive at least as long as it
is merely nondecreasing and nonpositive. This relatively arbitrary
state of affairs will be avoided by assuming /(0) = 0 in what follows.
For a further appreciation of (iii) we give a corollary to Bruckner's
theorem.

COROLLARY. Suppose convexo-concave / , with /(0) = 0, is continu-
ously differentiable. Then f is superadditive on [0, 6] if and only
if for every x0 in [0, 6] such that f'(x0) = /'(& — x0), it is true that
f(Xo) + f(b - xo) ̂  f(b).

Thus we see how the maximizing duties in Bruckner's theorem
have been replaced by a zero-counting operation in the other two
theorems. The fourth condition in Boas' test is less restrictive than
(iii-a) above since 6 is not less than 2a. But it is not hard to see
that (iii-a) can be replaced by

(iii-b) f'{x) = /'(6 — x) no more than once on the smaller of the
two intervals (0, c), (c, 6),

which is a less restrictive condition than even Boas' fourth condition.
(Here "c" is the inflection point of /.)

Perhaps a computational note is in order here. If we refer
generically to conditions (iii), (iii-a), (iii-b) as "root conditions", then
in applications the root condition can often be tested by Sturm's
theorem [7]. For example, the functions In (1 + xn) (n = 2, 3, 4, •)
have as derivatives rational functions with denominators not vanishing
for positive arguments. Verifying a root condition is then a matter
of counting the number of zeros of polynomials in a finite interval.
Sturm sequences can also be readily computed for rational functions
[10], and Sturm's idea can be extended to counting real zeros of
even more general functions [5]. Finally, upon observing that / ' is
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unimodal4, an optimum strategy for localizing the inflection point c
(as used in (iii-b)) is well-known [9].

4* Now it is quite striking that the choice of b as the smallest
positive root, σ, of 2f(x/2) — f(x) often turns out to be maximal.
Certainly σ is an upper bound on the interval of superadditivity.
Consider the quantity min {σ, τ) where σ, τ are the smallest positive,
odd zeros of 2f(x/2) — f(x), /'(0) — f'(x)9 respectively. Then we may
be assured of a maximal interval of superadditivity.

THEOREM. Suppose f e C^O, b] is superadditive on [0, b] where
b = min {σ, τ) < co. Then f is not superadditive on any larger in-
terval, [0, B], B > b.

The proof is immediate by failure of superadditivity near x = 0
φ = τ case) and x = B/2(b = σ case) where B = b + ε, ε > 0 arbitrary.
In our example, 2τ/ 2 is the largest value of b so that In (1 + x2) is
superadditive on [0, δ] With this optimality result, then, we turn
to computing intervals of superadditivity in the next section.

5* Tables of 6 are now given where b is the largest 7D approxi-
mation smaller or equal to b and [0, b] is the maximum interval of
superadditivity for the function indicated.

λ

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

3

4

5

6

7

8

9

10

arctan x
λ

.5852351

.8532410

1.051079

1.205188

1.328208

1.427957

1.509790

1.577572

1.634178

1.681792

1.906368

1.966894

1.987133

1.994715

1.997751

1.999019

1.999565

1.999804

In (1 + x
λ
)

.3425001

.7280202

1.104767

1.452478

1.764139

2.039063

2.279467

2.488734

2.670539

2.828427

3.634241

3.868672

3.948700

3.978890

3.991011

3.996080

3.998260

3.999218

exp(— λjx)

1.586964

1.731234

1.875503

2.019773

2.164042

2.308312

2.452581

2.596851

2.741120

2.885390

4.328085

5.770780

7.213475

8.656170

10.09886

11.54156

12.98425

14.42695

λ

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

3

4

5

6

7

8

9

10

4 A function fix) is "unimodal" if there is a ξ so that / is either strictly increasing
for x 5s ζ and strictly decreasing for x > ξ, or else strictly increasing for x < ξ and
strictly decreasing for x ^ ζ.



SUPERADDITIVITY INTERVALS AND BOAS' TEST 385

Entries above or to the left of the stepped line were unattainable by
Boas' original test.

For exp (— X/x) (λ 2> 1) it is easy to verify (in this case, Boas'
test is sufficient) that the intervals of superadditivity [0, b(X)] are
determined by b(X) = λ/ln 2.

In [2] it is suggested that maximum intervals of superadditivity
be computed not only for / — fx but also for the "average function
of /", F=Fλ, and for the "inverse average function," ώ = φλ, where

F,(x) =

Φ,(X) Ξ

I f
-

v x J
f,(x)

X

fx{t)dt
0

+ xfUx)

X

X

X

= 0,

>0;

>0 .

For the case fλ{x) = exp(— X/x) we can give the following maximum
intervals of superadditivity:

Function

fx
Fι

b(λ)-end point

λ/1.116845

λl.6931472

λl.4243251

where Boas' test was inapplicable to the ^-case.
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DERIVATION IN INFINITE PLANES

N. L JOHNSON

The purpose of this article is to study "derivation" in
arbitrary affine planes. It is shown that the derivation pro-
cess extends to arbitrary planes which possess a suitable set
of Baer subplanes.

l Introduction* A basic problem of interest is developing
Ostrom's finite net replacement theory in the infinite case. Some
expected premiums could be that the procedures are valid in infinite
planes which have no finite analogue. For example, the Moufang
planes, wow-Pappian Desarguesian planes, and certain Bol planes may
permit net replacement (see §4).

The present article will be restricted to studying derivation in
infinite planes. Concerning infinite planes, Rosati [18] found a class
of infinite Hughes planes and Swift [21] remarked that derivation is
probably valid in infinite Pappian planes. This statement was essen-
tially confirmed by Pickert [17] who also gave an algebraic construction
of the Ostrom-Rosati planes (see Panella [15]).

Sabharwal [20] constructed a class of infinite Andre nearfield
planes and showed that derivation is valid in these planes and also
considered the analogous infinite "derivable chains" of Fryxell [6].

Barlotti and Bose [3] have studied the derivation of dual translation
planes of dimension 2 by means of linear representations in protective
spaces of protective planes (see [3], [4], [5]). The Bose-Barlotti deriva-
tion theory is valid in all dual translation planes of dimension 2 whose
associated spread of the corresponding translation plane is also a dual
spread. However, this condition is not valid in every infinite dual
translation plane of dimension 2 (see [7]).

This article will be devoted to derivation in arbitrary planes.
The treatment is in the spirit of Ostrom's original construction (see
[13], section III, and [14]). Section 2 is devoted to showing that the
derivation process extends to arbitrary planes which possess a suitable
set of Baer (see (2.1)) subplanes. Section 3 is concerned with certain
conditions sufficient for a given subplane to be a Baer subplane and
develops some theory related to the derivation of translation planes
and their duals. Finally, applications of the theory to certain infinite
planes are considered in §4.

The author would like to express his appreciation to the referee
for many helpful suggestions as to the form of this paper.

2* The Construction* Ostrom ([13] section III, pp. 7, 8, 9)

387
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develops derivation in finite planes. The planes are of order q2 and
the procedure involves the relabeling of certain subplanes of order q
(Baer subplanes) as lines. Ostrom's arguments depend strongly on
finiteness. However, it will be shown that the essential assumption
is not of finiteness but is simply that the subplanes used in the
process are Baer subplanes.

DEFINITION 2.1. Let π be a projective plane. A proper subplane
τr0 of 7Γ is a Baer subplane of π if and only if every point of π is on a
line of τr0 and every line of π is on a point of 7r0.

REMARK 2.2. A Baer subplane is maximal.

Proof. Let π0 be a Baer subplane of a projective plane π and let
P* be a point of π — 7ΓO. Any subplane τ of π containing P* and 7Γ0

contains the joins of P* with points of π0. Let I be an arbitrary line
of π incident with P*. By assumption I intersects π0 and therefore
τ contains all lines of π incident with the point P*. Similarly, r
contains all lines of π incident with any point of τ — π0. Let Q be
a point of π. Every line of π incident with Q intersects τ. If Q £ τ
then QP* is either a line of τ — π0 or is the unique line of π0 incident
with P*. Since there is a line of ττ0 incident with ζ), it follows that
Q e τ in the former case. In the latter case, if R is a point of QP*,
choose a quadrangle whose cross joins contain R. Thus, all points
of π are in τ.

DEFINITION 2.3. Let π be a projective plane. Let L be a line
of 7Γ. A derivation set δ in L is a set of points of L such that if
P, Q are distinct points of π — L such that PQ n L e ί then there is
a Baer subplane πPt<?>3 of π containing P, Q, δ such that δ is a line of

We shall assume in the following that δ is a derivation set in
L for a projective plane π and 7Γp,ρ,δ is a Baer subplane containing
P, Q and 5 as a line where PQ Π L e δ. Also a point of πP>Qfδ — <?
will be called an aίϊine point of τcP>Qjδ.

LEMMA 2.4. 7τP>Q>δ is the unique proper subplane containing P and
Q which contains δ as a line.

Proof. Let ΣPtQfδ be any subplane of π containing points P, Q
which contains δ as a line. Let PQf]L = δ,e δ. Let T = {Qδ2 n Pδ3

where δl9 δ2, <53 are distinct elements of δ}. Let τr0 = {Qδt Π Pϊ ; I Vδi9

δj e δ and not both δi9 δ3- equal to δ j (j {Q£* Π Tδ5 \ yδi9 δ3- e δ and not
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both δi9 δj equal to δ2}.

Assume there is a point Re ΣPfQ>δ — π0. Since P, Q, Re ΣP>Qfδ,

either RP Π L and RQ Π ϊ« are distinct points in δ or P, ζ), R are
collinear. In the latter case, R = P(RP f] L) Π T(RT f] L) and in the
former 72 = P ( J R P Π L) Π Q(i2Q Π L) Therefore, the point sets of
ΣPfQ>δ and τr0 are equal since clearly π0 gΞ ΣPtQtδ.

Similarly, let τr0 = {Mδi \ Meπjsfδi e δ}. If I is a line of ΣP>Qtδ then
Z Π L e δ and there are at least two distinct points L, 17 e (i — I Π L) Π
7Γp,ρ>δ. Thus, L, Ueπ0 — δ so that Zeτ?0.

Λ Any two subplanes of π which contain points P and Q and
contain δ as a line have the same point sets and the same line sets
and hence are identical.

LEMMA 2.5. Any two points of πP>Q>δ — δ uniquely determine the
subplane. Thus, any two distinct Baer subplanes τrP>Q}δ and πR>S)δ

intersect in δ or δ U {M} for some affine point M.

Proof. Let M, S be any two distinct points of 7rP)Q)δ — δ. If M and
S are $ PQ, lδi9 i = 1, 2, 3, 4, e δ 3 M = Pδ, Π Qδ2, S = Pδ3f) Q4. Clearly
P, Q e πMtSti so that πP}Q,δ = TΓ^^^ by (2.4).

The remaining situations where M or Se PQ are equally clear.

DEFINITION 2.6. If πP}Qtδ n 7rΛfΓf« = δ or πP,Qiδ, we shall say that
ττPfQ>δ is parallel to τcRyTiδ(πPjQ)δ\\πRtTiδ).

LEMMA 2.7. // ίΓpfQfa ||^Λ>Γ,ί there is an element δ* of δsthe set
of lines of πP>Q)δ incident with δ* is equal to the set of lines of πR}Tfδ

incident with δ*.

Proof. Assume πPfQfδ Φ πRίT}δ. Every aflSne point of πBtTtδ is on
a unique line of πPtQtδ. :. Every affine point of πR)Tyδ is on a line
common to both subplanes. If I, p are common lines, IΠ p is a
common point. Thus, I and p are concurrent on δ. Let the point
of concurrency be δλ e δ.

Let M be an arbitrary point of πR>τ>δ. 3 line I of 7ϋBtTfδ which is
incident with δλ and M. Also 3 line p e πP)Q)δ which is incident with M
and hence δx. Therefore, the lines p and I are identical.

Thus, the lines of πBfTtδ incident with ^ g a set of lines of πPfQfδ

incident with δx.
The argument is symmetric, so (2.7) is proved.

LEMMA 2.8. Let τrRfT}δ be any Baer subplane and P a point g
ftR,τ,δ' Then there is a Baer subplane πPfSyδ containing δ as a line B
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Proof. Assume without loss of generality that PR is the unique
line of πR>τ>δ incident with P and assume that TgPR (see (2.5))

Let S = (RTΓ) L)PΠ (PR Π L)T. Now consider πFtStδ.
Suppose πPtSyδ Jjf πRfT>δ. Let M be a common affine point. Then

Mdi δiβd are common lines. If M&ST then, since ST and MS* are
common lines, Mδt n SΓ is a common affine point distinct from M for
some c^eδ. But, this is a contradiction by (2.5). Λ MeST and
similarly jlί e Pi2, which is a contradiction if ilί is an affine point.

LEMMA 2.9. Le£ ̂ >,Q,S &e # Baer subplane and suppose R is an
affine point g Kp,Q,δ Then 3 α unique Baer subplane parallel to πPtQiδ

and containing R.

Proof. By (2.8) there exists a subplane 7cBtTtδ\\πPΛfδ.
Suppose 7ΓO is a Baer subplane with line δ, containing R, and || 7ΐPiQ>δ.

πP>Q>δ and πBtTtδ have a common concurrent set of lines. Let the point of
concurrency be <5X e δ. JK^ is a line common to τr0, πBlTtδ and 7ΓP,ρ,δ so the
point of concurrency for the common set of lines of π0 and πP>Q>δ is
also <5ie We can assume without loss of generality that PQ Π L Φ δx

since πPfQtδ = πP,ρ)δ for any affine point Q ^ P of 7Γp,ρ,s By (2.7),
Qδx is a line of πQ, πRtT>δ and 7CPyQiδ so (PQ Π L)i2 Π Qδ1 — D is an affine
Point =£ i? of 7Γ0 and of π ̂ ^^. Λ π0 = πR>Diδ = ;rΛ>Γfί by (2.5).

Thus, (2.9) is proved.

THEOREM 2.10. {Compare with Ostrom [13], Theorem 5.)
Let π be a protective plane. Let I — l^ be a line of π and δ a

derivation set on ?«,. Form π as follows:

points π = affine points of π .

(type 1 = the affine Baer subplanes ΊiP>Q)b

(type 2 = affine restrictions of lines I of π 3 lf]loo^δ .

(type 1, πPtQtδ\\πBtStδ iff τrP,ρ,3 n τrΛ>s,β = δ
\\-classes] „

[type 2, l\\p ifl IΠpeL- o .

Then π is an affine plane called the plane derived from π by δ.

Proof. Let P and Q be distinct points of π. If P and Q are
joined in π by (PQ)π3 (PQ)π Π l e ί then 3 1 Baer subplane πPfQ}δ con-
taining P, Q. If (PQ)π n lί δ 3 1 line Z of 7Γ containing P, ζ).

Therefore, two distinct points of π are uniquely joined.
Let i be a line of π such that I Π L £ S and 7rP>ρ>δ a Baer subplane

of π. Clearly, I must intersect πP,Q,δ in an affine point.
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Thus, for each point P of π and line Jίf of π there is a unique
line incident with P and parallel to £f.

Thus, π is an affine plane.

COROLLARY 2.11. Let I be a line of π containing distinct affine

points P and Q such that i f l L e δ . Let lP,Q = I Π π>,ρfi — Z Π L T%βw

the points of I — I Π L and ίfee se£s ZP,ρ as Zmes /orm an affine Baer
subplane πP>Q of π.

Proof. Let R and S be any distinct affine points of L lBtS =
Z Π ̂ i?,>s,δ — I ίΊ L contains J? and S. Suppose lMtT also contains R and S.
Zjf.r = Z Π π jf,Γ,« — Z Γl Ze so that πM>Ttδ contains R and S. But πMiT>δ =
πR,s,n by (2.5) so that lMtT = ZΛιS. Thus, i2 and S are uniquely joined.

Let R be any point of πPyQ not incident with the line lSjT. Since
Rel and ZS>Γ = I Π ̂ 5,̂ ,5 - i ίl L> then iϋ g πs,τ,δ Thus there is a
unique Baer subplane π ^ , ^ containg iϋ and parallel to τcs>τ>δ. Choose
a point M of πΛ f Λ ί f J incident with I (I n L e <5 and iZ 6 £ so i is a line
of 7ΓB>ΛM) and distinct from i?.

Hence, 7Γ̂ ,̂ ,δ = πBtMti and Z n ̂ ,s,« - Z Π Z« = Z ^ is a line of πPyQ

which is parallel to lStT and contains R. Suppose lNtL is a line of
πP)Q containing R and parallel to lStT.

Now iVL = RM = Z. π^,L,δ and τrΛs,ί have a common line I and
a common affine point R. Moreover, τzNiUδ and πRji,δ contain no affine
points of I in common with πStTtδ.

Suppose πNtL>δ is not parallel to πs>τ>δ. Then let X be a common
affine point. By assumption, X$l. Thus, I and TF^V^ e δ are lines
common to πN,Ltδ and πSfTtδ. It follows that S and T are points of
πN,L,δ (see (2.4)) so that πNtLtδ = πs>τ>δ, which is a contradiction.

Thus, both πNtLtδ and πRtjIiδ are parallel to πStTtδ and contain i2 so
that πNtLtδ = τrΛf yfί and hence Z ,̂L = ZΛ,j? Thus, πPtQ is an affine subplane
Of 7Γ.

Thus, Zp.ρHZ^P, Q, S, Γ points of I if and only if πPtQ,δ\\πs,τ,δ.
Furthermore, given a Baer subplane πMtNtδ not containing a point of Z,
there is a Baer subplane π x , F , 5 with I as a line such that πXfYfδ || πM)Ntδ.

Now extend 7Ϊ to a projective plane π*. The points on T^ (line
at infinity of π*) corresponding to the set of all Baer subplanes πP>Q>δ*
are precisely the points of πPtQ.

As a point set πP)Q is I — I Π l^ where I is a line of π. Therefore,
every line of TΓ* intersects π%yQ and every point of π* is incident
with a line of π%tQ (that is, a line of 7Γ?,ρ extended to TΓ*. Also note
that IP,Q is a subline of τrP,ρ,δ for P, Qel where πPtQtδ is thought of
as a line of TΓ. SO the latter statement merely states that every
affine point of TΓ is contained in a Baer subplane 7τP}Q>δ of TΓ.)

Thus, πP>Q is a Baer subplane of TΓ*.
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COROLLARY 2.12. Let π be a projective plane and δ a derivation
set in L Let π be the affine plane derived from π by δ. Then there
is a derivation set δ in T^ of the projective extension π* such that
the plane derived from π* by δ is the affine restriction of π by L

Proof. The Baer subplanes π%,Q of π* all have the same set of
points δ on Ẑ  (see proof of (2.11)). The affine restrictions of π^}Q

are affine lines of π. Clearly, δ is a derivation set in ί̂ .

It is trivial to verify that Baer subplanes are carried into Baer
subplanes by collineations.

The following theorem is Ostrom's Theorem 7 and its Corollary
[13]. His proofs to these results do not use finiteness in any way.

THEOREM 2.13. (Ostrom [13]). Let π be a projective plane and
δ a derivation set on L A collineation σ of π 3 σδ = δ induces a
collineation σ of π B σ fixes the set δ (the corresponding derivation
set of T^). If σ is a translation of π, σ is a translation of π.

DEFINITION 2.14. Let π be a projective plane and let I be a line
of 7Γ. We shall say that π is a semi-translation plane with respect
to I if and only if π admits a group 5f of elations with axis I, each
of whose point orbits along with the set of elation centers for I form
a Baer subplane of π.

π is a strict semi-translation (sst) plane with respect to I if Sf
is the full elation group with axis I and nonstrict (nsst) otherwise.

THEOREM 2.15. (See Ostrom [13].) Let π be a projective plane
and L a line of π and δ a derivation set in l^ and let π denote the affine
plane derived from π by δ. If I is a line of π whose affine restriction
is not a line of π and π admits a group of translations 5f (elations
with axis L) transitive on the points of I, then π is a semi-translation
plane, i.e., π* (projective extension) is a semi-translation plane with
respect to l^.

Proof. By (2.13), since &δ = δ, <& is a group of translations of
π. If I is a line of π and the restriction of I is not a line of π then
I — I Π L is an affine Baer subplane of π (see (2.11)).

Thus we have extended Section III of [13] to arbitrary planes
admitting derivations sets. We now consider planes possessing Baer
subplanes.

We note that Ostrom's sufficient condition for derivation given
in Theorem 9 [13] does not directly apply in the infinite case since
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the indicated affine subplanes are not necessarily Baer subplanes.

3* Baer Subplanes* It is well known and can be easily estab-
lished by a counting argument that a finite projective plane of order
n has Baer subplanes of order m only if n is a square and the order
of the subplane is m = Vn.

For infinite planes no such characterization of Baer subplanes is
known. We wish to develop some conditions which are sufficient for
a given subplane to be a Baer subplane. For this will use some
concepts of Andre [2] and Bose and Bruck [5].

DEFINITION. Let V be a vector space. A congruence of V is a
set {Va}aeλ where Va is a subspace of F V α e λ and

(1) \JVa = V and (2) Va®Vβ = V for all a Φ βeλ .
aeλ

THEOREM 3.2. (Andre [2]). An affine plane π is a translation
plane if and only if there is a congruence {Va}aeχ of a vector space
V such that the points of π are the elements of V, the lines of π are
cosets of elements of {Va}aeλ and the parallel classes are the sets
{Va + b,a fixed e λ, b e V}.

THEOREM 3.3. (Lϋneburg [11]). Let a be a collineation of a
projective plane with axis I and center P. Let Q be a point Φ P and
Qgl. Then every projective subplane containing P, I, Q, Qa is left
invariant by a.

LEMMA 3.4. Let π be an affine translation plane and π0 any
affine subplane of π. Then there is a congruence {Va}aBλ for π = V,
a subgroup W of V, and subgroups Wa of Va for αeλ* g λ such that
{Wa}λ* is a congruence for W which defines ττ0.

Proof. Let P, Q be points of 7ΓO. There is a translation σ of π
such that Pa = Q. By (3.3), π0 is invariant under a.

Clearly, there is a subgroup Jf~πQ of the translation group j^Γ of
π which is sharply transitive on the points of π0 and leaves π0 invariant.

Let ^7~{P) denote the subgroup of ^~ with fixed center P e L
so that ^r = (Jpei^CP). ^ ; 0 = \JP*I^{P) Π J^ o . Let _^(P) Π
^%o = J71Q(P). Thus, lines of π are {^(P)}Peloo and translates of
these groups. {^{P)}P&1OQ and {^0(P)}p6zco are congruences of π and
7Γ0, respectively, with the required properties. Note that Wa is not
necessarily a vector subspace of Va for α e λ * g λ .

Before utilizing (3.4) we mention the following result which
depends only on the existence of a particular type of ternary ring.
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THEOREM 3.5. Let Q — {Q, +, •) he a ternary ring with ternary
function T. Let F = (F, +, •) he a sub-ternary ring of Q such that
every element of Q can he uniquely written in the form ta + β for
some t e Q — F; a, β e F. For all a, m, b e Q let T(α, m, 6) = tf(a, m,
b) + g(a, m, b); f, g functions from Q x Q x Q into F. Let f and g
satisfy properties (1) and (2):

(1) If m and b are fixed and m£F there exists an element
aeF such that /(α, m, b) = 0.

(2) If a^F is fixed then {(/(α, m, b), g(a, m, b))} = F x F as m, b
vary over F.

Then the subplane πF coordinatized by F of the plane πQ coordina-
tized by Q is an affine Baer subplane.

Proof. Let ϊ be a line of πq. If I is {(x, y)\x = c for ceQ} the
line I either contains points of πF or (in any case) is || to {(x, y) \ x =
a; aeF} so the protective extension of πQ contains a point of the
protective extension of πF.

If I is {(x, y)\y = T(x, m, b); m, beQ} and meF then I Π L is a
point of the protective extension of πF. If m g F then by (1) 3 α e
F3f(a, m, b) = 0 . Λ ( α , g(a, m , b)) e {(x, y)\y = T(x, m , b)} Π πF.

If P is a point of π F let P = (fc^ + x2, tyx + y2); a?<, y^eF. The
lines of π2" are {(x, y)\x = a, aeF} and {(a?, y) \ y = Γ(α;, α, /9); a, βe
F}. If a?^! = 0 then Pe{(a;, 2/) | a? = α} or {(», /̂) |y = β} for some α,
βeF. Thus assume a?^ ^ 0. Consider T{txι + a?2, a, β) for some α,
βeF. By (2), 3 α0, β0 3 f(tx, + a?2, a0, β0) = y, and g(t xι + a;2, α0, β0) = y2.

COROLLARY 3.6. Let Q he an alternative field and F the associated
quaterion skewfield. Then πF is a Baer subplane.

Proof. (See Pickert [16], s. 172-3.) 3 teQ3 at = ffi; ae F and
elements of Q are of the form ta + β; a, β e F where x denotes a
certain involuting automorphism.

T is linear, so T(a, m, b) = a(tm1 + m2) + tbλ + tb2 (where mif b{ e
F, i — 1, 2) = t{άm^) + α:m2 + tbλ + 62 = ί(αmi + 6J + ami + b2. Choose
a = — i^mr1, then (1) is satisfied. If a, β, α̂  6 F; i = 1, 2, then T ^ +
^2, oc, β) = ( ί^ + α2)α + /9 = (^αjα: + (α2α: + β) = ί(ααj + α2α: + /5. (See
[16] Pickert, s. 172.) For ρ,χeF and αx ^ 0 H ^ / S e F a ^ ^ ^ and
χ = α2α + β. .'. (2) is also satisfied.

We point out that although the Moufang planes contain Baer
subplanes it is not clear whether derivation sets exist.

THEOREM 3.7. Let π be a translation plane and π0 a proper
subplane. Let {Va}λ and {Va}λ* be congruences for π and π0, respectively
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where Wa is a subgroup of Va and W is a subgroup of V for α e λ * g λ ,
then if

( i ) (1) Wf] Vδ = O=-TF + Vδ = V for each δex, or (2) V and
W are finite dimensional over the same skewfield and there is an
element δ e X — λ* such that W Π Vδ = 0 and W + Vδ = F, then every
line of the protective extension of π is incident with a point of the
protective extension of π0.

(ii) Under the assumptions of (i) (1) or (2), π0 §£ \Jaex-x*(Va + b)
for any be V — W if and only if π0 us a Baer subplane.

Proof. First we observe that Va Π W = Wa or 0 depending on
whether aex* or aeX — λ*.

Suppose F α Π l f ^ 0 and α ί λ * . W = \Jpβχ*WP £ \JPei*VP and
WP £ VP. By assumption, 3 an element w e W — {0} 9 w e Fα and α g
λ*. But we Vβ for some /3 e λ*. .\ Fα ΓΊ Fjj Φ 0, which is a contradic-
tion since a Φ β.

:. If aex - λ*, Va n TΓ - 0.
Assume Fα Π TF =£ 0 and α e λ*. Wa^Vaf]W and TFα + Wβ =

W;a,βeX*,aΦ β.
If c e W — Wa then c = wa + wβ for some wa e Wa and wβe Wβ —

{0}. If ceVa then ^ e Fα which is a contradiction. Thus, Wa =
VaΠ W if αeλ*.

For (i) (1), δ, aeX-X*=>Vδ+W= Va + W = V. For (i) (2), 7 =
Fa + W is isomorphic to Va + TΓ=> Fα + W = V for all a e X - λ*.

Let Va + 6 be any line of TΓ. If Fβ Π TΓ = 0, then a e X - λ* and
Fα + W = F so Fα + 6 Π TF ̂  0 . If Fα n TF Φ 0, then Fα + b for α e λ*
is parallel to Va + w, w e W and since (Va (Ί TF) + w is a line of W =
τr0, (i) is proved.

If τr0 - TF S U«e;.-^Fα let 6 be a point of τr If 6 e U«e;*Fβ, then
6 is on a line of W. So assume be V — U«6^*Fα. Consider the set
of lines Va + b, aex on b. Each Va + 6, α e λ — λ* intersects TF uni-
quely by the previous argument.

If W£aex-x (Va + b)lδ G λ* 9 F, + 6 intersects TF.
.*. τr0 is an affine Baer subplane. Thus, (ii) is proved.
Let PG(S, F) denote the protective 3-space over a skewfield F.

Recall a spread (see Bose and Bruck [4]) £f of P(?(3, F) is a cover-
ing set of skew lines of PG(3, F).

Barlotti-Bose [3] have studied derivation in dual translation planes
of dimension 2 (over their kernels) which correspond to spreads Sf
of PG(3, F) that have the property that any plane of PG(3, F) con-
tains a line of £S (spreads which are dual spreads). In our terminology
this requirement translates to: Let F4 be a 4-dimensional vector space
over F and {Va}λ a congruence for F4. Then any 3-dimensional subspace
TF of F4 contains a Va for some a ex.
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REMARK 3.8. Let V4 be a 4-dimensional vector space over a
skewίield F. Let {Va}λ be a congruence for V4. Then the Barlotti-
Bose assumption is equivalent to asserting that every 2-dimensional
subspace of F4 which is not a Va, a e λ corresponds to a Baer subplane.

Proof. Let 2* be an arbitrary 3-dimensional vector subspace of V4

Let Σo be any 2-dimensional subspace of Σ. Assume Σo is not a Va,ae λ.
-So = (UaexVa) ΓiΣ0 = \Jaeλ (Va Π ΣQ). Va Γ) Σo is 1 or 0 dimensional.

Define λ* as the subset of λ such that Fα Π Σo is 1-dimensional. Clearly
{Va ΓΊ 2Ό};* is a congruence for Σo.

Assume the subplane π0 corresponding to {Va ΓΊ Σ0}λ* is a Baer
subplane. Let be Σ — Σo. Then be Va + r for some a e λ * and r e Σo.
Since 2Ό is 2-dimensional, the subspace generated by b and 2Ό, <6, Σo} =
J£. Since Fα Π 2Ό is 1-dimensional and b&ΣQ implies that Va £ <δ, 2Ό>.

Conversely, assume that every 3-space of F4 contains Va for some
α e λ. Let 7Γ0 be the subplane corresponding to {Va Π ̂ Ό};* as above.
Since (3.7) (i) (2) holds, we must show that (3.7) (ii) is satisfied. Let
c e V4 — Σo. By assumption, the subspace <— c, 2Ό> generated by — c
and 2Ό contains a Fδ for some δ e λ. Clearly, 5 6 λ* for otherwise
V8Π Σo = 0. Thus, c is on a line Vδ + c of 7ΓO, for ce 2Ό.

We note that Bruen and Fisher [7] have shown that not all
spreads of PG(3, F) have the Barlotti-Bose property.

The following theorem also proved by Barlotti and Bose [3] is
included. Note that the two arguments are completely distinct.

DEFINITION 3.9. We shall say that a translation plane is of
dimension 2 if the corresponding congruence is a 4-dimensional vector
space over a skewfield F. A dual translation plane shall be said to
be of dimension 2 if and only if its dual is of dimension 2.

THEOREM 3.10. Let π be any dual translation plane of dimension
2 such that the corresponding congruence has the property that any
3-space contains a 2-space of the congruence. Then π is derivable.

Proof. Let Q be a coordinatizing (left) quasifield for π. Q is a
right 2-dimensional vector space over F where F is a skewfield con-
tained in the kernel of Q. We assert that {{a), (°°), aeF) £ L of π
is a derivation set.

It is straightforward to verify that the following sets are sub-
planes: {(aa + 6, aβ + c); a Φ 0, δ, c fixed elements of QVa, βeF)

(see, e.g., Ostrom [13], Theorem 9). By (2.10) it remains to show that
they are Baer subplanes.

It is easy to see that the image of a Baer subplane under a
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collineation of the plane is a Baer subplane. We may coordinatize π
so that (x, y) —• (x, y + c) for all ceQ are translations of π. We need
only to consider the subplanes {(aa + δ, aβ)}.

Let the lines {(x, y)\y = xm + δ}, {(&, 2/)|x = c}, {(#, y)\y = c} be
denoted simply by y = α m + δ, a? = c and y = c, respectively. We
may coordinatize the dual plane of π by the following: affine points
(m, — δ) are lines y = xm + δ and infinite points (oo) and (m), m e Q
are lines L and x = m, respectively, and conversely. (See, e.g.,
Fryxell [9].) That is,

(m, — 6) < • y — xm + b

(m) < > x = m

The lines of {(αα + δ, α/3)} are L, y = xa + aβ — ba and α? = α<5 + δ
for α ^ 0, δ fixed e Q and for all a, βeF.

The points of the associated dual subplane may be represented
by (oo), (aδ + δ), {a, ba — aβ) where juxtaposition denotes multiplication
in Q. Thus if * denotes multiplication in dual Q then the points are
(oo), (δ*a + δ), {a, α*δ — β*a). Note that (1, δ) and (0, a) form a vector
basis for the set of affine points so that the affine subplane is a 2-
dimensional vector subspace and hence is an affine Baer subplane.
Since the dual of a Baer subplane is a Baer subplane, (3.10) is proved.

Bruen and Fisher [7] have shown that the condition of (3.9) is
valid in any regular or subregular spread of PG(S, F) and, of course,
the condition is valid if F is finite. In the finite case, Bruck and
Bose [4] have pointed out that subregular spreads correspond to the
translation planes constructed by a series of derivations in Desarguesian
planes. Note that (3.9) in particular implies that Pappian planes
coordinatized by fields K that are quadratic extensions of fields F are
derivable. Also, finite Andre planes of order q2 and kern GF(q) may
be constructed from Desarguesian planes by a series of derivations.
This will be considered in the infinite case.

LEMMA 3.11. Let π be a Pappian plane. Let σ be a nontrivial
automorphism of the coordinatizing field KB K is a 2-dimensional
extension of a field F where the fixed field of σ is F. Then π0 =
{(&, y) I y = %am) is the set of points of an affine Baer subplane of π.

Proof, π is of dimension 2 and the spread corresponding to π is
regular (see [4] or [5]). Since 7Γ0 is not a line of π and is clearly a
2-dimensional vector space over F it follows from the previous remarks
and (3.8) that ττ0 is a Baer subplane.

Thus, (3.11) is proved.
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Let L be a field and p an automorphism of L with fixed field
Lp. If meK the norm of m is defined as Πreo>>fl&r. If the order
of p is finite, an Andre system with kern Lp may be defined (see [2]
and also [8], p. 355). The lines of the corresponding Andre plane
are cosets (translates) of the sets {(x, y)\y = xp{m)m}, {(x, y) \ x — 0}
where p(m) e ( ^ such that if m,ne Kand Πreo>>wτ = ILe<«>> wr then
/t>(m) = ρ(n).

LEMMA 3.12. Let π be a Pappian plane coordίnatized by a field
K which is a 2-dimensional extension of a field F. Let σ be a non-
trivial automorphism of order 2 with fixed field F. If me K and
Πreo>> wr = m1+σ = x e F then δx = {(m) e π \ m1+σ = x} is a derivation
set in L of π. The Baer subplanes are the sets {(x, y)\y — xδm for
m1+σ = x) and their translates.

Proof. The sets {(x, y)\y = x°m) and their cosets are Baer subplanes
by (3.11).

Let P and Q be aίfine points of π such that PQ Π L e δz. .'. PQ
is a line y = xm + b where mί+σ — x; m, b e K. P, Q ey = xm + b if
and only if Pτbf Qτhey = xm where τb is the translation represented
by (x, y) -> (x, y - b).

Note that (cσ-1m)1+σ = mί+σ = a;. Therefore, (c, d)ey = x{c°-ιm) if
and only if (c, d) ey = xσm.

We can assume without loss of generality that Qτh is (0, 0). Thus
Pτh (0, 0) e y = xm if and only if Pτh (0, 0) e y = xσ{dι~σm) for some
deK.

So there is a Baer subplane containing any two points P and Q
such that PQ Γ)Le δx.

LEMMA 3.13. (See Bruen and Fisher [7], Theorems 2 and 3.)
Let £f be a regular spread in P(?(3, F) where F is a field. Let S^ =
\Jieχ£/i U c$? where the Sή,)ie\ are disjoint reguli. Let J5f denote
the opposite regulus of S^ for all ieX. Then S^ — [Jie? SΊ\} <9l is a
spread which is a dual spread.

Proof. The argument is essentially the proof of Theorems 2 and
3 of [7]. We shall only sketch the proof.

Sf is a dual spread since it is regular. Hence if Σ is a plane
of PG(3, F), Σ contains a line m of y and hence exactly one. If
m e &% then Σ contains a line of £f. Therefore, assume m e \Jieλ 6^.
Let m e S^» The lines of £? meeting m form a regulus (the opposite
regulus to SΊ,) £*,.

Then, if p and q are lines e S>i — {m} it follows that (p Π Σ) (q Π
I7) is a line of £fit.
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By Lemma 12.2 [4], it follows that {{(#, y)\y = xm; mί+σ = x}} is
a regulus and {{{x, y)\y = xσm; m1+σ — x}} its opposite regulus. Thus,
each derivation in this case is a matter of "switching" where a regulus
is replaced by the opposite regulus. (This is well known in the finite
case. See, e.g., [4].)

It appears that there are non-Andre planes of dim 2 that may
be constructed in this way (this is certainly true in the finite case—
see Ostrom [12]).

THEOREM 3.14. Any Andre plane of dimension 2 may be constructed
from a Pappian plane by a (possibly infinite) series of derivations.

COROLLARY 3.15. Any dual Andre plane of dimension 2 is derivable.

Proof. (3.10), (3.12), (3.13), (3.14).

THEOREM 3.16. Let Q be any (right) quasifield which is a left
2-dim. vector space over a skew field F g Kernel Q. Suppose also that
Q is a right 2-dim. vector space over F. Let π be the translation
plane coordinatized by Q. Let πa = {(aa, aβ), fixed a Φ 0 e Q for all a,
β e F}. πa is a subplane of π and πa is a right 2-dim. vector subspace
of π thought of as a (right) A-dim. vector space over F. Suppose
there is a skew field R S F such that VaeQ — {0} πa is a left and
right vector space of the same finite dimension over R. Then π is
derivable.

Proof. We clearly may extend Ostrom's "homology type" replace-
ment theorem to include the infinite case. (See (3.12), [14].) There
is a congruence for π which consists of the lines of π through the
origin. The partial congruence of lines with slopes in F or (oo)
"switches" with the partial congruence of subplanes πa. It remains
to show that we obtain a new congruence and hence a translation
plane π "derived" from π.

Since πa is a left and right vector space of finite dimension k over
R <Ξ F and a right vector space of dim. 2 over F then the dimension
of πa over R = right dim (πJF) - dim F/R. Therefore, dim F/R = k/2.

.*. Dim {(x, y)\y — xm} is k and πa and y = xm, m i F are inde-
pendent left ^-dimensional subspaces over R. It follows that we
obtain a new congruence over R.

Note that it was not required that πa be a Baer subplane for the
proof. But, since a new congruence is obtained it follows that πa is
a Baer subplane.

4* Applications*
Derivation of Desarguesian Planes.
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By § 3, if π is a Pappian plane of dim 2 over a field K, then π
is derivable.

Pickert [17] has given an algebraic construction of the Hall planes
which does not require finiteness. Following Albert's [1] theory, the
following theorem is clear.

THEOREM. {See Pickert [17], Albert [1].) If π is a Pappian
plane of dimension 2 over a field K then the plane derived from π is
a Hall plane.

Also note that a spread (congruence) corresponding to π must be
regular since π is Pappian. Clearly then the Barlotti-Bose assumption
is valid here. Furthermore, a derivation chain may be constructed
on π by Barlotti-Bose (see [3] and also [9]).

However, if π is a Desarguesian, non-Pappian plane it is not clear
that a spread for π even contains a regulus. (There are finite spreads
which do not contain reguli but, of course, are dual spreads (see, e.g.,
Bruen [6]).)

The Derivation of the Quaterion Planes.
The quaterions Q can be considered as a right or left 2-dimensional

vector space over the complex ^ numbers. Since ^ is 2-dimensional
over the reals, (3.16) applies. Thus, the quaterion plane πx is derivable.

derive

Consider π1 > π2. Clearly π2 is a translation plane coordinatized
by a quasifield Q2 (note also that Ostrom's Theorems 9, 10, 11 [13]
clearly extend to the infinite case in this situation) which is a right
and left 2-dimensional vector space over the complex numbers.

That is, let {1, t} be a basis for Q/&* so that elements of Q are
written in the form ta + β, a, βe &L Let {1, i, j , k] be the standard
basis for Q over the reals.

Let * denote multiplication in Q2, then (a + β)*t — tzt + z2 iff
Zi t = t(a + β) + z2 so Zjt = ta + tβ + z2.

Let Zi = a + bi, α, b real numbers, and t = k so (a + bi)k — ak +
b(— j) = ka — jb = ά(α — ίδ). So zLt = fzSzγ denotes the complex con-
jugate of Zj)

.\ tzL = t(a + β) + z2 so α + β = i1? £2 = 0 άΓ+~β~ = Si

.'. (α + β)*ί = ί(α + β) = ta + ί/S = at + βt. So a*t = a t. It
follows also that a*a = a a for all ae^ and αeQ.

Thus, Q2 is 2-dim/^, ^ is the kernel of Q2 and Q2 is also right
2-dim over <ĝ

It is fairly easy to verify that multiplication * in π2 may be
obtained as:

(ta + β)*(tδ + 7) = t(β - aδ-^d + (β - ad'^y - aδ
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From this equation the mult * can be defined in terms of the
basis {1, i, j , k).

Some open questions here are:
(1) Is the full collineation group of π2 the group inherited from

(2) Is τr2 a previously known plane?
Let πa = {(aa, α/9)}, α = ta1 + α2; α< e ^ and α ^ =£ 0. Then if ^ e

<ĝ  ̂ α = aδ for some <5 e ^ if and only it p = p. Thus, τrα is a right
and left vector subspace of dimension 4 over the reals but is not, in
general, a left subspace over the complex numbers.

The Derivation of Andre Planes
I. Nearfield planes. Sabharwal [20] has constructed a class of

infinite nearfield planes (which are Andre planes). Each nearfield is
of dimension 2 over its kernel where the kernel is a finite extension
by radicals of the rationale.

By theorem (3.15) the dual planes are derivable. Actually,
Sabharwal shows that a derivation chain can be based on these planes.
Moreover, he shows how to construct infinite analogues of the Hughes
planes and considers a derivation chain on such planes.

Sabharwal's description is essentially given as follows: Let F —
QO/ p) where Q is the field of rationale and p is a positive nonsquare
in Q.

Define multiplication

[xy if the norm x = xι+σ >̂ 0
χoy = ]

[xyσ if x1+σ < 0

where σ is the automorphism V p —̂ -> — V p .

II. Bol planes. Burn [8] has given an example of an infinite
Bol quasifield Q which is an Andre system. Both the plane π coordi-
natized by Q and its dual are derivable by (3.15) and (3.16). Moreover,
it appears that a derivation chain may be constructed on π (see [8],
pp. 356-357).

Semifield planes. Infinite weak nucleus semifields may be con-
structed analogous to the Hughes-Kleinfeld-Knuth finite semifields
(see [10]) which be derivable by (3.16).

Because of space, we shall postpone explication of the derived
planes of this section to a later paper. The discussion of "nets" has
been avoided in this treatment, although the set of Baer subplanes of
a derivable plane form lines of a net. In the finite case the union of
two disjoint nets on the same points form a net. However, in the
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infinite situation this has yet to be proved.
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THE DISAPPEARING CLOSED SET PROPERTY

V. M. KLASSEN

A topological space X is said to have the disappearing
closed set (DCS) property or to be a DCS space, if for every
proper closed subset C there is a family of open sets {Ui}T=i
such that Ui+ί Q χji and ΠΓ=i U% = 0 , and there is also a
sequence {hi} of homeomorphisms on X onto X such that
hi(C) £ Z7i, for all i. Properties of DCS spaces are studied
as are connections between this and other related definitions.

I Simple examples of sets with the DCS property are the
^-sphere, n > 0, and the open %-cell, n > 0. This definition was
formulated in an attempt to generalize the definition of invertible set
which has been extensively studied by Doyle, Hocking and others [1,
2, 3, 4, 6]. A space X is said to be invertible if for every proper
closed subset C of X there is a homeomorphism h on X onto X such
that h(C) £ X — C. Neither of these definitions implies the other.
For example, an open w-cell is not invertible, and on the other hand,
the 0-sphere is invertible but does not satisfy the DCS property.
However, both definitions require that closed sets can be made "small"
or "thin."

It is proved in [5] that compact ^-manifolds have the DCS pro-
perty. It is the purpose of this paper to investigate some other
topological properties of DCS spaces.

II* THEOREM 1. Any disconnected DCS space X must have an
infinite number of components.

Proof. Suppose X has a finite number of components, Ajf j —
1, •••, n. Each A5 is both open and closed. Consider the DCS pro-
perty applied to JJy=2 A? = By a closed set. There are open sets
{Ui}T=i and homeomorphisms {λJJLi such that h^B) £ Uh Ui+1 £ Ui9

and ΠΓ=i Ui — 0 . Since there are at most a finite number of com-
ponents Ai and since the Ui form a decreasing sequence of open sets
whose intersection is empty, there must be an m such that for each
3 ~ 1, , n, there are x5 e A3 such that xs £ Um. But X — Um £ hn{A^9

since hm(B) £ Um and X = A, (J B, A, Π B = 0 . Thus xό e h^A,), j =
1, •••,%• But this is a contradiction unless n = 1, since /^(A) is
connected, but intersects all components of X.

An example of a DCS space which is not connected is the product
space obtained by crossing the real numbers with the rationals.

One method of constructing DCS spaces is given by the following:

403
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THEOREM 2. If X and Y are DCS spaces, so is X x Y.

Proof. Let C be a proper closed subset of X x Y, and let P gΞ
X, Q S F be open sets in X and F, respectively, such that P x Q e
I x Γ - C . Let {Ui)T=i, {hi}T=ι and {F<}r=i, {&<}Π=i be the open sets and
homeomorphisms for X — P and F — Q in X and F, respectively. If
(x, y)eXxY, define fc(α?, y) = {Λ«(α>), fc,(y)}. Now {TF«}r~i = {(E7< x Γ) U
(X x Vi)}T=i is a decreasing sequence of open sets in X x F, with
empty intersection. Also, Φi{C) £ W» . Thus, X x F has the DCS
property.

The relation between invertible spaces and spaces with the DCS
property can be seen more clearly in the following analysis.

If an invertible Tγ space X has the property that the intersection
of all neighborhoods of any point is that point, and if any closed set
C in an open set U may be "moved" so as to miss any given x e U,
without moving outside U, then X has the DCS property. (If U is
open, U — {x} is also.)

Ill* This suggests a relationship with another concept, also
studied by Doyle and Hocking. A space X is near-homogeneous if for
any xeX and any open set U such that xe U, for every yeX
there is a homeomorphism on X onto X such that h(y) e U.

Once again, the 0-sphere is a space that does not satisfy the DCS
property, but is near-homogeneous. However, the following converse
is true:

THEOREM 3. Every DCS space X is near-homogeneous.

Proof. Let xe X and U an open set containing x. Let y e X.
Consider C — X — U, a proper closed subset of X. Since X has the
DCS property, there is a sequence of homeomorphisms {/̂ )Γ=i on X
onto Xsuch that Γ\T=ih(C) = 0 , a somewhat weaker statement than
the DCS property allows. There is some j such that y£hά{C). But
then yehj(U), so hjι{y)ε U. Thus, X is near-homogeneous.

In the preceding proof, it is seen that near-homogeneity does not
require that closed sets get "thin," but that they move around enough.
An equivalent form of the definition of near-homogeneity, related to
the DCS property, is of interest here.

THEOREM 4. Let H(X) be the family of all homeomorphisms on
X onto X. X is near-homogeneous iff, for every proper closed set

Γ - 0.

Proof. If X is near-homogeneous, let C be a closed subset of X,
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and let U' = X — C. Let yeC. Then there is an h e H{X) such that
h(y) e U, by near-homogeneity and thus Γ\heH(x) h{C) = 0 .

Conversely, let x, y e X, and let U be an open set such that x e U.
Let C = X — U. lίyίC, there is nothing to show, so suppose yeC.
Then there is an h e H(X) such that h(y) g C. Otherwise ΓUe^m MC)
would not be empty. But this is the desired homeomorphism.

IV* Another definition relating to invertibility that has been
studied is that of local invertibility. A space X is said to be inver-
tible at a point x e X if for every open set U containing x there is
a homeomorphism h on X onto X such that h(X — U) £ U. In [2]
it was proved that for such a space certain local properties become
global properties. For example, if X is invertible and locally compact
at x, then X is compact. The corresponding definition here is the
following. A space X has the DCS/x property for all closed sets
which miss x. It is evident that a space X has the DCS property,
iff it has the DCS/x property for each x e X. Examples of spaces
with the DCS/x property include the closed w-cell, the w-leafed rose
and, in fact any space that is invertible at x in such a way that the
inverting homeomorphism may be taken to fix x. A space that is
not invertible at any point but which does have the DCS/x property
is the "half-open" annuls [0, 1) x S l t It will have the DCS/x property
for every point of {0} x Sx.

Since the DCS/x definition cannot guarantee that any part of the
closed set will be carried close to x under any of the homeomorphisms,
theorems as sweeping as those of local invertibility cannot be obtained.
However, the following is true:

THEOREM 5. Let X be a space that has the DCS/x property at x
and suppose X is locally Tiy i — 0, 1, 2, in a neighborhood P of x.
Then X is T{.

Proof. Let y, zeX,y Φ z (perhaps one is x). Let {Ui}T=i and
{hi}T=ι be the open sets and homeomorphisms given by the DCS/x
property for the closed set X — P. There is a j such that y,zί U,.
Then y, z£hj(X — P), so y,zeh3-(P). But then hs(y) and h3(z) have
the separation property required and thus y and z do also.

Note that this kind of argument is an improvement on near-
homogeneity, since it makes it possible to bring two points (or any
finite number of points) into a neighborhood of x at once.
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ON THE ABSOLUTE MATRIX SUMMABILITY
OF FOURIER SERIES

B. KϋTTNER AND B. N. SAHNEY

The paper investigates sufficient conditions under which
a sum inability method of a certain general type absolutely
sums the Fourier series of any function of bounded variation.
The main theorem includes a recent theorem of M. Izumi and
S. Izumi, who considered the problem for the special case of
Norlund summability.

The summability methods considered are those given by a series-
to-series transformation A = (<xn,k). That is to say, given any series

(1) ± a k ,

we describe (1) as summable A to s if

oo

K = Σ ocn,kak

is defined for all n, and if

(2) ± b n
71=0

converges to s. We describe (1) as absolutely summable \A\ if (2)
converges absolutely. Under certain quite weak restrictions on A,
necessary and sufficient conditions under which the Fourier series of
any function of bounded variation should be absolutely summable | A \
have been given by Tripathy [10, Lemma 2]; his result will be stated
later as Lemma 1. But the conditions obtained by Tripathy are of
such a nature that it is not usually easy in any given example to
determine whether they are satisfied or not. The object of the present
paper is to obtain sufficient conditions which, while less general, are
simpler than those of Tripathy. However, it does not seem possible
to obtain reasonably general sufficient condition in any very simple
form.

We will be concerned with the case in which A is absolutely
conservative, that is to say, it is such that, whenever (1) converges
absolutely, so does (2). It is known [4, 6] that in order that this
should hold it is necessary and sufficient that, for k ^ 0,

(3) ΣI«..*I =

407
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We remark that, in order that A should be absolutely regular, that
is to say, that in order that, whenever (1) converges absolutely then
(2) converges absolutely to the same sum, it is necessary and sufficient
that (3) should hold and that, further, for all k ^ 0,

(4) Σ«*,* = l.
Λ = 0

2* We now state our main result.

THEOREM. Let A = (anyk) be an absolutely conservative series-to-
series transformation, with an>k ^ 0 for all n, k. Suppose that either

(a) For each fixed n, there is a positive integer r(n) such that
anΛ is nondecreasing for 1 <: k <, r(ri), and nonincreasing for k ^
r(n), or

(b) For each fixed n, there is a positive integer s(n), such that
antk/k is nondecreasing for 1 ^ k ^ s(n), and nonincreasing for k ̂ >
s(n). Suppose also in case (a) that, for K ^ 1,

(5) Σ
and in case (b) that, for K ^ 1,

(6) Σ ^ - "

Then the Fourier series of any function of bounded variation is abso-
lutely summable \A\.

REMARK. It is clear that (5) is equivalent to

(5') Σ Σ
)K k-=r(n)—K

and it is sometimes more convenient to express (5) in this form. Since
there are 2K + 1 terms in the inner sum in (5), and since the middle
term is the greatest, a sufficient condition for (5) is that

(7) Σ ^ff=

However (7), while much simpler than (5) is less general, and, as will
be shown later, fails to be satisfied in some important cases. In a
similar way, (6) is equivalent to

(60 Σ S ( Σ A ^ = 0(1)
s(n)^2K k = s(n)—K ft

also, a sufficient condition for (6) is that
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(8) Σ %f* =
(n)

It is clear that either one of (a), (b) could be satisfied without
the other holding. If, however, they both hold, then (5) is a weaker
assumption than (6). Thus, in this case, the first form of the theorem
is preferable. To prove this assertion, we write θn, ψn for the inner
sums in (5'), (6') respectively, and shall first show that

(9) θn^2φn.

To this end, we first note that s(n) <* r(n). Consider first the case
in which r(n) — s(n) ^ K. Since antk/k is nonincreasing for k ^ s(n),
we have1, for μ = 0, 1, , K - 1,

a(n, r(n) + K - 2μ) . a(n, r(ri) + K — 2μ - 1)
r{n) + K - 2μ r{n) + K - 2μ - 1

^ 2a(n, s(n) + K - μ) ^
~ s{n) + K — μ

Also,

a(n, r(n) — K) ^ a(n, s(n))
*^ ————————— ,

r(n) — K ~ s(n)

whence

where the dash indicates the term k = s(n), is multiplied by 1/2. If
r(n) - s(n) = t(n) < K, then (10) still holds for μ ^ t(n) - 1. Hence

(li) <>.. < * " Σ " 1 a(n's(n) + κ ~ μ) + Σ a{n' r(n) + K ~ v)

μ-=o s(n) + K — μ u=2t(n) r(n) + K — v

where the first sum on the right is taken as 0 if t(n) = 0. Since the
second sum on the right of (11) can be written

2Kψn) a(n, s(ri) + K - μ)
μ=t(n) s(n) + K — μ

we again deduce (9).
It now follows from (9) that

n^2 Σ
)^2

However, since s(n) ^ r(ri), there may be values of n for which r(n) ^
2K, but s(n) < 2K; these values will occur in the sum (5'), but not

1 To avoid complicated suffixes, we write a(n, k) for an,k whenever n, Jc are replaced
by more complicated expressions
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in (6'). If we show that, in any case, the contribution of these terms
to the sum (5') is bounded, the conclusion will now follow. If r(n) ;>
2K but s(n) <; K, then, since anjk is nonincreasing for k^> K we
deduce that

a ^ (2K + l)a%,κ

K

If r(n) ^ 2K and K < s(n) < 2K, then antk is nondecreasing for k
2K. Hence, for all k :> 1

Jc ~ s(n) K

so that

β (2K + l)anttκ

Thus the sum of the terms in question does not exceed

(2K + 1) £ {(Xκ + a κ )

K =̂o

by (3).

3* We now state the lemma of Tripathy already mentioned.

LEMMA 1. Let A — (an,k) be a series-to-series transformation such
that

(12) ΣK,o!< -

and such that, for every fixed n,

(13) Ln(t) = Σ «..* S ^
k k

converges boundedly in t. Then in order that the Fourier series of
any function of bounded variation should be absolutely summable \A\,
it is sufficient that

(14) Σ \Ln(t)\ = 0(1) ,

and necessary that the sum (14) should be essentially bounded.

It may be remarked that the result is not quite correctly stated
in [10], where it is asserted that the essential boundedness of (14)
is necessary and sufficient. But on examining the proof of sufficiency
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in [10], we find that it requires the boundedness, and not just the
essential boundedness, of (14). The point is not of great importance,
since if we assume that, for every fixed n,

oo

Σ \an,k - <*«,*+!I < °°
fc = l

in other words, that bn is defined whenever (1) converges, it is easy
to prove that the essential boundedness of (14) is equivalent to its
boundedness. This result is not, however, required for our present
purposes.

In what follows, we will suppose throughout that 0 < t ^π. We
will apply the hypothesis (5) or (6) with K = [π/t]; thus, in any equations
involving both K and t, it will be assumed that this relation holds.

We require two further lemmas.

LEMMA 2. Let A = (an,k) be an absolutely conservative series-to-
series transformation. If, for every fixed n, an>k/k is ultimately
nonnegative nonincreasing (and thus, in particular, if the hypotheses
of the theorem are satisfied) then the hypotheses of Lemma 1 are
satisfied.

Equation (12) follows at once as a special case of (3). Thus,
taking n as fixed, we have only to verify that (13) converges boundedly.
Suppose that an>k/k is nonnegative nonincreasing for k :> M. Then
we have, uniformly in klf k2 for K, M ^ kt <J k2,

(15)
sin kt

(2sin—

But (3) implies that a(n, k) is bounded; hence the expression on the
right of (15) is 0(1) uniformly in the range considered, and, for fixed
t, tends to 0 (uniformly in k2) as /^ —• oo. Since M is a constant,

M—l

Σ

is bounded; also, if K ^ M,

sin kt

sin kt

k

K

Σ
k=M

k

(by the boundedness of anfk and the definition of K). Hence the result.

LEMMA 3. Suppose that θk ^ 0. Suppose that θk is nondecreasing
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for 1 ^ k <; 8, and nonίncreasing for k^> s. Then, for any positive
integers a, b, and any t with 0 < t ^ π,

(16) Z-i uk 9

fe = max(l, s—K)

where A is an absolute constant.
That portion (if any) of the sum on the left for which s — K ^

k ^ 8 + K clearly satisfies the required inequality. Also, by partial
summation, that portion (if any) for which k > s + K does not, in
modulus, exceed

's+K ^
|1 _ eu\ " ~ |1 - eu\(K+ 1) i

2ί βΐfΛ

That portion of the sum (if any) for which k < s — K may be dealt
with in a similar way, and the conclusion follows.

This lemma is a slight generalisation of a lemma due to McFadden
[5] which has been much used in investigations on the Norlund
summability of Fourier series.

4* We now come to the proof of the theorem. It follows from
Lemmas 1 and 2 that it is enough to show that the hypotheses of
the theorem imply (14). Consider first those values of n (if any) for
which r(n) < 2K in case (a), and for which s(n) < 2K in case (b). In
case (b), we are given that anjk is nonincreasing for k ^ 2K; in case
(a), we are given that an>k is nonincreasing for k ^ 2K; hence, a
fortiori, so is an>k/k. Thus, in either case, since the partial sums of

X sin Art are O(l/ί), we have

by definition of K. For those terms in the sum (13) for which k <̂
2K, we use | sin kt \ ̂  kt; and it follows that

\Ln(t)\ = OJίg^n,*} + O(an,2K) .

Hence the contribution to the sum (14) of those values of n now
under consideration is

{
2K — 1 oo ϊ f o o Λ

* Σ Σ «..* [ + O\ Σ ocn,2K \ = 0(1)
by (3) and the definition of K.

We now investigate the remaining values of n. Consider first
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case (b). For any fixed n, we apply Lemma 3 with θk = an>k/k, and
take the imaginary part of (16) It follows at once that

{ s(n)+K w Λ

k = s(n)-K fC )

and (14) therefore follows from (6') and (17).
Now consider case (a). Since an,k is nonincreasing for k ^ τ(n)

so is an>k/k; thus the part of the sum (13) for which k > r(n) — K
may be dealt with as in case (b). The part for which k < K may
be dealt with by using | sin feί | ^ kt, as in the proof of (17). Thus,
writing

it remains

(18)

only to

L

show

;.(«) -

that

Σ 1

r{n)—K Ά\l\ kt
X 1 (Ji/fi> k

k=K ft

Rn(t) 1 = 0(1) .

Now,

>s (k - —V - cos (k + —VI
\ 2 / \ 2) J2 s i n i ί

2

2 sin —t

c o s η
- K + 1 V w 2

Since

A/ / A/1Λ/ ~Γ~ X/ /V ~|~ JL

it follows that

t L *=jc fe(A; + 1) h=κ k +

+ 11]
1 J/KK r(n) - K +

Λ!,(ί) + Λl(ί) + Λl(ί) + #.(«)},

say. Now, since anΛ is nondecreasing in the relevant range
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t k=K

t K tt h=κ k(k+ϊ) t K t r{n) - K + 1

= Rι

n(t) - R\{t) + Ri(t) ,

so that

Rn(t) = 0{Rl(t)

Next,

Σ Ri(t) ^ ^ Σ T7ΓTΣ «-,* = 0(1)

by (3) and the definition of K. Finally, if r(n) ̂  2K,

J
r(n)

= o\^±^ Σ .

so that

V R\(t) = 0(1) ,Σ
)by (5). The proof of the theorem is thus completed.

5* We now consider an application of our general theorem to
the special case of Norlund summability. We recall that, given a
sequence p = {pn}, Norlund summability (N, p) is defined as given by
the sequence-to-sequence transformation

(19) tn = 4 - Σ P.-Λ i

where we write

Pn = Pθ + Pl+ *-Pn',

it is assumed that p is such that, for all n, Pn Φ 0. If we write

ί» = δ0 + δi + bn; sk = α0 + αt + ak

we see that (19) can be expressed as the series-to-series transformation

b0 = α0
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where we adopt the convention that P_t = 0. Thus we have, with the
notation of our main theorem, an,k = 0 for k > n, while, for 1 ^ k ^ n

OCn>k ~ - p - —p

(20) F% n~ι

Now consider the case in which {pn} is nonnegative nonincreasing.
We remark that, since Po Φ 0, we then have p0 > 0. Further (since
pn ^ 0) {Pn} is nondecreasing; thus it follows from (20) that anΛ ^ 0.
Thus we may omit the modulus signs in (3); and it is now easy to
see that (4), and hence (3), holds. Thus, in the case now considered,
(N, p) is absolutely regular. Further, for fixed n, pn_k is nondecreasing
and Pw_fc nonincreasing as k increases from 1 to n. Since an>k — 0 for
k > n, it follows that condition (a) is satisfied, with r(n) = n. Also
equation (5) becomes

(21) Σ * Σ (PnV^k ~ P«-kPn) = 0(1) .
n=2K nPnPn^ k=n-K

The inner sum in (21) does not exceed

Σ
k=n—K

and thus a sufficient condition for (21) to hold is that

(22) Σ
2

However, since the hypotheses on p imply that Pn_x ~ Pn, and that

KP ^ P2K <̂  2PK, it is easily seen that (22) is equivalent to the slightly
simpler condition

(23) Σ -V = °(-5-)
n=κ nPn \PKJ

Thus our theorem includes the following result;

THEOREM A. Suppose that {pn} is nonnegative nonincreasing,
and that (23) holds. Then the Fourier series of any function of
bounded variation is absolutely summable \N,p\.

The assumption that {pn} is nonnegative nonincreasing is not,
without some further condition, sufficient for the conclusion, for it
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has been shown by Pati [8] that, when pn — l/(n + 1), it is not
true that the Fourier series of any function of bounded variation is
absolutely summable \N,p\. This example also shows that, in our
main theorem, the assumptions that A is absolutely conservative and
that (a) holds would not alone suffice for the conclusion.

Theorem A is included in a recent, slightly more general, theorem
of M Izumi and S. Izumi [3] It includes earlier theorems of H. P.
Dikshit [2, Theorem 2] and T. Singh [9]; the result of Singh itself
generalises a theorem of Pati [7]. The theorems of Dikshit and of
Singh are respectively as follows.

THEOREM B. Suppose that pn > 0, and that pn+jpn is non decreas-
ing, and less than or equal to 1 for all n. Suppose that (23) holds.
Then the Fourier series of any function of bounded variation is
absolutely summable \N,p\.

THEOREM C. Suppose that, for all n, pn ^ pn+1 > 0, and that
Pn — Pn+i is nonincreasing. Suppose also that

(24) Σ — ^ T = O(PK) .
n=o n + 1

Then the fourier series of any function of bounded variation is abso-
lutely summable \N,p\.

It is immediately evident that Theorem A includes Theorem B.
The result that Theorem A includes Theorem C follows from the
following lemma, which shows that, in Theorem C, we may replace
(24) by (23).

LEMMA 4. Suppose that p0 > 0, pn ^ 0. Then (23), (24) are equi-
valent. In fact, either is equivalent to the assertion

(c) There is a constant integer r > 1, and a constant λ > 1 such
that, for all sufficiently large n,

(25) Prn ^ XPn .

We first prove that (23) implies (c). Suppose, then, that (23) holds.
Thus there is a constant M such that, for all sufficiently large K,

Since Pn is nondecreasing,

M
p "

n ~ κ '('•in

this gives

rK 1

M
PK

1

PrK

rK

Σ
n=K

1
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But

Σ
K

as K—+ °°, and (c) therefore follows if r has been chosen so that

(26) log r > M .

If (24) holds, we have, for all sufficiently large K,

Σ — ^ T ^ MPK .

Thus, replacing K by

n=κ n + 1 n=κn + 1

and we again deduce (c) if r has been chosen so that (26) holds.
We now consider the converse implications. Suppose, then, that

(25) holds for n J> n0. Then, for v ^ n0

Hence,

(27)

for n0 and 8 5

nP%

= 1,

1

nP

rvP
>, i i / ± rv

. < •*- ryι

X n = rs~1K

vλP,

1
/yj P

By successive applications of (27), we deduce that for s ^ 0,

rβ + iϋΓ-l 1 I rJΓ-1 1 1 rK-1 1 / 1 \

Σ < 1 y -1- < -1 v _L = Q(
 ι )

n = r*K nPn ~ XS n^K nPn ~ \SPK ^k U V \ S P κ ) '

SPκ

Hence

which gives (23). To prove (24), we have, for v ^ noy

Hence, for s Ξ> 1,

so that, for 0 ^ s ^ ί — 1,
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r
s
 + l«

0
-l p I r*»

0
-l p

(28)

Now take any ϋΓ Ξ> n0. Choose t so that r'n0 <L K <. rt+1n0. Then,
by (28),

K p ^O"1 P ί-1 1 Λ 0 -

_ Σ _
(29) » S ° W + 1 —0 n+1 - 0 λC * n=rt~ln0 U

+ Σ -^-r>

where the second term on the right is omitted when t = 0. The first
term on the right of (29) is a constant, and is thus certainly O(PK),
since Pκ ^ p0 > 0. Also

rtnΰ~l p rtn0—

Σ - ^ - ^ P * ΣΣ
K

Σ U

(since ϋΓ<r ί + 1^ 0). Thus (24) follows.
The conditions (7), (8) have been mentioned as giving simple

sufficient conditions. But, while simpler than (5) or (6), they appear
to be insufficiently general to be of great use. Consider, for example,
the case of Cesaro summability (C, δ). This is a Norlund method with

If 0 < δ <ΞJ 1, then the conditions of Theorem A are satisfied. Thus
that theorem includes the result that the Fourier series of any function
of bounded variation is absolutely summable \C, δ\; this result was
long ago proved by Bosanquet [1]. Now, in this case, an>k = 0 for
k > n, while, for 1 ^ k ^ n,

(n-k + δ-V

— A \ n — k
n In + δ

\ n

Thus (a), (b) are both satisfied, with r(n) = s(n) = n. But either (7)
or (8) reduces to

n\
n

and this is satisfied only if δ = 1.
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6* As another application of our main theorem, we let {k(n)} be
an increasing sequence of nonnegative integers, with k(0) = 0, and
define

1 (k(n) ̂ k<k(n + l);

0 otherwise.

Thus absolute summability \A\ of a given series reduces to the absolute
convergence of the series formed from it by bracketing together, for
every n, those terms whose suffixes k satisfy k(n) ^ k < k(n + 1). It
is clear that (a), (b) are both satisfied, with τ(n) = s(n) = k(ri) (except
when n = 0). In this case, the weaker conditions (7), (8) still give a
significant result. Either of these conditions is equivalent to

(30) Σ
 T K =

k ) k ( )
We note that (30) is satisfied, in particular, if

(31) l iminf*( w + 1 > > l .
*-«» k(n)

Thus our theorem includes the following result. Suppose that (31)
holds. Let us bracket together, in the way indicated, the terms of the
Fourier series of any function of bounded variation. Then the result-
ing series is absolutely convergent.
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ALGEBRAS OF NORMAL MATRICES

GEORGE MAXWELL

A classical theorem of matrix theory asserts that a com-
muting set of complex normal matrices can be simultaneously
unitarily diagonalised. In this paper, this result is gener-
alised, both for the field of complex numbers and for more
general fields. Namely, a commuting set of normal matrices
is replaced by a subalgebra composed entirely of normal
matrices. The structure of such subalgebras is determined
and results on simultaneous diagonalisation are deduced. In
the complex case, these subalgebras turn out to be commuta-
tive. However, even in the real case there are noncommuta-
tive examples.

l Normal subalgebras* Let F be a field with an involution J,
V a finite dimensional vector space over F and φ a left hermitian

form on V such that

(1) φ(x, x) = 0 implies x = 0 .

In particular, φ is nondegenerate so that every endomorphism T of V

has a unique adjoint w r. t. φ, defined by the equation

(2) Φ(Tx,y) = φ(x, T*y) .

We call a subalgebra A of End^(F) normal if it satisfies

(a) TeA implies Γ G 4
(3)

(b) T*T = TT* for all TeA.

Our first aim is to determine the structure of such normal subalgebras.
The purpose of assuming (1) is to obtain the property

(4) Γ* T = 0 implies T = 0 .

Indeed, if T*T - 0, we have φ(Tx, Tx) - φ(x, T*Tx) = 0 so that Tx = 0

for all xeV. From properties 3(a) and (4), a well known argument

[6] leads to the fact that A has no nil ideals. In our context, this

means that A must be semisimple. Furthermore, if B is a minimal

ideal of A, so is B*, and thus either £* = B or B*B = 0, but the

latter possibility is precluded by (4). It is therefore sufficient to de-

termine the structure of a simple normal subalgebra.

PROPOSITION 1. Suppose R is a ring with unit element 1 =£ 0 and

* is an involution of a matrix ring Mn(R) with the property XX* =

421
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X*X for all XeMn(R). Then either (i) n = 1 or (ii) n = 2, i2 is
commutative and * is £λ,e involution

\c a/ \ — c a

Proof. Linearing the identity XX* = X*X, we obtain

XF* + ΓX* = X * Γ + F*X;

replacing Y by Y*, this can be written as

(6) [X, Y]* = -[X, Y].

Let Eij(r) be the matrix with r in the (i, i)th position and zeros else-
where. Suppose n ^ 3; if i Φ j , we can write E^r) = Eik(l)Ekj(r) =
lEik(ΐ), EkJ(r)] for some & ̂  i, j . Therefore #<y(r)* = -E^r) by (6);
but then EiS(r)* = Eki(r)*Eik(l)* = Ekj(r)Eik(l) = 0, an absurdity.

If n = 2, we can write E12(r) = [En(l), E12(r)] so that E12(r)* =
— E12(r). Since En(r) = E12(l)E21(r), we have En(r)* = ^ W ; the invo-
lution is thus given by (5). Furthermore, writing En(rs) = En(r)En(s)
and applying *, we obtain E22(rs) = E22(sr) so that rs = sr and R
must be commutative.

PROPOSITION 2. Suppose D is a division ring, finite dimensional
over its center Z and * is an involution of D such that dd* — d*d
for all de D. Then either Ό — Z or Ό is a quaternion algebra over
Z and * is the standard involution.

Proof. Let K be the subίield of Z left fixed by * and L some
algebraic closure of K. The extended involution (d (x) α)* = ώ* (x) a
on D (&κ L has the same property as *.

If K = Z, D $ξ)κ L is isomorphic to MV(L) for some integer p. By
Proposition 1, p <̂  2 so that D is either Z or a quaternion algebra
over Z (see, e.g., [1. p. 146]). If KΦ Z, we have Z%KZ~ Z@Z,
so that D^ZL~D®Z {Z®κ Z)®ZL = D®ZLQ>D®ZL = ikfp(L) φ
MP(L) for some integer p. If * induces an involution on each of the
factors MP(L), we again have p ^ 2. However, if #> = 2, we see from
(5) that * must leave central elements fixed, which is not true for
D®KL. Therefore p = 1, i.e. Ώ = Z. If * interchanges the two
factors MP(L), then each is forced to be commutative so that once
again p = 1.

It remains to verify that in case D is a quaternion algebra over
Z and K = Z, * can only be the standard involution. If char (Z) Φ
2, D has a basis {1, i, j , ΐj} such that i2 — α, i2 — β and ij" = — ji for



ALGEBRAS OF NORMAL MATRICES 423

some a, βeZ. Since 2βi = [ij,j] and 2aj = [i,ij], (6) implies that
ί* = —ί,j* = —j so that * must be the standard involution. If char
(Z) = 2, the relations are instead i2 = a, j2 = i + β and ίj = ji + i
for some a, β e Z. Since i = [ί, i] and ίj" = [i, ij] we have i* = i and
(#)* = #; but α# = i(ij) so that α#* = (ij)*i* = #£ = #? + α i.e. j>* =
7 + 1, showing that * is again the standard involution.

The preceding proofs could have been somewhat shortened by
appealing to a recent result of Amitsur [3], which says that a semi-
prime ring with an involution * satisfying a polynomial identity
p(Xl9 Xn, X?, , X*) = 0 of degree d satisfies a "standard identity"
of degree 2d. In our case, the polynomial identity is X*Xχ — XXX* =
0, of degree 2, so that the standard identity is of degree 4. Now a
well-known result of Kaplansky [7] implies that if the ring is also
primitive, it is at most 4-dimensional over its center. However, we
would still have to determine, as above, the possibilities for *, the
knowledge of which is important in the sequel.

PROPOSITION 3.

(a) If J is non-trivial^ a simple normal subalgebra A is a finite
field extension of F; its involution * extends J.
(b) If J is trivial, A can also be a quaternion division algebra over
a finite field extension of F, in which case * must be the standard
involution.

Proof. Suppose A is isomorphic to Mn(D), where D is some finite
dimensional division algebra over F. By Proposition 1, either (i) n ~
1 or (ii) n = 2, D is a field and * corresponds to the involution (5).
However, the latter violates (4) since, for example, En(ϊ)*En(l) — 0;
therefore A is a division algebra. By Proposition 2, A is either a
field or a quaternion algebra over its center. Furthermore, in the
latter case * must be the standard involution, which is certainly
trivial on F, so that / itself had to be trivial.

Turning to the classical cases, let us suppose that F is either
R or C and φ is the standard hermitian form on 7 = Fn.

COROLLARY 1, In the complex case, a normal subalgebra is iso-
morphic to a product of copies of C, each with the standard involu-
tion.

COROLLARY 2. In the real case, a normal subalgebra is isomor-
phic to a product of copies of R, C and H, the latter two occurring
with the standard involution.
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Proof. It is only necessary to explain why a factor consisting
of C with the trivial involution could not occur in the real case. This
is a consequence of a property stronger than (4):

(7) Σ ϊ ^ T ^ O implies that all Γ* = 0 ,

enjoyed by * but violated by such a factor. Indeed, if Σ T* T% — 0,
we have φ(Σ T?T,x, x) = Σ Φ(TiX, T&) = 0 for all x e V; since all
summands are non-negative, we must have ΦiTφ, T&) — 0 and hence
Ti = 0.

2* Simultaneous diagonalisation* Let A be a normal subalgebra
of EndF(F) and consider V as a left A-module. One sees at once
from (2) that if W is a submodule of V, so is W1; in view of (1),
we have V = TF0 W1. Induction now shows that V is the orthogonal
sum of simple submodules, which are isomorphic to simple factors of
A.

Using Corollaries 1 and 2 of Proposition 3, we can immediately
obtain diagonalisation results in the classical situations.

PROPOSITION 4. In the complex case, there exists an orthonormal
basis of V w.r.t. which the matrices of all elements of A are diagonal.

PROPOSITION 5. In the real case, there exists a partition dim V =
nλ + 2n2 + 4%3 and an orthonormal basis of V w.r.t. which the matrices
of all elements of A consist of nx diagonal elements, followed by n2

blocks of the form

(8)

and nz

(9)

blocks of the form

a

β

7

Ψ

Γ
\β

-β

a

δ

— 7

a]

- 7

-8

a

β

-δ\

7

-β

a

Proof. If a simple A-submodule is isomorphic to C, it has a basis
of the form {x, i-x], which is orthogonal since φ(x, i x) = φ(i*-x, x) =
— φ(i x,x) — —φ(x, i x). We may suppose that Φ(x, x) — 1, but then
φ(i x, i x) — φ(x, i*i x) — φ(x, x) = 1, so that the basis is orthonormal.
The action of C on such a basis is given by blocks of the form (8).
Similarly, if an A-submodule is isomorphic to H, it has a basis of the
form [x, i x,j-x, ij x}, which can once again be assumed orthonormal
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and yields blocks of the form (9).

Such diagonalisation results are usually stated for a commuting
set {Ti} of normal endomorphisms rather than for a normal subalgebra.
To deduce them from our results, we first enlarge the set {ΓJ to
{Tiy T*}, which is still commuting in view of the following well-
known result [9]:

PROPOSITION 6. In the real or complex case, if a normal endo-
morphism T commutes with an endomorphism S, it also commutes
with S*.

Secondly, we form the commutative subalgebra generated by
{Tif T*}, which is clearly normal, and apply propositions 4 and 5.
In the non-classical situations, the results of §1 still enable us to
produce diagonalisation theorems, although these can of necessity be
more complicated. We shall confine ourselves to some remarks about
the case when F = Q and φ is the standard hermitian form on V =
Q\

PROPOSITION 7. The possible factors of a normal subalgebra must
be of the following types:
(a) a totally real finite extension K/Q, with the trivial involution.
(b) an extension K(V — ά)/Q, where K is as in (a) and a is totally
positive, with the involution V — a—*— V — a.
(c) a quaternion algebra {—a, — β) over K, where K is as in (a) and
a, β are totally positive, with the standard involution.

Proof. Let A be a simple factor. We go back to proposition 3.
If * induces the trivial involution on A, every TeA is hermitian and
therefore has totally real eigenvalues-hence A is of type (a). When
* is not trivial, the fixed subfield K of * is of type (a) by the same
argument. If K—>R is some imbedding, then, regarding R as a K-
algebra, one proves as before that the involution (α(x)λ)* = α* (x) λ
on the extended algebra Aξ&κR enjoys property (7). Therefore the
images of a or a and β must be positive in R.

The problem of determining which totally real extensions K/Q
can actually occur as factors of type (a), say, has been studied by
Bender [4] and seems quite difficult. For example, Q(y~d)jQ occurs
if and only if d is a sum of 2 squares in Q.

3* The infinite dimensional case. In this paragraph, we shall
prove that in some infinite dimensional situations normal subalgebras
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are necessarily commutative.

Firstly, suppose that H is a complex Hubert space and B(H) is
the algebra of bounded operators on H. The analogue of Proposition
6 for elements of B(H) has been proved by Fuglede [5] and later
generalised by Putnam [10] to

PROPOSITION 8. If S and T are normal operators and R is an
operator such that TR = RS, then T*R = RS*.

One can use this result to prove

PROPOSITION 9. A normal subalgebra A of B(H) such that A2 is
dense in A (for example if 1 e A) must be commutative.

Proof. Suppose S, TeA; since (ST*)S = S(T*S), Proposition 8
implies that (ST*)*S = S(T*S)* or T(S*S) - (S*S)T (this idea occurs
in Kaplansky [8]). Now replace S by S + R*, with Re A. After
subtraction, one concludes that T commutes with (RS)* + RS i.e.
with all the hermitian elements of A2. Since A2 is dense in A and
every element of A can be written in the form S + iT where S and
T are hermitian elements of A, we conclude that T commutes with
every element of A.

Secondly, we return to an arbitrary field F and consider an arbi-
trary F-algebra Ω with an involution *, satisfying (a. x)* = aJ. x*. Let
b(Ω) be the quotient of Ω$$kΩ by the subspace generated by all ele-
ments of the form αδ (x) c — α (x) δc and ba (x) c — a (x) cb. The obvious
πiap βΩ: Ω x Ω —• b(Ω) is called the universal bitrace on Ω. It may
happen that b(Ω) is not isomorphic to if, for example if Ω2 = 0. Since
Ω has an involution, it is actually more convenient to work with a
"twisted" version of the bitrace: <α, δ> = βΩ(a*, δ). This is a left
sesquilinear (w.r.t. /) map on Ω, universal w.r.t. the properties
<αδ, c} = <δ, a*c} and <δα, c> = <δ, cα*>. By analogy with [2], Ω may
be termed an if*-algebra if

(10) <α, α> = 0 implies α = 0 .

For such algebras, the analogue of Proposition 8 can be proved purely
formally from the identity

(c*a — be*, c*a — be*) — (ac — cδ, ac — cb}

= (aa* — a*a, cc*} — <δδ* — δ*δ, c*c) ,

a special case of which goes back to von Neumann [11]. For its proof,



ALGEBRAS OF NORMAL MATRICES 427

note first t h a t <αδ, cd) = <δd*, a*c} = <c*α, dδ*>. Then

<c*α — δc*, c*a — δc*>

= <c*α, c*α> - <δc*, c*α> - <c*α, δc*> + <δc*, δc*>

= (aa*, cc*> — <cδ, ac) — <αc, cδ> + <c*c, δ*δ> .

Similarly, (ac — cb, ac — cb) = (a*a, cc*> —<αc, cδ> —<cδ, αc> + <c*c, δδ*>.
Subtraction yields (11).

PROPOSITION 10. If J is nontrίvial, a normal subalgebra A of
an H*-algebra Ω such that A2 = A must be commutative.

Proof. One can use the same argument used in the proof of
Proposition 9, with the following remark. Since J is nontrivial,
there exists θ eF such that ΘJ Φ θ\ then every xe A can be written
in the form xλ + θ x2, where x1 = (θ x* — ΘJ x)l(θ — ΘJ) and x2 =
(x — x*)/(θ — ΘJ) are hermitian elements of A.

In conclusion, we add a remark regarding the property

(12) aa* = α*α, δδ* = δ*δ, ac ~ cb implies c*a — αδ*

in arbitrary rings with involution. Two of its special cases are

(13) αα* = a*a, ac = ca implies c*a = ac*

and

(14) αα* = α*α, ac — 0 implies c*a — 0 .

However, one can get an example in which both (13) and (14) hold
but (12) does not, by taking K = Q, a — 2 in

PROPOSITION 11. Let K be a field of characteristic Φ2, a a nonzero
element of K and * the involution

a δ\* / a —ac

c d) \ — b/a d

of M2{K). Then ( i ) (13) is true in M2(K), (ii) (14) is true iff a is
not a square and (iii) (12) is true iff a is not a sum of 2 squares.

We omit the full proof, but give the counterexample for (12):
suppose a = β2 + 72 and let

β/a l ) f [v/a
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Then XX* = X*X, F F * - F* F, XZ = ZY but X*Z Φ ZY* .
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MULTIPLIERS OF TYPE (p,p)

KELLY MCKENNON

It will be shown in this paper that the Banach algebra
of all continuous multipliers on LP(G) (G a locally compact
group, pe [0, oo[) may be viewed as the set of all multipliers
on a natural Banach algebra with minimal approximate left
identity.

Let G be an arbitrary locally compact group, λ its left Haar
measure, and p a number in [1, oo[. Write 33P for the Banach algebra
of all bounded linear operators on Lp and write ΈSlp for the subset of
2% consisting of those operators which commute with all left trans-
lation operators; elements of Ttp are called multipliers of type (p, p).
If A is a Banach algebra, then a bounded linear operator T on A such
that T(a b) — T(a) b for all α, be A is called a multiplier on A; write
m(A) for the set of all such. By Coo will be meant the set of all
continuous complex-valued functions on G which have compact support.
A function / in Lp such that for each g in Lp, the function g*f(x) =

g{t)f{t~ιx)dX{t) exists λ-almost everywhere, g*f is in Lp, and || g*f\\p ̂
g\\p k where & is a positive number independent of g, is said to be

p-tempered; write Lp for the set of all such. Evidently Lp is closed
under convolution and Coo is a subset of Lp. Thus, for each / in L\
and h in Coo, there is precisely one operator W in 23̂  such that
W(g) = g*f*h for all g in Lp; write %p for the norm closure in %ίp of
the linear span of all such W. The principal result of this paper is
that %o is a Banach algebra with minimal approximate left identity
and that m(2tp) and Έip are isomorphic isometric Banach algebras.

THEOREM 1. Let f be a function in Lp and k a positive number
such that | |0*/||p ^ \\g\\p-k for all g in Coo. Then f is in Lι

v.

Proof. First of all, suppose that h is a function in Lγ Π Lp. As
is well known, h*f is in Lp and ||/&*/||p ^ || A||i |l / IIP Let {hn} be a
sequence in Coo which converges to h in the Lp and Lλ norms both.
It follows from the above that {hn*f} converges to h*f in Lp. This
fact and the hypothesis for / imply

||A*/||p = l im| |Λ Λ */ | | p ^imi | | fe Λ | | 1 , .A= \\h\\p-k .
n n

Let h be now an arbitrary function from Lp. We may assume
that h vanishes off some σ-finite set A. Let {An} be an increasing
nest of λ-finite and λ-measurable subsets of G such that their union

429
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is A. Let for each neN, hn be the product of h with the charac-
teristic function of An. Let π5 (j = 0, 1, 2, 3) be the minimal non-
negative functions on the complex field K such that z = Σϊ=o ίjπ3 (z)
for each z e K.

Fix j in {0,1, 2, 3}. For each xeG, define the measurable func-
tion wx in [0, oof by letting wx{t) = π^h^ fit^x)] for all teG. For
each xeG and neN, define the measurable function wx

n in [0, oo]σ

by letting wx

n(t) = πό[hn{t)-f{t~ιx)\ for all teG. Since the sequence
{wx

n} converges upwards to wx for each xeG, it follows from the
monotone convergence theorem that lim^ I wx

ndx = I wxdX. Define the

function F in [0, oof by letting F(x) = \ wxdX for all xeG. For each
J C

neN, define the function Fn in [0, °of by letting Fn{x) = I w dλ for
all x G G. Thus, {FJ converges upwards to F at each point x e G.

For each neN, hn is in Lx n Lp; it follows that π^h^f] is in
Lp, and so equals ^ a l m o s t everywhere. Hence, each Fn is measur-
able whence F is measurable. Further, by the monotone convergence
theorem and the inequality which concludes the initial paragraph of
this proof,

\\F\\p = \im\\F%\\9
n

= lim || πλK*f] \\r £ fim || A. /11, ^ fim || K ||, A; = || h \\P k .
n n n

Recalling that F(x) = 1 πj[h(t) f{t~ιx)]dt almost everywhere and j

was arbitrary, we see that h*f exists almost everywhere, is in Lp

and [|fe*/||p^ ||A||P 4Λ;. This proves that / is p-tempered.

The condition given in Theorem 1 for a function in Lp to be in
Lρ is clearly necessary as well as sufficient. Another such condition
was proved in [4], Theorem 1.3:

THEOREM 2. Let f be a function in Lp such that g*f is defined
and in Lp for all g in Lp. Then f is in Up.

For each feUp, there is precisely one operator Wfe%ίp such that

(1) Wf(g) = g*f

for all geLp. For feC00, we have as well (see [1] 20.13)

(2) \\Wf\\ ^ \ Λ-{p-1)lP\f\dX.

It is easy to check that



MULTIPLIERS OF TYPE (p, p) 431

(3) Wf.h= WhoWf

for all / and h in Lp.

THEOREM 3. The set SĈ  is a complete subalgebra of Έtp and it
possesses a minimal left approximate identity (i.e., a net {Ta} such
that ΊίΐnJI Ta\\ S 1 and lim || TaoT - T\\ = 0 for all T e 2 Q .

Proof. A simple calculation shows that, when / is in LI, then
Wf is in ΪUlp. Evidently, Wp is a Banach algebra; hence, 2tp is a
subset of 2ftp. That %p is a Banach space is an elementary conse-
quence of its definition. That %p is a Banach algebra is a consequence
of the fact that LP*CQO is closed under convolution.

For each compact neighborhood E of the identity of G, let fE be
a nonnegative function in CL which vanishes outside E and such that

\fEd\ = l. Directing the family of compact neighborhoods of the

identity by letting E > F when E czF, we obtain a net {fE} which
is a minimal approximate identity for Lλ. If {h7} denotes the product
net of {fE} with itself, then {hr} is again a minimal approximate
identity for Lγ and the net {Whγ} is in %v. Since A is unity and
continuous at the identity of G, we have by (2),

ίϊϊn || Wh || ^ ϊϊm
r r r

For feLl and g e Coo, (3) and (2) imply

Έ Ϊ I ϊ , . Λ v - Wg)oWf\

since limr \\g*hr — g\\x — 0 and since the net of sets {x e G: g*hr(x) Φg(χ)}
is eventually contained in some fixed compact set. Since LP*C00 gener-
ates a dense subset of §tp, we have lim 11 Wh © T — T \ \ — 0 for all
ΓeSί^. Thus, {Wh } is a minimal left approximate identity for %p.

We now turn to -£flp. We shall need a theorem proved in [3] 4.2.

THEOREM 4. Let μ and the elements of a net {μa} be bounded,
complex, regular Borel measures on G such that

( a ) l i m || μ a \ \ = \\μ\\
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and

( b ) lim l fdμa = I fdμ for each fe Coo .
α J J

Then, for each g e Lp (pe [1, oo[), Hmα || μa*g - μ*g \\p = 0.

COROLLARY. For each multiplier T in Έtp and each bounded,
complex, regular Borel measure μ, we have

( i ) T(μ*g) = μ*T(g)
for all g e Lp. In particular, for feLl9 we have

(ii) T(f*g) = f*T(g) .

Proof. Since T commutes with left translation operators, it is
evident that (i) holds when μ is a linear combination of Dirac measures.
Now let μ be arbitrary. Since the extreme points of the unit ball
of the conjugate space Co* (where Coo bears the uniform or supremum
norm) are Dirac measures, and since Alaoglu's Theorem implies that
the unit ball of CO* is σ(C0*, C00)-compact, it follows by the Krein-
Milman Theorem that there exists a net {μa} consisting of linear
combinations of Dirac measures such that the hypotheses (a) and (b)
of Theorem 4 are satisfied. By Theorem 4, we have limα || μa*g —
μ*g\\p = 0 for all g e Ln. This implies that limα || T(μa*g) - T(μ*g) \\p = 0
for all g e Lp. Consequently,

T{μ*g) - μ*T(g) | |, ^ lim || T{μ*g) - T(μtt*g) \\,

+ ϊuii I! T(μa*g) - μ*T(g) | |p = 0 + ϊϊm || μa*T(g) - μ*T(g) \\P = 0 .
a a

This proves part (i). Part (ii) is a special case of (i).

THEOREM 5. For each multiplier T in Mp and each function f
in Coo, the function T(f) is in Lp and Wτ{f) = ToWf.

Proof. Because / is in Lp, it follows from the corollary to
Theorem 4 and (1) that g*T(f) = T(g*f) = T<>Wf(g) for all g e Coo.
This implies that || g*T(f) \\P ̂  || Γ | | |l Wf \\ \\g \\P for all geCQ0.
Thus, by Theorem 1, T(f) is in Lp. Since Coo is dense in Lp, we
have that Wτ{f) = To Wf.

We purpose to identify the multipliers on 21̂ . To accomplish
this, we shall set down a general multiplier identification theorem.

Let B be a normed algebra with identity and let A be any sub-
algebra of B which is || Incomplete and which has a minimal left
approximate identity. Define $ΐ(B, A) to be the coarsest topology with
respect to which each of the seminorms α | | || (aeA) is continuous
where α | | b \\ = || δ α \\B for all b e B. It is known (see [3] 1.4. (ii)) that
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( 4 ) the map (α, b) • a-b is ®(B, A)-continuous

when a and b run through any [| | ̂ -bounded subset of B.

THEOREM 6. Let A and B be as above and suppose that the
following hold:

( i ) the unit ball Aγ of A is B(B, A)-dense in the unit ball Bλ

of B;
(ii) || b\\B = sup {|| b-a \\B: ae A,} for each be Bλ;
(iii) Bλ is S(J3, A)-complete.

Then m(A) is isomorphic to B.

Proof. By [3] 1.8. (iv), A is a left ideal in B. Define the map
Γ|->m(A) by letting Tb(a) = δ α for all beB and aeA. That T is
an algebra homomorphism of B into m(A) is easy to check. That T
is an isometry follows from (ii). That T is onto is a consequence
of [3] 1.12.

LEMMA 1. The unit ball of Stp is ^(9Jip, %p)-dense in the unit
ball of mp.

Proof. Let T be any operator in the unit ball of Wv. Let {Whγ}
be the minimal left approximate identity for %p chosen in Theorem
3. For each index 7, we know from Theorem 5 and (3) that T(hr)
is in Lp and Wh]oToWhγ = Whr°Wτ{hγ) = Wτ{hy)^r From (4), we see
that {WhioToWh'γ} converges to I o T ° J = T in ®{mpy Stp): in other
words, lim Wτ{hy)[hγ - T in St(mp, %p).

Thus, we must have lίm7 || TΓΓ(Λ )ΛΛ || ^ || Γ | | , as is easily seen.

But \ΈKr\\Wτ{hγ)*hr\\ =TΠϋr M T ΐ V T o l ί \ | | ^Tϊiϋrll ^ J Γ II Γ | | £ II Γ | | .
Thus,wehavel im Γ | |TΓ m r , i λ r | | = || Γ | | . It follows thatΊ im r | | Wnh^hr\\~ι

TΓr(,?),/ir = T in ffi(SKp, SI,). We have shown that T is the ®(Wlp, a p )-
limit of operators in the unit ball of 3tp.

LEMMA 2. Lei {Γα} δe αtιτ/ ^(S3P, %P)-Cauchy net in Ϊ8P such that
supα [| Ta 11 < co. TAew ί/̂ ere is an operator T in S3P such that limα Tα =
T in both the strong operator topology and the topology ^(3%, %p).

Proof. Let S be the subspace of Lp spanned by the set Lp*Lρ*COo.
If g is in Lp and {fey} is the net in Lρ*Coo constructed in the proof
of Theorem 3, then limr \\g*h, - g\\p = 0 (see [1] 20.15. ii). It fol-
lows that S is dense in Lp.

Let Σ ^ J i ^ i ^ i be a typical element of S where fόeLp1 hά^Lp,
and flτy e Coo (i = 1, 2, , m). Then T^ .̂,̂ . is in %p (j = 1, 2, , m)
so that, by hypothesis, the net {TaoWh *Oj} is \\ ||-Cauchy in S3,. Since
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Ta{fί*hj*gj) = TaoWhj*g.(fj) for each j = 1, 2, ••., m and each index
a, it follows that the net {Ta(fj*hj*gj)} is || I^-Cauchy for each j =
1, 2, •••, m. Thus, {Tβ(Σ?=i/i*^i*0i)} is || ||p-Cauchy and so has some
limit in Lp which we shall write as T0(£?=ifj*hj*gs). The operator
To IS —> Lp thus defined is clearly linear and, by the hypothesis
supα[[jΓα[[< oo, is also bounded. Since S is dense in Lp, To is the
restriction to S of a unique operator T in 33P. Since the net {Tα}
converges to T on the dense subspace S of Lp, and since supα 11 Ta \ \ <
oo, it follows that limα Ta = T in the strong operator topology.

Let / be any function in Z4*CΌ0. By hypothesis, the net {Ta°Wf}
is || ||-Cauchy and so has some || ||-liτnit V in 39,. For each g e Lι Π
Lp, we have

p,

V(g) = lim Tαo ft^) = l i m Γβ(flr*/) = T(g*f) - To ^ ( ^ .
a a

Since Lj Π Lv is dense in Lp., it follows that V = Γ° TF/. Thus^
l im β | | (Γ β - Γ)oW>|| = 0. Since {W>:/e L>C00} spans a dense subset
of gς and since supα || Ta || < oo, it follows that lim^ Γα = T in ^(85,, Stp).

THEOREM 7. Lei π | aftp-> SJ* δe de^wed by, for each TeMp,
letting the function πτ \ %p —> 35P 6β ^ίt βπ by πτ( W) = Γo TΓ /or αW

7Γ is α^ isometric algebra isomorphism Mp onto m(2tp)

Proof. We shall apply Theorem 6 for B = Wv and A = §!„. That
Sip has a minimal left approximate identity follows from Theorem 3.
That condition (i) of Theorem 6 is satisfied follows from Lemma 1.
That condition (iii) of Theorem 6 is satisfied follows from Lemma 2.
To invoke Theorem 6 and so prove Theorem 7, it will suffice to show
that | | T | | - sup{| |ToTF||: TΓeSl,, ||TΓ|| - 1} for each TeWlp.

Let then T be any multiplier in Mp. That || T | | ^ sup{|| To W\\:
TFeStp, || W\\ = 1} is obvious. Let ε be any positive number. Choose

feLp such that | | / | | , ^ 1 and || Γ(/) | | , > || T | | - ε / 2 . Let {Wγ} be a
minimal left approximate identity for St,. Then limr Wτ = I in
S(2Kp, %p) where I is the identity operator on Lp. By (4) we have
\imr To Wr= Tol= T in St(TtP9%). By Lemma 2 we know that
limr To Wγ = T in the strong operator topology. In particular, there
exists some index 7 such that || To Wr{f) - T(f) jj < ε/2. It follows
that

II To wr{f) ||p ^ II Γ ( / ) ||p - II T(f) - To Wr{f) II,

^ 11 -i 11 — O/^J — o/Zϊ — 11 JL 11 — ε ,

but | | T o T F r ( / ) | | p ^ | | Γ o ^ | | | | / l l , ^ l | Γ o T F r [ | , so that | | Γ o W r | | ^
|| !Γ|| - e. Since ε was arbitrary and || Wr \\ ̂  1, we have shown that
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|| T\\ = sup{|| Toψ\\: We A, \\ W\\ ̂  1}.

We shall identify Lρ and %p for several particular cases.

Case I. p — 1. Since Lι is a Banach algebra with 2-sided mini-
mal approximate identity, it follows that L[ = Lί and || Wf\\ = | | / | | i
for all feL^ Because L^C00 is dense in L19 it follows that %p is
isomorphic to Lt as a Banach algebra. Thus, in this case, Theorem
7 is the well-known fact that a bounded linear operator on Lx commutes
with all left translation operators if and only if it commutes with
all left multiplication by elements of Lt.

Case II. G is Abelian and p = 2. Let X be the character group of
G and θ the Haar measure on X such that | | / | | 2 = | |/ | | 2 for all fe L2.
In this case there is an isometric isomorphism ^ | M2 —• L^iX) which
is onto LW{X) and such that Ί\f) = f-f for all g e L2. Evidently,
L\ is just {feLzifeL^X)}. It is known that there is a net {ga} in
the set {/:/eC00(C)} such that \\ga\\oo = l for each index a and
lim ga(χ) = 1 uniformly on compact subsets of X. Consequently, the
set {Λ*/: heLl,fe Coo} is dense in the set {g e L2(X) Π L^(X): g vanishes
at co}, It follows that Sl2 is isomorphic in this case to {feLJpήi f
vanishes at co}.

Case III. G is compact and p Φ 1. In this case Lp is a convolu-
tion algebra ([2] 28.64). Thus, L\ = Lp and W may be viewed as a
non norm-increasing linear operator from Lp into %p. Since Co oc
Lpf]Lly it is not difficult to show that W is an isomorphism into %p.

Let feLp and choose a minimal approximate identity {/«} for Li
out of Coo. Then {/*/«} converges to / in Lp. Consequently, {W/ /α}
converges to TF/ in %p. All this shows that, in this case, %p is the
closure in ?dp of the set {Wf:feLp}.

Suppose now that G is also infinite. Then Lp has no minimal
1-sided identity (see [2] 34.40. b); since 2tp does have one, it follows
that W is not a homeomorphism. Since W is a continuous isomor-
phism, the open mapping theorem implies that W \ Lp —•* %P is not
onto %p.

Case IV. G is compact and p = 2. Let I7 be the dual object of
G as in [2]. For the spaces <£Q(Σ), ^^(Σ), and (^(l7) and the norms
|| IU and || ||2 on these spaces, see [2] 28.34. It is an easy consequence
of [2] D. 54 that

(5)
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for all Ee ^(Σ). For the definition of the Fourier-Stieltjes transform
/ o f a function feL2, see [2] 28.34. By [2] 28.43, the mapping

^ L2-+(£2(Σ) is a surjective linear isometry and, by [2] 28.40, f*g = /o£
for all/, g e L2. Consequently, by (5),

( 6 ) 11^/11 = II/IU for all feL2 .

Since Coo c L2, it follows from [2] 28.39, 28.27, and 28,40 that the set
{f:feL2} is a dense subspace of @0(̂ ) Since Sip is just the closure
in S3p of the set {Wf:feL2}, it follows from (6) that %v is isomorphic
to (£0(Σ) as a Banach algebra.
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SEQUENCES OF QUASI-SUBORDINATE FUNCTIONS

JAMES MILLER

In this paper a theorem is proved which connects bound-
ed analytic functions in the unit disk and sequences of quasi-
subordinate functions. As an application a necessary and
sufficient condition for certain sequences of quasi-subordinate
functions to converge is found.

Let / and F be analytic functions in | z \ < R. If there exist
two functions φ and ω which are analytic in \z\ < R and satisfy
ω(0) = 0, I φ(z) I ̂  1 , I ω(z) \ < R , a n d f ( z ) = φ(z)F(w(z)) f o r \ z \ < R ,
then we say that / is quasi-subordinate to F in \z\ < R and write
f<qF. Without loss of generality we may assume that R = 1.
This class was introduced by Robertson [2, 3].

We note that there are two special cases of quasi-subordination
which are of interest: If φ is the constant function one, then / is
subordinate to F, and on the other hand, if co is the identity func-
tion, then / is majorized by F.

Let B denote the class of functions θ which are analytic in
I z I < 1 and satisfy | θ(z) | ^ 1 for | z \ < 1. Then the functions φ
and o) which are defined above are elements of B. In this paper we
prove a theorem which connects functions in B and sequences of
quasi-subordinate functions. As an application we find necessary and
sufficient conditions for certain sequences of quasi-subordinate func-
tions to converge. This is a generalization of Pommerenke's results
[1] on sequences of subordinate functions.

Let {fn}, n = 1, 2, , be a sequence of functions which are
analytic in [ z \ < 1 such that fn <qfn+1 for each n or fn+1 <qfn for
each n. When considering the convergence of such sequences we
need to require that either the sequence {Λ(0)} converges or the func-
tions agree at a single point. In this paper we shall assume that
the functions agree at a single point. Further we may assume that
the point is z = 0 for if the functions fn agree at the point a Φ 0
then we could consider the functions gjz) = fn((z—ά)/(l — az)). We
will use fn(0) = 0 for all n, otherwise the function φ would be identi-
cally one. The proof for the case where {fn(0)} is convergent is
similar.

THEOREM 1. Let {fn} be a sequence of functions which are ana-
lytic in \z\<l and satisfy fn(0) = 0, an - fl{Q) Φ0, and fn(z) <qfn+ι,
and let φn+ί, con+1 e B and con+1(0) = 0 be such that

437
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fn(z) = φn+ι(z)fn+ί(ωn+ι(z))

for [ z ( < 1. If Σn=2 arg φn(0) converges and l im^^α^ = a, | a \ < oo,
then Π^=2 ί̂ (O) converges.

Proof. We observe that if m<n, then we have fm-<qfn. Thus
for m < n there are functions 0mw, <ymw e J5 where comn(0) — 0 such
that

/•(«) = ΦU*)/*(<»»*(*))

for | 2 | < 1. Let ^w »+i(«) = ^*+i(«) We now observe that

Λ(0) = ^ . (

or

α, there exists anSince 0 < | am \ ^ | an \ for m < n and
integer K such that if w > m > if, then

( 2 ) i ί = - - l < ε .

From (1) and (2) we see that

an

We now observe that

Thus we have

••(0)= Π Φu(0).
k

Π < 1

for ^ > m > if. Since Σ~= 2 arg ^(0) converges this says that ΠϊU ^̂ (0)
converges. Further we have that (ύ'n(0) —* 1 and 0)^(0) = 1.

In applying Theorem 1 to sequences of quasi-subordinate functions
we will also need two lemmas for functions in B. The proofs of the
lemmas are essentially in [1].

LEMMA 1. Let φeB, φ(0) = 0, and satisfy \ φ(0) \ ̂  σ > 0. Then
the mapping w — φ(z) maps the disk
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σ
• • - • l + i / l - σ 2

univalently onto a region that contains \ w | < p2.

LEMMA 2. For ε > 0 and 0 < r < 1, there exists an rj > 0 (τ](ε, r))
if φe B satisfies φ(z) = Σ~=o /3%£w αmZ | β fc — 1

- zk
ε 9 for I 2 , < r .

THEOREM 2. Lei {/n} δe α sequence of analytic functions in
\z\<l such that /n(0) - 0, A •<,/•+» and α n = / (0) ^ 0, and let
0Λ+1, α>%+2 e B and ωn+1(0) = 0 be such that fn(z) = φn+1(z)fn+1(ωn+ι(z)) for
I z I < 1 and Σ"=2 arg ^^(0) converges, ΓΛβ^ ί/̂ e sequence {fn} converges
uniformly in \ z \ < r for every 0 ^ r < 1 if and only if

lim an = a , \a

PROOF. If {fn} converges uniformly in | z \ ̂  r for every 0 < r < 1
then αΛ =/*(0) converges. Further since | an \ ̂  | αrΛ+11, /Λ(0) = 0,
and an Φ 0 we see that l i m , ^ αM = α: Φ 0 and | α | < ©o.

Let o)n+1, φn+1 e By and con+ι(0) = 0 be as defined in Theorem 2.
Further for m < n, let 0m%, ωm n e B with ωmw(0) = 0 be such that

( 3 )

Suppose that an
a \ < 00. Then by Theorem 1 the product

IK=2 f̂c(O) converges. We will first show that {/„} is a normal family
in ] z ] < 1.

Let r, 0 < r < 1, be fixed and σ determined by

V r = σ

Since σ < 1 and

1 + Vl-σ2

a Φ 0, there exists an integer Nλ such that

> σ , for n> m> Nx .

Further, since | φmn(z) | ^ 1, we have | φmn(0) I"1 ^ 1. For n> m> Nt

we have ω'mn(0) = am/(anφmn(0)) or

( 4 ) ω'mn(0) I - >σ .

Thus by Lemma 1 the mapping ζ = ωmn(z) for n < m < Nx maps

I 3 \<V~r univalently onto a domain that contains | ζ | < r. Let ψmn

be the inverse of ζ = comn(z) in | ζ | < r, then
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I ψmn(ζ) \^VT.

From (3) we may write

^ for I ζ

For I ζ I <^ r we have

max~ m i n ^ l ^ ^ l i . i ί v — ' v / !

From Lemma 2 with & = 0, given ε > 0, there exists an η such that
if i β0 - 11< Ύ] then | φ(z) - 11 < ε for \z\<r. Since Π*=2 ̂ *(0)
converges by Theorem 1 and φmn(0) = Πfc=m+i ̂ ^(0), there exists an
integer N2 such that if n > m > N2 then | φmn(0) - 11 < rj. Let N =
max(iVΊ, JVi). Thus, by Lemma 2 we have that | φmn{z) — 1 | < ε for

2| ^ r and n > m > N or

min I φmn(z) | ^ 1 — ε .

Hence, for n > N and | ζ | ^ r we have

max1 — ε

Thus there exists M(r) such that

(5) \fn(z)\

for all n, that is, {/n} is locally uniformly bounded. Therefore {fn}
is normal.

Let {fnj be a subsequence of {/w} which is uniformly convergent
in I z I S n> for every r0 < 1. Let / be the limit function of {fnj\.
Let ε > 0 and r < 1. Then choose v0 such that

for v ^ v0 and | z | ^ r. From inequality (5) we have that the se-
quence {fn} is bounded in | z | ^ r and thus equicontinuous in | z \ ̂  r.
Therefore there exists a <? > 0 such that

!/•&)-/.(*)!< e/3

for I ^ - ^21 < δ, I «! I <; r + δ, | ̂  | ^ r + δ, and for all ̂ .

Using (4), the convergence of Σ"=2 arg φn(0), and applying Lemma 2
we have that there exists an integer M1 such that if n JΞ> m ̂  Mίy then

I ωmH(ί5) - z | < δ , for \z \ ̂  r
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where M1 is chosen so that | ω'mn(Q) — 11 < η for a suitable η. Again
making use of Lemma 2 we have that there exists an integer Mz

such that if n > m > M2 then

I φmM - 1 1 < ΦM (r), for \z\<r.

Let M = max {Mu M2, nVQ}. If M ^ k < nv and | z | < r then

\fk(z) - f(z) I ̂  \fk(z) - f%y(z) I + |Λv(s) - /(«)
< ε/3 + |Λv(«) - ^ y(«)

< ε/3 + ε/3 + M(r) ε/SM(r) = ε

for \z\ ^ r and k > M. This completes the proof of Theorem 2.

THEOREM 3. Let {fn} be a sequence of functions analytic in
I z I < 1 such that fn(0) = 0, αw = /«(0) =£ 0, α^d / Λ + 1 < f f/Λ, α^ώ ϊeί
φn+1, ωn+1 e B and o)n+1(0) = 0 δ

/or I z I < 1 αraί Σ ^ = 2 arg ^(0) converges. Then the sequence {fn} con-
verges uniformly in | £ | = r / o r every r <1 if the sequence {an} con-
verges. The limit function is constant if and only if

limα% = 0 .

The proof of this theorem is similar to that of Theorem 2 and
Pommerenke's Theorem 2 [1].
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THE HASSE-WITT-MATRIX OF SPECIAL

PROJECTIVE VARIETIES

LEONHARD MILLER

The Hasse-Witt-matrix of a projective hypersurface de-
fined over a perfect field k of characteristic p is studied using
an explicit description of the Cartier-operator. We get the
following applications. If L is a linear variety of dimension
n + 1 and X a generic hypersurface of degree d, which divides
p — 1, then the Frobenius-operator &~ on Hn(X-L; έ?L γ) is
invertible.

As another application we prove the invertibility of the Hasse-
Witt-matrix for the generic curve of genus two. We don't study
the Frobenius J?~ directly, but the Cartier-operator [1]. It is well-
known, that for curves Frobenius and Cartier-operator are dual to
each other under the duality of the Riemann-Roch theorem. A similar
fact is true for higher dimension via Serre duality. We have there-
fore to extend to the whole "De Rham" ring the description of the
Cartier-operator given in [4] for 1-forms. We give this extention in
§1. Diagonal hypersurf aces are studied in §2 and the invertibility of
the Hasse-Witt-matrix is proved, if the degree divides p — 1. The
same theorem for the generic hypersurface follows then from the
semicontinuity of the matrix rank. The § 3 is devoted to hyperelliptic
curves and is intended as a preparation for a detailed study of curves
of genus two.

1* The Cartier-operator of a projective hypersurface* We ex-
tend the explicit construction of the Cartier-operator given in [4] to the
whole "De Rham" ring, but restrict ourself to projective hyper surf aces.

As an application we show: Let V be a projective hypersurface
of dimension n — 1, defined by a diagonal equation F{X) = Σ?=o UiXL
di e k a perfect field of char k = p > 0, a{ Φ 0. Let X be a linear
variety of dimension ί + 1. If r divides p — 1, then

is invertible, Jf being the induced Frobenius endomorphism. We have
to rely on a technical proposition, which is a collection of some lemmas
in [4]. We give first the proposition.

PROPOSITION 1. Let

( Γ = ( Γ l f ••-, Tn))

443
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be k p~ι—linear and

(0

if μ = p.v
) 1 Λ else .

Then the following holds:
(1) ψ(Tμi Tμh) = Tμι - Tμih, for some hek[T]
(2) Let Dμ= Tμ (d/dTμ) and Dμg = 0 for a given 1 ^ μ ^ n, then

ψ(Dμh g) = 0
(3) Let Dμg = 0, then ψ{hp~ιDμh-g) = Dμhψ(g).

Proof.
(1) By the p^-linearity of ψ we may assume H o be a monomial.
The statement follows then directly from the definition of ψ.
(2) f is p^-linear, so we may assume h to be a monomial

h= 2T* . - . 2 > , 0 ^ n ^ ^ - 1

(say μ = n), then DΛΛ, = rn'h. If rΛ = 0 then (2) is trivially true.
So rnφ 0. Again because of ^"'-linearity we may also assume g to
be monomial.

But Dng = 0, so

So the exponent of Tn in Dnh>g is rΛ and 0 < rn ^ p — 1, therefore
not divisible by p. The definition of ψ gives

ψ(Dnh g) = 0 .

(3) We may write

*^ — JΓ o ~Γ / i * •* j« ~Γ • • • "T" J r * •*• μ ) v = Ύ = ί^ ί

and

-D Λ̂ = 0 .

We proceed by induction on T. r = 0 clear. Let r ^ 1, then Λ =
/ + T Λ with Dμf = 0 degΓ;ιΛ < r. Now

TΓιh*-γDμ{Tμh) =
JL μ

By ^"'-linearity of ψ- and induction assumption for Λ we get

= Tμhf(g) +

= f(g)(Tμh + 2V

= Dμ(Tμh).ψ(g) .
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On the other hand

Tfr'h*-1 = (Λ - fY~ι = h*-1 + ̂ f ,

dh

where P is a polynomial in / and h. We have

Dμ(Tμh) = Dμ(h - /) = AΛ .

So

Multiply by 0 and apply ψ, then one gets

Dμh ψ(g) = Dμ(Tμh)ψ(g) = ψ(h*-ιDμK-g) + f(DμP g) .

But by (2)

ψ(DμP.g) = 0 .

Let ίXXo Xn) define a absolutely irreducible hypersurface
in ^ Λ f f c char k = p > 0. We denote by /(.Xi Xn) an afϊinization of
F. Let JP^ = (d/dXμ)F, similar fμ 1 ^ μ ^ n. We assume fn not to
be the zero function on V. Let K = K(V) be the function field of
V. We assume that K = ϋΓp(α;1 α?,- xn) for any index j . The »<
are the coordinate functions and xs means omit xd. As a consequence
of these assumptions, we have that for a given index j any function
z e K can be represented modulo F by a rational function G(Xι Xn),
which is Xj-constant, i.e. such that dG/dXj = 0. Write

F' • — (X X X )~'F

DEFINITION 1. Let

Let ω = Σ i r v ^•v . v ' ^ i Λ ••• Λ dxiγ be r-form on F . P u t

= oa?^ Λ Λ ftXir

Define

The definition is justified by the following theorem.

THEOREM 1. (1) C is p~ι-lineaτ
(2) If ω = dφ, then C(ω) = 0
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( 3 ) Ifω^z?-1--- zf~ldzh Λ Λ dzir then C(ω) = dzh Λ Λ dzir.
In other words, if one restricts C to Zγlk, the closed forms, then

is the Cartίer-operator of V [1]

Proof of the theorem.

(1) The ^- l inear i ty follows from the ^- l inear i ty of ψ.

(2) Let φ = Σί 1, ..,v_1^i1,. ,v_ 1^ 1 Λ ••• Λ dxir^ be a (r - l)-form,
then

dφ = Σ Σ £-(<Piv....ir-ι)<tes Λ ώ?^ Λ Λ ώ? < r - 1 .

To simplify the notation we put for the moment

and

To compute C(dφ) we have to compute

for every system (j, i, , ir_,).

Now remembering the definition of α/rF we have to show

ψ(F^DnFXh Xir_J)sφ) = 0

in order to get C(dφ) = 0.

We have to use the above proposition. We apply first (3) and
then (2) and get:

. -X^DSP) = DnFψ(Xh X^-fitf) - 0 .

Remark, t h a t we assume j Φ (ίίy •••, ίr-i) otherwise

dxd A dxh Λ Λ dXir_t = 0 .

That shows C(dφ) = 0

(3) Let ω = f̂-1 . z?~ιdzh Λ Λ d«<r.

We have
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dzh A Λ dzir = Σ DhZh
χh χlr

D, = xt±.,

To Compute C((ϋ), we have to work out

U = ψiF'-'D.F-Zf-Difrs -Zζ-ιDirZύ modulo F .

Z3 mod F = Zj .

We apply several times (3) of the propositition and get

U s DnFDhZir DirZiψ mod (F) .

Therefore

C(ω) = Σ ^A-A&

All forms of highest degree n — 1 are closed. We use the fact,
that H°{V, Ω71"1) has a basis of the following form

ft/^ — X^ i Xy^Ct/Q a

where

a) — ̂ i A ••• A &xn-γ

Σ Mi = ̂ > ̂  — deg F and 1 ̂  ^ .

Recall ίCi = -3Γί/-3Γo a r ^ coordinate functions on F and of the affinization
of F,fn = df/dxn.

We get the important corollary to the theorem.

COROLLARY 1. Let Au>v be the matrix of the Cartier-operator on
H(V, β™"1) with respect to the above basis cou. Then

AU)V = coefficient of Xv in ir{Fv'1 Xu)

X* = Xo

u° x;», Σ ̂  = Σ ^ = r

for % — 1 n
1 ^ v
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Proof. By definition

Now recall

If AUtV is the
Then

coefficient

•) - ψ{
n

i=0

of X" in ψ

Xou° -
Xo"r

1 ^ ί

• x;; )
i

mod

= 1

i — 1 •••>ι

Notice

•̂ -1 -^n

i=0 ΐ=0

REMARK. We have now on explicit description for the Cartier-
operator on H°(V, Ωψfi). We can use Serre duality H°(V, Ωϊγkψ =
Hn~\V, έ?π). Under this duality C is the Frobenius ^ on Hn~\V, έ?r).
We have therefore also an explicit description for ά?~.

2* The CartierΌperator of a diagonal hypersurface* Let
F(X) = Σ?=o ^i^ί* define a "generic" hypersurface. To compute the
Cartier-operator, by the preceding discussion we have to analyse

(Σ
\i=0

Let us adapt the following notation:

ι = PPι = Po Pi

THEOREM 2.

char & = p > 0, JP(X) = Σ ^iχϊ » Π ^ ^ 0 G
i0

is defined by F. Suppose r divides p — 1. T%e% ίfee Cartier-
operator
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is invertίble.

Proof.

ml

Using p ^linearity of ψ we get

-'X*) = Σ =^ά

We put α = α1/?), and rm + u = pv. Notice if u > 0 and \u\ = r, then
also i; > 0 and I v I = r. If we write

v>0

then we have

— — - α m if rm = (p — l)v + v — u
ml

\u\ = \v\ = r u > 0 v

0

Let us now assume:

else .

1 =

If r divides v — u put v — u = r E(u, v) then

( — αm if r\v — u and m = sv +
m!

^0 else .

We fix now a total ordering of u, v. Let us order the ^-tuples
(Uί wn) resp fa i;Λ) lexicographically and put

u0 = r — Σ »̂ resp. v0 — r — Σ »̂
i=i ΐ=i

v < u means now, that either v1<uί or vt = ^ for i = 1 i — 1 but
Vj < Uj. If any case, if v < u, then ^ < % for some i . We claim
if v < u, the AMjV — 0.

Case 1. r does not divide u — v, then Attjί; = 0.

Case 2. r divides u — v. Now if v < t6 then for some j Uj — v3- > 0
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a n d r divides Vn — Vj. B u t r ^ uό a n d Vj^l, so r — 1 ^ uβ — vj9

therefore r cannot divide Uj — vs. This contradiction shows, if v < u,
then AUfV = 0. Aw>, is therefore a triangle matrix.

What is the diagonal?

Aζ,u = — ί -
ml

with m = s u. Therefore

(su)

COROLLARY 2. The assumptions are the same as in the theorem.
Then

^:Hn~ι{V, έ?v)-» Hn~\V, έ?γ) (^~ is the Frobenius morphism)

is invertible.

Proof. Clear by Serre duality and the fact that C = ^ Γ

The Cartier-operator of W H. The differential operator C as
given in Definition 1 on Ωι is by ^-linearity completely determined
on Ωι by its value on ω = h dx, where x runs through a set of coordi-
nate functions.

We have C(ω) = x"1ψ(xh)dx9 that notation is only intrinsic, if
dω = 0, because ψ depends on the coordinate system. If we choose a
different coordinate system, then we get in general a different opera-
tor; but for ω with dω = 0, we get the same, namely the Cartier-
operator.

That fact can be exploited in the following way. Suppose

W = {x, = x2 = xt = 0} Π H.

We write now CH resp. Cw for the the operators. The above defini-
tion shows φl = 1 KdXi is stable under CH. But by the property of ψ,

for some H, we have for

ω = XihdXj iφ j i, j arbitrary

CH(ω) = xjί

Let 21 = {x1 a?J, then 2O2 /̂fe 0 0 =i ^ ^ ^ is stable under CH. By
the exact sequence

CH induces an operator Cw on Ωι

wιh. Cw has again the properties
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( 1 ) Cw is ^ - l i n e a r
( 2 ) Cw(dh) = 0
(3 ) Cw{h»-ldh) = dh .

If we restrict Cw to the closed forms on W, then Cw is the Cartier-
operator.

Let now L be an arbitrary linear variety. After a suitable coordi-
nate change we may assume L is the intersection of some coordinate
hyperplanes. W = L H has then the above shape.

Let us assume that the hypersurface H has a diagonal defining
equation of degree d diving p — 1, p = char k. Then the above Theo-
rem 1 shows that Cw is semisimple on Zψlk. In the same way as
before we can extend Cw to any Ωr

wjk, in particular to ΩwJk, where
m = dim W. As result of this discussion we get:

THEOREM 3. // L is a linear variety of dimension m + 1, then
there exists a hypersurface H of degree d, which divides p — 1, such
that

is invertible.

3* The Cartier-operator of plane curves* For curves the explicit
description of the Cartier-operator is of special interest if one wants
to study, how the Cartier-operator varies with the moduli of the curve.
Unfortunately one is restricted to plane curves, because the above ex-
plicit form of the Cartier-operator is available only for hypersurfaces.

If one specializes the above results to plane curves, one has to
assume, that the curve is singularity free.

The space W = {homogenous forms of degree d — 3} is for non-
singular curves V of degree d isomorphic to H°(V, Ωι

v,k) under

W~H\V,Ω\lk)

P(X)-+P(x)ω0

where the coordinate functions are given by

x = XJX0 , y = X2/X0 mod F ,

F being the defining equation for V and f(x, y) the affinization, fy

denotes dfjdy. With that notation ω0 = dx/fy.
But it is important to know, that one can give a similar description

also for singular curves. Then W is the space of P(X), which define
the "adjoint" curves to V. These are those curves, which cut out
at least the "double point divisor".
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To give an explicit basis depends on nature of the singularities.

Hyper elliptic curves: Let p = char k > 2.
For a detailed study of the Hasse-Witt-matrix of hyperelliptic

curves one needs the explicit Cartier-operator with respect to various
"normal forms".

Let the hyperelliptic V be given by y2 = f(x), degf(x) = 2g + 1
and such that f(x) has no multiple roots. V has a singularity at
"infinity". One could apply the above method and work out the adjoint
curves in order to get a basis for H°(V, Ωγlh). But we have already
a basis, namely if o) = dx/y then {xιo)\i = 0 g — 1} form a basis.

We specialize the results of § 2 and get from Corollary 1 as matrix
for the Cartier-operator with respect to the above basis (let us put
p - 1/2 = m):

Au>v = coefficient of xv+1 in ψ(f(x)mxu+1) 0 ^ ^ ^ g - 1 .

Legendre form: We assume now the defining equation in Legendre
form.

f(x) = x(x - 1) Π (a? - λ4)
 r = 2 ί / " X

ί = 1 λ< ^ λy ^ 0, 1 .

Notation: Let

I /O I = Pi + + Pr
\p = λ f i . . . λ;».

The permutation group of r elements S r operates on the monomials

λ' — λ^', π e S r .

Let G^ be the fix group of Xm~p and (?(ί)) = Sr/Gp. Let

Apparently

i ϊ ( ^ - i ϊ ( ^ , iff p = TΓ^) .

We may therefore assume

0 <̂  px ^ ft ^ ^ r <J m .

For given

O ^ J J ^ f l r - 1 let ft = (̂ 1 - vp + %.
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Put

and

{ρ) —

ΛP _ v π(p) ττ(p)(\\ 0/
ΛU)V - Σi a,UfVn (X) 0 ^ u ^

the summation condition being:

0 ^ p ι ^ ^ ρ r ^ m , p0 — \p\ — vp + n , 0 ^ p0 ^ m

vp — ^ + m ^ [ |θ [^^p — ^ .

We state as a proposition

PROPOSITION 2. Lei δe Aw>v, 0 ^ ^ ίg 0 — 1, as defined above, and

a) =

is ί/̂ β Cartier-operator.

Applications: We want to investigate, when the Cartier-operator
is invertible. It seems that an answer to that question, without any
restrictions is not available. It is therefore worthwhile to have various
methods even in special cases.1

We restrict ourself to genus 2, although the method could be
applied to higher genus, but the calculations would be very easy.
Let p > 2 and g = 2

i.e. y2 = x(x — l)(x — \)(x — \2){x - λ3) , λ< Φ X, Φ 0, 1 i Φ j .

The notation is the same as above.

H{p)(X) is homogeneous in the λ's of degree 3m — \p\, m = (p— l)/2.
We have

Aζ,v — ^J U>u,vJ-L VV 0 < ^ < 1

pQ ~ \p\ — vp + u, vp — u ^ \p\ ^ vp — u + m .

We want to know of AζfV, what the forms of lowest homogeneous degree
in the λ's are. We have to give \p\ the maximal possible value.

We use the shorthands

1 Added in proof: We settled this question in the meantime, see [6].
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and D(u, v) = degree of the lowest homogeneous term in AζtV. In the
list below is p0 = max \p\ — vp + u.

(0,0)

(0,1)
(1,0)

(1,1)

max | p |

ra
3ra

ra — 1
3ra

Po

ra
ra — 1

ra
ra

Z>( ,̂

P ~
0

0

V)

1

We get therefore:

AjfCAffl = terms of degree p — 1 + higher terms

AfflAff0 = terms of degree p + higher terms .

The lowest degree term L in det {AUyV)
p is given by

ft + ft + ft = w

Notice, if p Φ p, then ίjw and H{p) have no monomial in common.
Therefore L is not the zero polynomial. We are able to specialize
the variables (λx, \, λ3) in the algebraic closure of k, such that
det (Au>v) Φ 0. In other words, there exist curves of genus two with
invertible Cartier-operator.

We do not know, what the smallest finite field is, over which
such a curve exists.

REMARK. For large p we could push through a similar discus-
sion for higher genus. We omit that, because there is a more elegant
method for large p by Lubin (unpublished). Let y2 = x2g+1+ax9+1 + x*
The claim is, that for large p (depending on g) and variable a the
Hasse-Witt-matrix of that curve is a permutation matrix.
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A THEOREM ON BOUNDED ANALYTIC FUNCTIONS

M I C H A E L C. MOONEY

The purpose of this paper is to prove the following
THEOREM: Let ΦuΦt, be an infinite sequence of func-

tions in Lψ, 2π\) such that L(/) = lim I f(eiθ)φn(θ)dθ exists
n-+co JO

for every feH°°. Then there is a φ e L\[0, 2π]) such that

*f{eiθ)φ(θ)dθ for a l l / e i ί 0 0 .

Throughout this paper we will use the following notation and
conventions: D will denote the unit disc and T its boundary. In
order t o save time we will avoid making distinctions between T and
[0, 2π] if no confusion results. Similarly, it will be convenient to
treat elements of ff°°[= iJ°°(.D), the bounded analytic functions on D]
as though they were the same as those functions on T with which
they a r e naturally identified.

If weD, the symbol gw will stand for the function z—+g(wz).
C(T) will stand for the usual space of continuous functions on T. A
will denote the subspace of C(T) of functions analytically extendable
to D. λ will denote ordinary Lebesgue measure divided by 2π and
"WLOG" means "without loss of generality".

In their paper [4] Piranian, Shields, and Wells observed that the
theorem stated above would imply their result, namely that if α0, alf

was a sequence of complex constants such that l i m ^ Σ~=o 0»6n?**
exists for all /eH°° [with Taylor coefficients δ0, bl9 •], then the α j s
are t h e the nonnegative Fourier coefficients of an Z/([0, 2π]) function.
They also mentioned that our result here was a question raised in [1].

Kahane [3], using a somewhat different method than that in [4]
showed that under the hypothesis of our main theorem, there was a φ e
&([(), 2τr]) such that the conclusion held for all f e A. He went further
to show that the subset of H°° for which the conclusion held was
large i n some sense. Our proof here makes use of Kahane's result.

2* Remarks and lemmas* First, given the hypothesis of the
main theorem we may assume WLOG that the φn's are uniformly
bounded in U norm. To see why this is so we observe that for each

n, g —> Jj%(g) = gφn is a bounded linear functional on A. By the

uniform boundedness principle, the norms of the Ln's as elements of
A* are uniformly bounded, say by M. By the Hahn-Banach Theorem,
each Ln may be extended to an element of C(T)*with norm less than

457
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M. This extended functional corresponds in the usual way to a Borel
measure μn on T having variation norm less than ifef For each n,

Pn — \Φn is also a finite Borel measure on T. Since this measure is
orthogonal to A, it must be absolutely continuous [by the classical
F. and M. Riesz Theorem] and, in turn, so must μn. Hence we may
replace φn's with dμn'a if necessary. From here on we assume ||0w||i ^
1, for all n.

Suppose now for purposes of contradiction that there is an f e

H°° such that L(f) Φ \ fφ where φ is the function referred to in
JT

Kahane's result. We may assume WLOG that φ = 0 [simply subtract
φ from 0Λ's beforehand and that I/U = 1. We also assert WLOG:

LEMMA 1. There exists a bounded, increasing function β on T
such that

limί \φn\ = \ dβ
n-*oo JE JE

whenever E is a finite union of closed subintervals of T.

Proof. Since all our previous assertions remain valid if the φn's
are replaced by an infinite subsequence, we will do this if necessary

so that the functions U^J's converge pointwise on Γ to a function
which we call β. This construction and the conclusion of the lemma
follow from the Helly's Theorem. [See Zygmund [5] IV-4.6-(p. 137).]

We consider the fact that:

lim lim ( frφn = 0 Φ lim lim ί frφn = L(f)
r - n — w-»oo JT %->°o r-»l— JT

despite the fact that / r 's are uniformly bounded and converge to /
in measure. It is reasonable to subspect that in some useful sense

of the word that the support of \fφn tends to become concentrated

on smaller and smaller sets as n-+ °°.

To be more specific, our plan at this point is to produce a sequence

of pairwise disjoint "nice" closed sets El9 E2, such that \ fφn

tends approximately to L(f) while \ \fφn\ remains uniformly < ε <
JT-En

I £(/)!• [We will find that it is expedient to replace / with f — fr

for some r in order to do this.]
Ultimately we will construct g e H°° so that g is approximately

(-l)n on En. The function gf [actually we will look at g x (/ - fr)\
will give us a counterexample to the condition that L(h) exists for
all h e H°°, and hence we will have a contradiction to the assumption
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L(f) Φ 0.
Let ε0 = (l/10)|L(/)|. In order to prove Lemma 2, it will be desir-

able to keep the singular part of β small, say less than εo/2. To be
sure of this we can choose a closed subset E of the support of the
singular part of β such that outside of E, the singular part of β
has variation norm less than εo/2.

Let g denote a Rudin-Carleson type function such that ge A, g is
zero on E, and g is close to 1 outside some neighborhood of E. Such
functions were used in both [3] and [4], and a proof of their existence
is available in Hoffman [2] p. 80, 81. [See also [2], Notes on p. 95 ]
If the original φn's are replaced by gφn's, we may proceed as before
with our new set of φn'&, φ, β, etc. The new dβ = \g\ times the old
dβ, and hence the singular part of the new β will have variation
norm less than εo/2. This process gives us a new value for L{f),
however, and we must be sure that the new value is close enough
to the old that our assertion is still valid when the new value of L(f)
is used in the expression for ε0. To do this we observe that the
functions fφn also satisfy the hypothesis of our Theorem [in place of
the φn's] and that by Kahane's Theorem, there isa ^G ^([0, 2π]) such
that

lim 1 hfφn — \ hψ for all he A .
n->o° JT JT

In particular this is true when h = g. Since ψ is absolutely con-
tinuous and since we can make g uniformly as close to 1 as we like
outside neighborhoods of E taken as small as we like, the new L(f) —

\ g^γ can be taken as close to the old L(f) = \ ψ as we like. Hence
JT JT

WLOG we may assume that the singular part of β has variation norm
less than εo/2. Let us now choose δ > 0 such that

\(E) < δ => \ dβa < εo/2 - ( dβ
JE JT

where βa and β8 are the absolutely continuous and singular parts of
β respectively. We note that if J is a finite union of closed intervals,
and λ(J) < δ, then for n sufficiently large I \φn\ < εo/2.

Choose r e (0,1) such that X{F) < δ where

F = {θ I θ e [0, 2π], \f{eiθ) \ - fr(eiθ) \ S ε0} .

Let G be an open subset of T such that F a G and λ(G) < 3.
Since

L(fr) - 0, L(f) = L(f - fr) = lim ( (/ - fr)φn + lim \ (/ - fr)φn .
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[We may choose subsequences of the original φn's if necessary in order

to guarantee the limits exist.] Now for each n, I | (/ — fr)φn | ^ ε0.
I C JT-G

H e n c e | \{f - fr)φn - L(f) < ε0 for all sufficiently large n.

LEMMA 2. There exists a sequence of sets El9 E2, a sequence
of positive numbers δl9 δ2, and an increasing sequence of positive
integers j\, j2, such that:

(a) Each En is a finite union of closed intervals.

(b) Let Ej denote the closure of the δj neighborhood of Eά. Then
E]dG.

(c) jΦk^E'jΠEί^ 0. [Note that this =>x(Ej)—0, and

o.]
( \Φ, k\<e0/2 for k = 1, 2, .-•.

G-Ek

(d) (
J

(e) \ (/ - fr)Φin -* ô where \ xQ - L(f) \ < 2ε0.
jEn

Proof. Construction using mathematical induction and the fol-
lowing scheme: After the first k, E/s, δ/s and jn'& are constructed, we
pick jk+1, Ek+1, and δk+ί in the order.

Using the fact that lim ί u ,\Φn\ < (l/2)e0 [since λ(Uί=i K) <

λ(G) < δ] and the fact that I (/ — fr)φn eventually comes within ε0

JG r

of !/(/), we have that for jk+1 sufficiently large: I fc f \φjk+1\ < (l/2)e0

and j ^ u f c E,(f-fr)Φsk+1, is within 2ε0 of L(f).

We now choose Ek+1 inside the open set G — (J£=i Ef* Using the

absolute continuity of φjfc+1 we can choose Ek+1 large enough that (d)

holds, and that 1 (/ — fr)φjk+1 is within 2ε0 of L{f).
jEk + l

δk+1 will now be chosen so that (b) and (c) satisfied. Obviously
our construction will satisfy (a), (b), (c), (d). We may choosen an
appropriate subsequence if necessary in order that (e) be satisfied as
well.

3* Construction of the counterexample function*

LEMMA 3. Let E be a closed subset of T, ε > 0. Then there is a
function, s, analytic on D such that:

(a) 8 has positive real part and [ s ^ < 1
(b) θeE=>\s(eiθ) - 1\ < ε
(c) θ g E => \s{eiθ) I < 2X{E)/ε dist (θ, E)
(d) \s(0)\<X(E)/ε.
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Proof. Let U = (l/ε)πE on T [πE denotes characteristic function
for E]. Let u be the harmonic function on D corresponding to U on
the boundary [u is the integral of U with respect to Poisson's kernel].
Let v be the conjugate harmonic function for u such that v(0) = 0.
Let g = u + iv. [g is analytic on D with positive real part.]

Note that for θ £ E, \g{eiθ)\ = \v(eiθ)\ where

dφ = M *™V-Φ) dφ .
2πs)l cos (θ φ)V(e) P φ) dφ M

1 7 2ττ J - 1 - cos (θ - φ) 2πs)El - cos (θ - φ)

The maximum modulus of the function inside the integral occurs when
\θ — φ\ = dist (0, JE). In order not to be troubled by awkward trigono-
metric expressions in the material to follow, we observe by some ele-
mentary calculations that |sin x\/(l — cos x) <2J\x\ for \x\ < π. Hence
we may assert that \v(eiθ)\ < 2λ(£r)/ε dist (θ, E). Now let

8 - g/(l + g) = l - 1/(1 + g) .

(a) Since g is of positive real part, the range of 1/(1 + g) is
contained in the disc {z\ \z — 1/21 <l/2}. So is the range of s.

(b) For θ e E, Re (g(eiθ)) = 1/ε and hence Re (1 + <?(^)) = 1 + 1/e.
This makes 11 + flr(eί<?) | ^ 1 + 1/ε and in turn 11/(1 + g(eiθ)) \ ̂  ε/(l + e)< ε
whence \s{eiθ) - 1| = 11/(1 + g{eiθ))\ < ε.

(c) For θ£E, \s(eiθ)\ = \g(eiθ)\/\l + g(eiθ)\ where

I g(eiθ) I < 2X(E)/ε. dist (0, JS?) and 11 + ^(eίθ) | ^ 1

(d) s(0) = g(0)/(l + βr(O)), where #(0) = λ(#)/s and the proof is
complete.

Construction. Given ε ^ O , ε 2>0; a sequence of functions slΛ s2,
is to be constructed as follows:

Suppose sx, s2, , sk have been chosen and that Sk = Σy=i s i is
such that ISfclco = Λί& < oo, §A;+1 will be of the form ck+1s where ck+ί is
a positive real number and s is related to Enje+1 in the same manner
that s is related to E in Lemma 3.

We want ck+1 sufficiently large and ε [in Lemma 3] sufficiently small
that:

(a) θ e Enk+l => ε2 log | Sk+ι(eiθ) \ = (-l)fe+1(^/2)(mod 2π)-π/2 within
an error of magnitude not more than εlβ Note that we can pick ε
dependent only on εί and ε2 [independent of k + 1], and ck+1 > Mk so as
to make the ratio between \sk+1 + Sk\ and |Re(sΛ + 1) | small enough to
make log | Sk+1 \ close enough to log (ck+1) on En}c+1 for this purpose.
Furthermore, the choice of ck+ί depends only on Eni, E%2, , Enje.
We wish further to have:

(b) θeEnk = ε2log\Sp(eiθ)\ - (-l)&τr/2(mod 2π) - π/2 within an



462 M. C. MOONEY

error of magnitude not more than ε,. for all p > k. To do this, we
use the fact that for Θ e E%k, p > k; then dist (#, Enp) > δnk [independent
of p-note]. Hence \sp(eiθ) \ < cpX(Enp)/a-dist (θ, En/< cpX(Enp)/ed%k. Re-
call that the choice of cp depends only on Sp^ and is independent of
Enp. Hence we may require that X(Enp) —> 0 sufficiently rapidly to
guarantee that Σ P = f c + 1 cpX(Enp)/edn]c is always small enough that (b) is
satisfied. The above requirement also guarantees that Σ~=i ckX(Enk)/e
converges.

Each sp has positive real part and hence by Harnack's principal
the Sps must either converge to an analytic function, S, of positive
real part on D, or diverge to °° on D. The latter is impossible since
each I Sp(0) \ < Σϊ=i I **(0) I ̂  Σϊ=i ckX(En])/ε < ΣU ckX{Enk)lε < oo. We
also note that our requirement in (b) above also guarantees that the
Sps converge absolutely on each En]c and hence we also have: θ e Enjc ==>
ε 2 l o g | S | = ( — l)fcτr/2(mod 2π) — π/2 within an error of magnitude not
more than εL.

Let g = eίε2losS. Then g is bounded on D [in fact: e~**πίi < \g(z) \ <

βε2,/2 f o r a l l z e D]Λ θ e E^ ^ argument (g(eiθ)) = ((-1)^/2)(mod 2π) -
τr/2 + error not larger than εx. This is, given ε3 > 0 we may choose
el9 ε2 so that 1 — ε3 < |g(z) | < 1 + ε3 for all ze D and such that
\g(eiθ) - (-l)p\ < ε3 for all θe EUp. Now:

\r9(f ~

Recalling Lemma 2, we see that the first of these three integrals
is within 2εo(l + ε3) of ( — l)pL(f); the second has magnitude less than
εo(l + ε3) [by (d), Lemma 2] and the third also has magnitude less
than εo(l + ε3) [from the way in which fr and G were chosen]. If

ε3 is chosen small enough, I g(f — fr)φs , fails to have a limit as k —•

oo and we have our contradiction.
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DIFFERENTIAL EQUATIONS ON ABSTRACT
WIENER SPACE

M. A N N PIECH

The main purpose of this paper is to indicate a simple
method by means of which the work of L. Gross concerning
the Laplacian on an abstract Wiener space may be extended
to a certain class of pure second order elliptic operators
with constant coefficients. A short proof of uniqueness of
the solution semigroup of the heat equation will also be
given.

Our extension method is motivated by the often-used technique
of performing a change of variables in order to reduce a pure second
order elliptic operator on Rn with constant coefficients to the Laplacian.
However, some fundamental dissimilarities between finite dimensional
and infinite dimensional potential theory must be taken into account.
First let us define an infinite dimensional Laplacian. Let H denote
a real separable Hubert space and D2f(x) denote the second Frechet
derivative of a real-valued function / on H. We may regard D2f(x)
as a bounded linear operator on H. We define Af(x) = trace D2f(x)
whenever D2f(x) exists and is of trace class. This obviously extends
the finite dimensional Laplacian. However, unlike the finite dimen-
sional case, the existence of D2f(x) is not sufficient to ensure the
existence of Af(x). Another dissimilarity is a consequence of the
unavailability of a substitute for ^-dimensional Lebesgue measure
which would be countably additive on the Borel field of H. Use of
Gauss cylinder set measure can provide an integration theory on H,
but this is not adequate for potential theory, and more particularly
for regularity studies. The reason for this inadequacy is that a
Brownian motion defined in H in terms of Gauss cylinder set measure
would have the property that the probability of a particle starting
at the origin and instantly leaving the ball of radius r > 0 would be
one.

To avoid this inadequacy, the concept of an abstract Wiener space
(H, B, ί) was introduced by Gross [1]. B denotes the completion of
H with respect to a fixed measurable norm || ||, and i is the natural
injection of H into B. Gauss cylinder set measure on H determines
a cylinder set measure on J5, which in turn extends to a countably
additive Borel measure on B (Wiener measure). The measure on B
determined by Gauss measure on H with variance parameter t > 0
is denoted by pt. For a Borel set Γ c B and x e B, let pt(x, Γ) Ξ
pt(Γ — x). The measures pt(x, ) give the transition probabilities

465
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for a Wiener process with continuous sample paths initiating at the
origin of B.

Problems in potential theory are stated in terms of a fixed (H,
B, i). If u(t, x) is a real valued function on [0, oo) x B and if

(to, &o) e [0, oo) x B

is fixed, then we may consider h{x) Ξ= u(t0, x0 + x) as a function from
i ϊ into i£. The second iϊ-derivative of u at (ί0, %o) is defined as

The initial value problem for the heat equation can now be stated as

— u(t, x) = trace D2u{t, x) t>0
dt

u(0, x) = fix)

where x varies over B. We note that we are only concerned with
differentiation in directions of H, even though the space variable
ranges over B. In an analogous fashion, open sets in B are appropriate
for a statement of the Dirichlet problem.

Let A be a fixed member of L(H) (the space of bounded linear
operators on H) satisfying

(a- i ) A is symmetric,
(a- ii) A ^ εl for some ε > 0,
(a-iii) A = I + C where C is of Hilbert-Schmidt class.

We claim that within the context of a given abstract Wiener space
(H, B, i) most of the results of Ref. [2] hold when the Laplacian is
replaced by the differential operator trace AD2f(x).

Properties (a-i) and (a-ii) guarantee that V A exists as a positive
symmetric invertible member of L(H). When H is finite dimensional
it is customary to transform trace AD2f(x) into the Laplacian of /
by making the change of variables x —»α/X"1 x Now H = B when
H is finite dimensional; otherwise H^B. Since x is to vary over
By this application of a change of variables is meaningless for infinite
dimensional H. It turns out that, rather than transforming the
differential operator, we can meaningfully transform the fundamental
solution of the heat equation.

Let HA be the Hubert space obtained by replacing the inner product
(,) on H by [h,k] = {VA~γh,VΈ-ιk). The invertibility of VA"1

ensures that [,] and (,) give rise to equivalent norms. Thus || ||
is a measurable norm on HA, and we may also view B as the com-
pletion of HA with respect to || ||. If ίA denotes the natural injec-
tion of HA into B, then (HA, B, iA) is an abstract Wiener space. We
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will let pi denote that measure on B determined by Gauss cylinder
set measure on HA with variance parameter t > 0. pi will be called
Wiener measure on (HA, B, iA).

Wiener measure pt on (if, J5, i) gives rise to a fundamental solu-
tion of the heat equation

(1) — u(t, x) = trace D2u(t, x)

dt

(x ranges over B, and t over (0, °°)). Specifically, the family

{p2t(x,dy):xeB,t>0}

has the following properties [2, Theorem 3 and Porposition 6]:

For each bounded real-valued uniformly Lip 1 function / on B,
letting

ptf{x) ΞΞ I f(y)pt(x, dy) ,
JB

(b-i) p2tf(x) satisfies the heat equation (1)—that is, σ/(σt)pitf(x)
and D2p2tf(x) exist, D2p2tf(x) is of trace class and the equality (1)
holds;

(b-ii) p2tf (®) —* f(χ) as t I 0, uniformly for all x in B.
As a consequence of (b-i) and (b-ii), we say that

{p2t(x9dy); xeB,t>0}

forms a fundamental solution of the heat equation,
By analogy with the finite dimensional situation, we expect the

measures {qt(x,dy): xeB, t > 0} defined by

(2) qt(χ, dy) = [det Aγ-Φe^ίA^-i^-y)^ym P u ^ d y )

to form a fundamental solution of

(3) — u(t, x) = trace AD2u(t, x) .
ot

That is, we expect that for each / in the family j y of bounded
real-valued uniformly Lip 1 functions on J5, the function

JB

satisfies (3) and qtf —• / in sup norm as t { 0.

REMARK. We must explain the meaning of the exponential term
which occurs in the expression for qt(x, dy). It is to be interpreted
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as the limit in mean (p2t(x9dy)) as F-+I of the net of tame func-
tions {exp[ — ([A""1 — I](x — PFy), x — PFy)/U]: F is a finite dimen-
sional subspace of H which is left invariant by C and PF is projection
onto F}. The integral of a tame function with respect to pt is
described in Ref. [1]. We will see later that this net does converge.

A direct verification that {qt(x, dy)} has the properties of a
fundamental solution would be both difficult and lengthy. However,
Theorems 2 and 3 of Ref. [5] assert that pf is mutually absolutely
continuous with respect to pt, with Radon-Nikodym derivative given
by

pf(dy) = [det A]~l!2e~{ίA~~1~ny'y)ί2tpt(dy) ,

provided VA — I is of Hilbert-Schmidt class. The latter property is
verified by writing V~A = I + C [I + VA]"1. Setting pf(x, Γ) =
pf(Γ — x) for Borel sets Γ in B, we see that qt(x, dy) = pit(x, dy).
We may now appeal to the work of Gross [2] to establish many
properties of {qt(x, dy)}. Before doing so, however, we recall some
properties of trace class operators.

We will identify individual elements of H and of HA via the
identity map on the topological vector space H. Similarly we will
identity individual elements of L(H) and L(HA). We recall that the
family of trace class operators in L(H) is

ίτeL(H): J]([T*T]1/2^ , e{) < oo for some orthonormal basis {e,} of H\ ,

with the trace of T defined as Tr T = ΣΓ=i (Tei9 e{) where {β<} is any
orthonormal basis of H. The trace class norm of TeL(H) is

== Tr [T*T] 1/2

The completely continuous operators in L(H) with | \L{H) form
the dual of the space of trace class operators in L(H) under the
pairing <C7, V} = Tr U*V, where U is completely continuous and V
is of trace class. Since operators of finite rank are dense in the
space of completely continuous operators, we may write | T\ΎτL{H) =
sup{| Tr [TF] \/\F\L{H): F is of finite rank in L(H) and F Ξ£ 0}. For
any S in L(H) and T of trace class, ST and TS are of trace class
and Tr ST = Tr TS. Thus the set of trace class operators on H is
invariant under a change of inner product. Consequently the set of
trace class operators and their traces are the same whether we con-
sider L(H) or L{HA). The trace class norm does vary with the change
of inner product, although | \ΊτH and | \ΎVHA are equivalent norms.

We point out that, by definition, D2qtf(x) is a member of L(H,
H*). The identification of D2qtf(x) with an element of L(H) is
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dependent on the inner product assigned to H. Unless otherwise
specified, we will always intend this identification to be via (,). If
we let T(t, x) denote the operator in L(H) determined by considering
D2q.tf{%) as a member of L(HA, H*), identifying H* with HA via [, ]
and L(HA) with L(H), then T(t, x) = AD2qtf(x). Since

{Pit(x,dy): xeB, t > 0}

is a fundamental solution of the heat equation in (HA, B, iA), we im-
mediately have the

PROPOSITION 1. Assume A satisfies (a-i), (a-ii) and (a-iii). Then
{qt(x, dy): xeB, t > 0} forms a fundamental solution of the equation

-̂ — u(t, x) = trace AD2u(t, x) .
dt

REMARK. The existence of fundamental solutions of Eq. (3) in
situations where A is nonconstant has been considered by the author
in [3]. There A — I was assumed to be of trace class, and this
property was relied upon considerably. Proposition 1 allows general-
ization of the results of Ref. [3] to situations where A is of the form
I + d + C2 where A ί> el for some ε > 0, I + Ct satisfies (a-i) — (a-iii)
and I + C2 satisfies the hypotheses made in Ref. [3]. Generally
speaking, then, such an A is of the form identity plus a constant
Hilbert-Schmidt class operator plus a variable trace class operator.
We conjecture that the results of Ref. [3] may be extended to oper-
ators of the form identity plus a variable Hilbert-Schmidt class
operator.

Now let us assume that / e j / and that / has bounded support.
We may apply the preceding technique to obtain a solution of

(4) trace AD2u(x) = f(x) .

We define the Green's measures G and GA on Borel sets Γ of B by

G(Γ) = \~ Vt(Γ)dt
Jo

and

GA(Γ)= \~qt(Γ)dt,
Jo

and the potentials Gh and GAh of a Borel function h on B by

Gh(x) = \
JB
\ y)G(dy)
JB

and
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GAh(x) ΞΞ I h(x + i/) Ĝ (cϋ?/) .

Then by Ref. [2, Theorem 3], Gf(x) satisfies

1 trace [φ2G/)(α;)]= -f{x)
Δ

for all x in 5. We thus immediately have the

PROPOSITION 2. Assume A satisfies (a-i), (a-ii) and (a-iii). For
f in Ssf and of bounded support,

U(X)ΞZ -GJ{x)

satisfies Eq. (4).

REMARK. Many smoothness properties and corresponding estimates
concerning ptf(x) and Gf(x) are given in Ref. [2]. Analogues of
these may now trivially be deduced for qtf(x) and GAf(x).

From Ref. [2] we see that for t > 0 the operators qt: f—>qtf
form a strongly continuous contraction semigroup on the space ^
of bounded uniformly continuous functions f on B with H/IU Let
Sf denote the infinitesimal generator of this semigroup. Then [2,
Cor. 3.1] for / in J^f, qtf is in the domain &<? of & and

( 2fqtf)(x) = trace [(AD%f)(x)] = Lf(x) .

A question naturally arises concerning possible uniqueness of the
semigroup {qt: t > 0} among semigroups on ^ whose infinitesimal
generators are "related" to L. This question for variable coefficients
A(x) will be discussed by the author in a forthcoming paper [4]. The
method used there could be applied to the case presently under con-
sideration. However Ref. [4] makes use of a theory of stochastic
integrals on {H, B, i), which requires a special hypothesis on the
abstract Wiener space (H, B, i). Moreover, the approach of [4] is
unduly cumbersome in the constant coefficient case. Therefore we
will now present a brief uniqueness result for the constant coefficient
case. We begin by showing that S^ is the closure of L. Specifical-
ly, we have the

PROPOSITION 3. Let the set £f consist of real-valued functions
f satisfying

(c- i ) / is in s$f;
(c-ii) Df: B—>H exists, is bounded and continuous)
(c-iii) D2f: B—>trace class operators on H with | \ΎrH exists, is

bounded and uniformly continuous.



DIFFERENTIAL EQUATIONS ON ABSTRACT WIENER SPACE 471

Then ss c &*, for f in S^ Sff = Lf, andx {(/, £ff): fe £f) is dense
in the closed subset {(/, Sf f)\ fe &<?} of <& x <&.

Proof. Assume / is in SZ Since

(Qtf)(x + sh) =\ f(x + sh + y)qt{dy) ,

(c-ii) enables differentiation under the integral sign, yielding

(Dqtf(x), h) = ( (Df(x + y), h)qt(dy)

for all In in iϊ. Similarly (c-iii) enables us to write

((D%f)(x)k, h) = \ (I?f(x + y)k, h)qt(dy)
JB

for all k and h in H, and

Lqtf{%) = \ Lf(x + y)qt(dy) .

JB

Since qtf e ^ > , we have

= qtLf .
Lf is in & by (c-iii). Thus qtLf —> L/ uniformly as £ j 0, and so
Jίfqtf —*Lf uniformly as t \ 0. But qtf —*f uniformly as t [ 0 and,
since i ^ is a closed operator by basic semigroup theory, we conclude
that / is in ^ > and £ff = Lf.

It is shown in Ref [2, Cor. 3.2] that functions of the form

g(x) = I e-'(ptf)(x)dt
Jo

where fejz? are dense in the domain of J^ in the graph ( ^ x
norm. It is furthermore shown that such functions g satisfy (c-iii).
It is trivial to see that qt: s*f —> J ^ and hence that g e Ssf. To
verify (c-ii) we make use of Eq. (8) of Ref. [2]—viz. for h in H

(Dqtf(x), h) = (2*)-1 ( f{x + V) [h, y]qt(dy) .
JB

Thus we obtain

(Dg(x), h) = Γe-*(2ί)-1 [ f(x + y)[h, y]qt(dy)dt
JO JB

= [°e-'(2t)-1" f f(x + (2tyi*y) [h, y]pt(dy)dt.
JO JB

Therefore
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(Dg(x), h)\<\~ e-tr11* || / |L {^ | [h, y] \2pt(dy)]Φ dt

and so

I Dg(x) \n ^ constant || / IU •

In addition, we see that

I (Dg(x) - Dg(z), h) | ^ c o n s t a n t ( ° V < r 1 / 2 \ \ x - z \ \ \ h \ H d t ,
Jo

and we conclude that g satisfies (c-ii).
Thus we have proved that (£f, ^V) is the closure of (L,

REMARK. The preceding calculations of ΌqJ and D2qtf were
possible because qtf is a convolution of / with pt(dy). This is not
the case with variable coefficients.

We now give a uniqueness result for the semigroup {qt}.

PROPOSITION 4. If {q't: t > 0} is a contraction semigroup on <&
whose infinitesimal generator £fr extends (L, S^), then q[ — qt for
all t > 0.

Proof. If we show that &^, — fE&^> and that &' — <&? on their
common domain, then since {qt} is strongly continuous on r<f it fol-
lows from basic semigroup theory that q[ = qt- Since (J*f'9 £&_*) is
a closed operator, we have {j^f

J^,)Z)(^,^^). Let

/ e ^ , , g = (I- £έ")f

and

ίf0 = {h in <£*: \\ qth - h |U — 0 as t [ 0} .

^,(Z<ίfQ and £f'\ ^ 0 - > ^ 0 . Thus ge ^ It is well known that for
g in ^ the equation (I — .Sf')/& = ^ has a unique solution in i ^ > . By
the strong continuity of {gj, there exists a unique solution / in
of the equation (I — =2̂ )/̂  = g. Since / is also in &_,-,> £f'f=z
and so / = /. Thus (.<?", ^ , 0 c (.Sf, ^ ).
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SESQUILINEAR FORMS IN INFINITE DIMENSIONS

ROBERT PIZIAK

This paper is concerned with sesquilinear forms defined
on vector spaces of arbitrary dimension. Motivation is
taken from classical Hubert space theory, as the ortho-
gonality relation induced by the form is used to replace the
topology. First, an algebraic version of the Frechet-Riesz
Representation Theorem is proved for linear functionals
having an orthogonally closed kernel. Next, the notion of
adjoint is formulated, following von Neumann, in the lan-
guage of linear relations. It is proved that the adjoint of
an arbitrary relation is a single valued linear relation pre-
cisely when the domain of that relation is orthogonally
dense. Finally, an algebraic version of a continuous linear
operator is introduced and the relationship with the notion
of adjoint and linear functional is studied. The main result
here is that an operator is orthogonally continuous precisely
when it has an everywhere defined adjoint. These general
results of pure algebra imply standard topological results in
the context of a Hubert space.

There are two directions in which to generalize away from the
concept of a Hubert space. One is the familiar topological generali-
zation via Banach spaces, linear topological spaces. The other direc-
tion is algebraic via inner product spaces, sesquilinear forms. The
finite dimensional theory of sesquilinear forms is well worked out.
However, the infinite dimensional case seems fraught with pathology.
Kaplansky and others have initiated a study of the infinite dimen-
sional case [6], [7], [8]. Gross and Fischer [4] have used topological
methods. In this paper, we propose an algebraic approach to infinite
dimensions motivated by the "happy accidents" in Hubert space
theory that correlate algebraic and topological conditions. In par-
ticular, we prove an algebraic version of the Frechet-Riesz Represen-
tation Theorem, von Neumann's theorem on the single valuedness of
the adjoint relation, and discuss continuity, all in the algebraic con-
text of a vector space over a division ring with no "natural" topology
present.

2* Quadratic spaces. We shall follow the terminology of
Bourbaki [2] on sesquilinear forms.

By a quadratic space we mean a triple (k, E, Φ) where E is a
left vector space over the division ring k and Φ is a nondegenerate
orthosymmetric ^-sesquilinear form on E with respect to the in-
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volutive anti-automorphism θ of k. Given vectors x and y in E, we
say x is orthogonal to y and write x JL y when 0(#, 2/) = 0. For any
subset M of E, we define the orthogonal of M by

M1 = {x in E\x _L m for all m in 1 } .

It is clear that M1 is always a subspace of E. A vector x of i? is
called isotropic iί x ± x and is anisotropic otherwise.

The two main differences between general quadratic spaces and
Hubert space is first in the general nature of the scalars and second,
in the possible existence of nonzero isotropic vectors. The role of
isotropic vectors is important in physical theories and indeed a good
example to hold in mind is the geometry of space-time with the
Minkowski metric. Here, of course, k — R, E — R\ and

Φ((al9 a2, α3, α 4), (βl9 β2, yS3, &)) = a& + a2β2 + aφz - α4/34 .

The first "happy accident" to note is that in Hubert space, a
subspace M is metrically closed precisely when M— M1L. Thus we
are led to consider the closure operator MΊ-^ikf11 on the lattice of
all subspaces of E, Lat (k, E), as an algebraic substitute for the
topology. Let PC(E, Φ) - {M in Lat (k, E)\M= MLL). The geometry
of PC(E, Φ), which is of interest in the study of the logical founda-
tions of quantum mechanics, has been considered in [9]

In a Hubert space H we have that each closed space M yields
an orthogonal direct sum decomposition H = M © M1. This is not
true for a general quadratic space. A subspace F of E is said to
be a splitting subspace provided E = F + F1. Let PS(E, Φ) be the
collection of all splitting subspaces of E. It is easy to see that each
splitting subspace is 1 -closed. We shall show later that the con-
verse need not hold.

It is well known that the lattice of closed subspaces of a Hubert
space is an orthomodular lattice. We have shown elsewhere [10]
that orthomodularity actually residues in PS(E, Φ) in general and
PS(E, Φ) is an orthomodular poset which need not be a lattice. Thus
the orthomodularity of the lattice of closed subspaces of Hubert space
arises from the "happy accident" that PS{H) = PC(H).

3. Linear functional The next "happy accident" we note is
that a linear functional on a Hubert space is continuous exactly when
it has a closed kernel. This motivates our next definition.

Let (E9 Φ) be a quadratic space. Let / be a linear functional
on E. Call f orthocontinuous if ker(/) = ker(/)1J-. Let Ef denote the
set of all orthocontinuous linear functionals on E and call it the
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orthodual of E. Let E* denote the algebraic dual space of E.

3.1. Frechet-Riesz Representation Theorem. Let (E, Φ) be a
quadratic space. Then the induced map d: E—>E* defined by

d(y)(x) = Φ(x, y)

is a ^-linear monomorphism and im(d) = E''. Moreover, the image
under d of all anisotropic vectors consists precisely of all those linear
functionals whose kernel is a splitting subspace of E.

Proof. For y in E we have ker d(y) = (ky)1 which is a closed
subspace of E. Thus im (d) S E\ Next let / be in E'. If / is the
zero functional then / = d(0) and / is in im(d). So assume / is not
identically zero. Then ker(/) is a hyperplane in E. Thus there is
line kw with E= ker(f)φkw. Now pick a nonzero vector z in ker(Z)1.
Then

(0) = JE-L = (ker(/) 0 kwY = ker(/)A Π ( M x

so that Φ(w, z) Φ 0. Let 7/ = {{Φ{w, z))"1/^))*"1;?. Note 7/ is in kz
which is contained in ker(jf)1. Thus Φ(w, y) = f{w)

Now let x be any vector in E. Then there is a unique x^ in
ker(/) and x2 in few such that x = ^ + cc2. Then /(#) = /(#2) ^nd
Φ(a?, 2/) = Φ(a?2,2/). But x2 = λ ;̂ so /(&) = /fe) = λ/(w) = XΦ(w, y) =
Φ(λw, ?/) = Φ(a?2,7/) = Φ(x, y). Thus / = d(y) and hence im(d) = Ef.

The fact that ί is a monomorphism follows from the non-
degeneracy of Φ.

If y is anisotropic, then y does not belong to kyL so ker d(y) =
and (/b?/)1 @ky = E. On the other hand if ker(/) 0 ker(Z)1 =

then ker(/) is closed so there is a y with f=d(y). Since
@ky — E, y is clearly anisotropic.

Note that the theorem above implies the usual Frechet-Riesz
Representation theorem for real, complex, and quaternionic Hubert
spaces.

The corollaries below follow readily.

COROLLARY 3.2. // Φ admits nonzero isotropic vectors, then
there are closed subspaces of E that are not splitting.

COROLLARY 3.3. The orthodual of E is a total subspace of E*.

COROLLARY 3.4. Let M be a closed subspace of E with x a vector
not in M. Then there is an orthocontinuous linear functional f
such that f(x) Φ 0, but M <Ξ ker(/).
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4* Adjoint* Let (E, Φ) be a quadratic space. We shall imitate
the von Neumann formulation of the notion of adjoint. Let T be a
relation on E with graph G(T). We say T is a closed relation if
G(T) = G(T)11 where ± is taken relative to Φ®Φ EφE. Note a
closed relation is necessarily a linear relation i.e. T or G(T) if you
prefer, is a subspace of E®E. The closure Γ of the relation T is
defined by G(T) = G(T)L1. Clearly f extends Γ. We also note that
if T is a closed linear relation, then ker(Γ) is a closed linear sub-
space of E.

Now define U:Ex E-+Ex Eby U{x, y) = (-y, x). Then Uis an
everywhere defined linear Injection with U~ι{y, x) = (a?, — y). Also
note that Φ ζ& Φ(Uz, w) = Φ (B &(*, U~ιw) and for Λf £ E x #, we
have 17 (Λf1) = C/(M)J. For T any relation on E> define T* a rela-
tion on £ by G(Γ*) = U(G(T))j. Call T* the adjoint of Γ. Note
then that every linear operator has an adjoint. The question is
whether or not the adjoint is single valued.

The usual definition of adjoint is given by demanding the ex-
istence of a linear operator T* for a given linear operator T, such
that the identity Φ(Tx, y) = Φ(x, T*y) holds for all x and y. It is
interesting to note this formal identity persists. For if T is a rela-
tion on E with (x, z) in G{T) and (y, w) in G(Γ*), then

Φ(z, y) = Φ(x, w) .

If we formally write z = Tx and w = T*y, we recover the previous
equation.

It was brought to our attention that the next theorem was pre-
viously obtained by R. Arens [1] p. 16, Prop. 3.32. The Hubert space
origin of the idea goes back to J. von Neumann [12].

THEOREM 4.1. Let T be a relation on E. Then T* is single
valued if and only if (dom(Γ))11 = E.

In view of [1], we omit the proof.

It is interesting to note that the single valuedness of Γ* depends
only on the nature of the domain of T and not whether T is single
valued or even linear.

COROLLARY 4.2. (1) Let T be a linear relation on E. Then T*
is single valued if and only if T has an orthogonally dense domain;

(2) ϊ7* has dense domain if and only if ϊ7** is single valued;
(3) The closure of a linear operator is single valued exactly

when its adjoint has a dense domain.

Following S. S. Holland Jr., (to whom we are indebted for several
ideas of this section), we shall use the term CDD operator to mean
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a closed domain dense linear operator.

COROLLARY 4.3. The adjoint T* of a CDD operator T is CDD
and T = T**.

THEOREM 4.4. Let T be a CDD operator. Then Γ* satisfies
Φ(Tx, y) = Φ(x, T*y) for all x in dom(Γ) and y in dom (Γ*). Also
any linear operator S satisfying Φ(Tx, y) = Φ(x, Sy) for all x in
dom(T) and y in dom(S) is such that SS T*. If dom(S) = dom(Γ*),
then S = Γ*.

Proof. Since T is domain dense, T* is single valued and

Φ(Tx, y) = Φ(x, T*y)

for all x in dom(Γ) and y in dom(T*). If Φ(Tx, y) = Φ(x, Sy) for all
x in dom(T) then Φ 0 Φ((y, Sy), ( - Tx, x)) =-Φ(y, Tx) + Φ(Sy, x) = 0
for all x in dom(Γ) so that (y, Sy) is in U{G{T))L = G(T*). Thus y
is in dom(T*) and T*y = Sy. Thus S i T*.

In Hubert space, a bounded linear has a topologically closed
graph and conversely. We can prove that if T is a domain dense
linear operator on E and T* is domain dense then T has a J_ -closed
graph. It would be more interesting to prove the following open
question: Algebraic Closed Graph Theorem if T is an everywhere
defined closed linear operator then T has an everywere defined ad-
joint. We conjecture this is not true in general but is true in the
case that every closed subspace of our quadratic space is splitting.

5. Orthocontinuity* In Hubert space, the continuous linear
operators are of great interest. We shall show how to approach
these algebraically.

Let (E, Φ) be a quadratic space with T: E —> E linear. We say
T is orthocontinuous if for all subspaces M of E we have

T(M±λ) S T(M)L[ .

PROPOSITION 5.1. Let T: E—+E be linear. Then the following
statements are equivalent

(1) M= MLL implies T~\M) = {T-\M))lL

(2) M closed implies T~\M) closed
(3) T(M1L) s T(M)11

(4) T-W) a (T-'iN))11

(5) T is orthocontinuous

The proof is easy and is omitted.
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LEMMA 5.2. Let T: E—+E be an everywhere defined linear oper-
ator. Suppose dom(T*) = E. Then for any M = MLL we have
T~ι{M) = (T*(ML)y. In particular then ker(T) = im(T*)L.

Proof. Let M= M[L. Then x is in T~\M) if and only if Tx
is in M = M1L if and only if Φ(Tx, y) = 0 for all y in ML if and
only if Φ(x, T*y) = 0 for all # in ML if and only if x is orthogonal
to T*(ML).

Next we make a connection between the domain of the adjoint
and the orthodual.

THEOREM 5.3. If T is an everywhere defined linear operator on
E, then dom(T*) comprises exactly those y in E for which the linear
functional fy{x) = Φ(Tx, y) is orthocontinuous.

Proof. Since T is domain dense, T* is single valued and

Φ(Tx, y) = Φ(x, T*y)

for all x in E and all y in dom(Γ*). First let y be in dom(Γ*). Then
x is in ker(/y) if and only if fy(x) = 0 if and only if Φ(Tx, y) = 0 if
and only if Φ(x, T*y) = 0 if and only if x is in (JcT*y)L. Thus

ker(Λ) - (kT*yy

is closed.
Conversely, let y be a vector such that /tf is an orthocontinuous

linear functional. Then by Frechet-Riesz, there is a unique vector
2/* such that /„(&) = Φ(α;, T/*) for all x in £7. That is, Φ(Tx, y) =
Φ(α?, i/*) for all α? in E. Thus

Φ Θ Φ((v, ?/*), (- ^ ,»)) = -Φ(Vf Tx) + Φd/*, x) = o

for all x in £? so that (T/, ?/*) is in U{G{T))L = G(Γ*). This means #
is in dom(Γ*).

We are now in a position to relate orthocontinuity to the adjoint.
We first state a lemma whose proof will be omitted.

LEMMA 5.4. Let T be an everywhere defined linear operator on
E. Define the linear functional fy by fy{x) = Φ(Tx, y) for all x in E.
Then ker(Λ) - T

THEOREM 5.5. Let T be an everywhere defined linear operator
on E. Then T is orthocontinuous if and only if T* is everywhere
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defined.

Proof. Let T be orthocontinuous. Then T~ι((ky)λ) is closed for
all y in E. Thus by (5.3) and (5.4), y is in dom(T*).

Conversely if dom(T*) = E, then for

M= M11, T-\M) = (T*(Mλ))L

by (5.2) and this is closed so T is orthocontinuous.

COROLLARY 5.6. T is orthocontinuous if and only if T~\(ky)L) is
closed for all y in E.

We close by remarking that the algebra of bounded operators
on Hubert space is a well studied object. The algebraic analogue
for a quadratic space is the adjoint algebra, Ad(E, Φ), of all linear
operators on E that have everywhere defined ad joints.
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THE EQUATION y'(t) = F(t, y(g{f)))

MURIL L. ROBERTSON

A functional differential equation, in general, is a rela-
tionship in which the rate of change of the state of the
system at time t depends on the state of the system at values
of time, perhaps other than the present.

In this paper, sufficient conditions are given for g so that
the initial value problem yf(t) = F(t, y(g(t))), y(p) = q, may be
solved uniquely; where F is both continuous into the Banach
space B, and is Lipschitzean in the second position.

l DEFINITIONS. If p is a real number and / = {Il912, •} is a
collection of intervals so that p e Ix and In g JΛ+1 for each positive
integer n, then I is said to be a nest of intervals about p. Let
Io = {P} and α0 = δ0 = P Also, let [an, bn] = In for each nonnegative
integer n. Let J* denote the union of all elements of I.

In general B denotes a Banach space; and if D is a real number
set, let C[D, B] denote the set of continuous functions from D into
B. Whenever D is an interval, C[D, B] is taken to be a Banach space
with supremum norm | |.

If g is a continuous function from J* into /* so that g(In) <Ξ In

for each positive integer n, then g is said to be an J-function. If g
is an /-function then for each positive integer n, define the following:

An = {x e [an, α%_ 1]: g(x) £ In^} ,

Bn = {x e [6n_!, δw]: g(x) ί In^}9 and

En{s) = [p, g(s)] Π (An U Bn), for each s e l n .

Let \ h(s)ds denote the Lebesgue integral of h over the subset

D of the domain of the Lebesgue integrable function h.
Let F denote a continuous function from I* x B into B so that

\\F{x, y) - F{x, 2)|| ^ M(x)-\\y - z\\ for all xel* and y,zeB, where
M is Lebesgue integrable on each In. Furthermore, if / is a con-
tinuous nonnegative valued function from /* to the reals, and m is

(M, f, g, m) denote
P

\XM(Sι) I p'ikffe) I . . . \\9tSm^M(sm)f(sm)dsm\ \ds2\dSι\ .
J P \ JP JP

If D is either An or Bn, let f (Λf, / , D, m) denote
J

\ M(Sl) \ M(s2) \ M(sm)f(sm)dsm ds2dSl .

If D is a subset of the domain of the function h, let h\D denote

483
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the restriction of h to D. Also, let fog denote the composition of /
with g, whenever applicable; fog(x) = f(g(x)).

2. Main results*

THEOREM A. Suppose I is a nest of intervals about p, qe B, g
is an I-function, k is a sequence of positive integers, and for each

positive integer n, an = \(M, 1, An, k(n)) < 1 and βn = \(M, 1, Bn, k{n)) <
1. Then there is a unique function yeC[I*,B] so that y'{t) = F(t,
y(g(t))) and y(p) = q, for all tel*. [We say then that the initial
value problem (IVP) has unique solution.]

Proof. Since, Jo = {p}, then certainly y0 = {(p, q)} is the unique

function in C[I0, B] so that for all t e Io, yo(t) = q + \ F(s, yo(g(s)))ds.

Next, suppose n is a nonnegative integer so that there is a

unique function yn e C[In, B] so that, for each t e In, yn(t) = q + I F(s,
JP

yn{g(s)))ds. The following is the construction of yn+1. Let D = {/ e
C[In+1, B]: f \In = yn) and let m = k(n + 1). Then, if / e D and t e In+1,

let T be so that Tf(t) = g + ίV(s, f(g(s)))ds. Then, certainly Γ is

from D into D.

L E M M A 1. If f,heD and t e In+1J then

|| Tmf(t) - Tmh(t)\\ ^ [(M, \\fog - hog\\, g, m ) , for each positive
JP

integer m.

Proof of Lemma 1. (by induction on m) If m = 1,

|| Γ/(ί) - Γλ(t)|| - ||Γ[F(«, /(ίjrW)) - jP(β, Λ(flr(β)))]ώ11

V ( 8 , /(ff(8))) - F(8 > h(g(s)))\\ds

£ \tM(s) \\f(g(s)) - h(g(s))\\ds = \'(M, \\fog - hog\\, g, 1) .

Now, suppose the lemma holds for m = r. Then,

- Tr+1h(t)\\

) - F(s, Trh(g(s)))]ds\\

I!

)) - F(s, T'-h(g(s)))\\ds\
I

T'f{g{s)) - TΊι(g(s))\\ds\

, \\fog - ΛofirH, g, r)dSι\ ,

^ ! (
I JP
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b y t h e i n d u c t i o n h y p o t h e s i s , b u t t h i s e q u a l s ! (M, \\f°g — h<>g\\, g,r + 1 ) .
JP

LEMMA 2. If N is a bounded, measurable function from In+ί

to the reals so that N(s) = 0 whenever s is in In+1\(An+1 \J.Bn+ί), then

and

y (M, N, g, m) = j(ikf, N, An+ι, m) ,

\[n+l(M, N, g, m) = j(Λf, N, Bn+U m) .

S
an+l

(M, N, g,
P

1) = I f'"+1 M(s)N(s)ds = \ M(s)N(s)ds = \ (M, N, An+ί, 1), because

N is 0 at each point of [p, αΛ+1]\Aw+1. Suppose the lemma is true

for m = r. Then, \ ι (M, N, g, r + 1) = \ + 1 (Λf, J7, g, r), where
JP JP

U(s) = I ̂ S)M(t)N(t)dt j , for all s e In+1. If s e In+1\(An+1 U BΛ+1), g(s) e

In. Thus, iV is 0 on [p, g(s)], and so Z7(β) = 0. Whence, U satisfies

the conditions for N in the lemma. So, by the induction hypothesis,

£ " + 1 (M, U, g, r) - J (ikf, U, A n + U r) = j (M, N, A n + ί , r + 1), because

U(s) — \ M(t)N(t)dt. The proof of the second equality in the lemma
}En + 1(s)

is similar. Thus, Lemma 2 is proven.

Now, the two lemmas are applied. By Lemma 1, || Tmf(t) —

Tmh(t)\\ ^ J ' (ikf, \\fog - hog\\, g, m ) , for a l l telm,^ m a x {^n+1 (M,

II fog - hog ||, g9 m), \ w + 1 (M, \\ fog - hog ||, βf, m ) | which by Lemma

2 is - max{J(ikί, \\fog - hog\\, A n + 1 , m), j(AΓ, ||/oflr - hog\\, Bn+U m)},
because ||/(^(s)) - Λ(^(β))|| - 0 for all seIn+1\(An+1 U 5»+1). Thus,

I T V - Γ Λ | ^ m a x { j ( i l f , | | / o 0 - Λo^||, A n + 1 , m), J (Λf, ||/oflr - hog\\,

Bn+1,m)} £ max{j(M, 1, An+ί, m), J(ikf, 1, Bn+1, m)} |/ - λ|. Thus, Γ"
is a contraction map from the complete metric space D into D. Thus
Γm has a unique fixed point yn+1. It is a known result that this
implies that yn+1 is the unique fixed point of T. [(Tyn+1) = T(Tm(Tyn+1) =
Tm(Tyn+1), but only yn+1 is so that τ/w+1 - Tmyn+1. So Tτ/W+1 = yn+1,
and uniqueness is clear.]

Thus, yn+ί(t) = Tyu+1(t) = Q+ [F(s,yn+I(g(s)))ds, for all teln+1,
JP

and is the unique such function. Hence, by inductive definition,
for each positive integer i, there is a unique function yt e C[Ii9 B]
so that for all t e Iu y^t) = q + \ .F(s, yi(g(s)))ds. Now, define 2/ e
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C[I*, B] so that y(t) = yu(t), whenever teln. Since m <; n implies

Vn\in = 2/«, 2/ i s w e l l - d e f i n e d , a n d y(t) = 9 + 1 F(s, y(g(s)))ds, f o r a l l
rt ] v

tel*. Now, suppose z(t) = q + \ F(s, z(g(s)))ds, for all t e /*, and z e
JP

C[/*, B]. Then, if π is a positive integer, and teln, z\In(t) = q +

^ F(8, z\In(g(s)))d8. So, 2| / n = yn = y\In for each positive integer n.

Thus, z = y.

COROLLARY 1. Let M be the constant 1 function, and let k(n) =

2, for all n. Suppose for each n, \ min {| g(x) — an^\, | g(x) — 6W_! |}dα; <

1, and I min{|gr(ίc) — an^\,\g{x) — bn_λ\}dx < 1. Then, the IVP has

a unique solution. [See Figure 1. All the shaded area between each
pair of vertical dashed lines is less than one.]

FIGURE 1
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Proof. an = \ M(Si) \ M(s2)ds2ds1 = \ \ ds2dsx. Now, sx e
jAn JEn(s{) JAnJEnlβi)

An implies

π \An n b , g(s1)]9 if flr(Sχ) e An, and

E^s,) = j

Thus, ^Λ(Si) £ [#(Si), α^.J if ^(sj e An, and in this case, \g(sj — αΛ_J ^
- 6Λ_1 . Also, -En(sx) £ [6n_!, flf(Si)] if βr(Si) e Bn, and in this case,

- bn_x ^ |̂ (Si) — (Ln-A Thus, En(Sy), which is certainly mea-

surable, must have measure g min {\g(sλ) — an_λ \, \g(Sj) — bn_γ \). Hence,

\ \ ds2dsί g \ m i n d ^ ^ ) — an_^1\,\g(s1) — δ%_1|}ds1, because \ ds2

is the measure of En(s^). Thus, an < 1, and similarly βn < 1, for each
positive integer n. Apply Theorem A.

and

COROLLARY 2. Suppose k(n) = 1 for each n. Then, if I M< 1

\ M< 1, /or eαc/& w, ίfce / F P feαs unique solution.

Proof. Immediate.

COROLLARY 3. Suppose M is the constant 1 function and k(n) —
1 for each n. Then if max {bn — b.Λ_u an_x — an) < 1, for each n, the
IVP has unique solution.

Proof. An s [an_u an] and Bn s [ 6 ^ , 6Λ] implies I 1 ̂  I Λ l l l =

α*-i — αw and I 1 ̂  * 1 = bn - bn_γ. Apply Corollary 2.

The following example illustrates the advantage of allowing k(n)
to assume integral values other than 1.

EXAMPLE. Let F be so that M= 1 in the IVP—y(p) = q, y'(t) =

*X*, 0(0(*)))ι where

ί2α? , if x e [0, p ] , and
g(x) = i

[Ap - 2x, iί xe [p, 2p] .

then it is straightforward to show that if J is a subinterval of [0, 2p]
and g(J) £ /, then J = [0, 2p]. Thus, if / is a nest of intervals about
any point of [0, 2p] and /* = [0, 2p], then In = [0, 2^] for each positive
integer n, if g is to be an J-function. Thus, in order to apply
Corollary 3, it seems necessary to require p < 1, in order to solve
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the IVP. However, if Theorem A is applied with k(n) — m for all n,
then Theorem B, which follows, shows that the condition p < 2(w~1)/m

gives the best apparent bound for the size of p in order to solve the
IVP. Now, since m is arbitrary, clearly, p may be any positive
number less than 2.

THEOREM B. // g is as in the above example, and for each posi-

tive integer n, Fn(x) = I (1, 1, g, n + 1), then
JP

(1) Fn is symmetric about p. That is, for each n, Fn(x) =
Fn(2p — x), for all x e [0, p]; and

(2) Fn(x) + Fn{p - x) = pn+1/2n, for each n, and for all xe
[0, P/2].

Proof, (induction on n) Suppose n = 1. Then, if xe[0, 2p],

= \[\g(s)-p\ds
I JP

, which is

(p2/2 - px + x2, if x e [0, p/2] ,

px - x\ if x e [p/2, p] ,

~ _ 2p2 + Zpx - x\ if a? e [p, 3p/2], and

,5p2/2 - 3px + α;2, if x e [3p/2, 2p] .

It is straightforward to show that Fx satisfies the conditions (1) and
(2) of the theorem. Now, suppose the theorem is true for the positive

integer k. Then, for each x e [0, 2p], Fk+1(x) = I \XFk(g(s))ds . If xe

[0, p], Fk+1(2p - x) = \\ Fk(g(s))ds . Thus, if x ^ s ^ p, g(s) = 2s =

Ap - 2(2p -s) = g(2p - s). So, Fk+1(x) = \XFk(g(s))ds = [* Fk(g(2p -
JP J2P-X

S 2p-x

Fk(g(2p — s))ds =

S 2p—x
Fk(g(s))ds = Fk+1(2p — x). Thus, Fk+1 is symmetric about p.

P

Now, suppose xe [0, p/2]. Then,

Fk+1(x) + Fk+1(p - a?)

= \PFk(g(s))ds + Γ Fk(g(s))ds
Jx JP—x

= \ FJ2s)d,8 + \ Fk(2s)ds, because r̂(s) = 2s
J a; J P—x

Fk(2s)ds + \ Fk(2p — 2s)ds, because g(z) = 5r(2p — 2)
α J P—x

S P f 0

Fk(2s)ds — \ (l/2)Fk(s)ds, by change of variable
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- [PFk(2s)ds + (1/2)[2XFk(s)ds
Jx Jo

S P Γx

Fk(2s)ds + \ Fk(2s)ds, by change of variable
x Jo

- \PFk(2s)ds
Jo

S 2J>

Fk(s)ds, by change of variable
0

S P

Fk(s)ds, because Fk is symmetric about p
o

S JJ/2 rp

Fk(s)ds + Fk(s)ds
0 Jί>/2

S p/2 rp/2

Fk(s)ds — I ^ ( p — s) ( — l)ds, by change of variable
o Jo

= \Pβ{Fk(s) + Fk(p - s)}ds
Jo

S ί>/2

{pk+ί/2k}ds, by the induction hypothesis
0

= pk+2/2k+ι.
By Theorem B, Fn(0) + Fn(p - 0) = pw + 1/2\ But, jPw(p) = 0, by

definition of Fn, and thus Fn(0) = pn+1/2n. Also, Fn(2p) = Fn(2p - 0) =
2^(0) = r + 1 /2 % . Thus, if ^ + 1 /2 % < 1, then an+1 ^ Fn(0) = pn+ιj2n < 1,
and βn+ι ^ jPn(2p) = pn+1/2n < 1. Apply Theorem A.

3* Applications* The following is a generalization of a theorem
by Anderson [1].

Let F be a continuous real-valued function with domain D of
the plane R x R so that the partial derivative F2 is continuous on D
and (0, δ) e D . Let /*/ and fc be so that if \x\-£h! and |# — 61 ̂  k,
then (α?, τ/)eZ). Let K = sup{|F(^, y)\:\x\ ^ h' and \y - b\ ̂  k}, h =
minjfc', k/K], and M= sup{|F2(α;, y)\:\x\ ^h and \y - b\ ̂  k}.

THEOREM C. Suppose there are intervals It g J2 g s /m =
[ — Λ, /̂ ] so ίΛαί mαα; {δ% — 6w_lf αM_! — an}-M < 1 /or eαc& integer in
[1, m], cmcί so ίAαί 0G/ l t Let I3 = Im for each j ^ m. Then, if g
is an I-function> there is a unique function y so that y(0) = b and

y\t) = F(t, y(g(t)))9 for all te[- h, h].

Proof. Let E = {{x, y): \x\ ^h,\y - b\ ^ k}, and let G be an

extension of F\E so that

(F(x, b — k), if y ^ δ — k, and
(α?' W ) = (F(x9 b + k), if y ^ δ + k .
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By continuity of F2 and the mean value theorem, it follows that F
is Lipschitzean in the second position with constant M. It follows,
also, that G has the same Lipschitz constant M. Then, by Corollary
2, there is a unique function ye C[/*, B] = C[[— h, h], R] so that
y\t) = G(t, y(g(t)))9 y(ϋ) = b, for all t e [- h, h]. Equivalent^, yit) =
b + ΓG(s, y{g{s)))ds, for all | ί | ^h. Thus, \y(t) - b\ = ΓG(S, y(g(s)))ds

Jo Jo
^ A«sup{|(?(s, 2/(flr(s)))|: | s | ^ h}, and since t h e range of G is a subset
of t h e range of F\E, we have t h a t this is ^ h 8πp{\F(x, v)\: \x\ ^
h, \v — b\ ^L k) = h K S k, by definition of h. Thus, (?(#, i/(flr(a;))) =
F(x, y(g(x)))> for all \x\ £h. So, i/'(ί) = F( i , y(g(t))), y(0) = 6, for all
te[- h, h].

The following is a generalization of a theorem by Kuller [3].

THEOREM D. Suppose only that g is a continuous function with
connected, real domain E so that g is not the identity, but gog is
the identity. Then, if M — 1 and q e By there is a segment Q about
the unique fixed point pr of g so that if peQ f) E, the IVP has unique
solution.

Proof. Kuller proves that g has a unique fixed point pf and that
g is strictly decreasing. Let 0 < k < 1/2. Let β0 = p and let β be
a nondecreasing sequence of reals so that βi — β^ < k, for each
positive integer i, and so that β converges to the right boundary
of E, which may be + ©o. Then, for each positive integer i, let
{aiu ai2, , ain.} be so that g{β%) = ain. ^ . ^ aί2 ^ an = g(βi^) and
also so that ai5 — ai>3 +1 < k, for all j . Then, {[aijy g{ai3)\\ i ^ 1 and
1 S 3 ^ ^i} is a monotonic collection of intervals, each containing p. Let
Λ = [#ii, #(#n)] Suppose Jm has been defined to be [aih g(aid)]. Then,
let g{ai3)

_ \[aitj+ί, g((Xi,j+d]> if 3<ni, and

I
Relabel J% to be [αw, δw]. Then, max {an_x — an, bn — fr^} < 1, for each
positive integer n. Let Q = (au 6J. Then apply Corollary 3.

Kuller required differentiability of g in order to solve yf = yog,
y{pr) = q, where pf is the unique fixed point of g.
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CONTINUA IN WHICH ONLY SEMI-APOSYNDETIC
SUBCONTINUA SEPARATE

LELAND E ROGERS

E. J. Vought has characterized hereditarily locally con-
nected compact metric continua as those which are hereditarily
aposyndetic, and (subsequently) as those which are aposyndetic
and have only aposyndetic separating subcontinua. Also,
Vought characterized hereditarily locally connected, cyclically
connected compact metric continua as those having no cut
point and separated only by aposyndetic subcontinua. In this
paper it is shown that similar characterizations can be obtained
when a larger class of subcontinua are allowed to separate,
namely those which are semi-aposyndetic.

A continuum is a nondegenerate closed connected set. If x and
y are points of the continuum M, we say that M is aposyndetic at
x with respect to y if there exists a subcontinuum HczM — {y} con-
taining x in its interior. The continuum M is aposyndetic at x if
M is aposyndetic at x with respect to each point of M — {x}. If M
is aposyndetic at each point xeM, then we say that M is aposyndetic.
If x and y are points of a continuum M, then M is semi-aposyndetic
at {x, y} if M is aposyndetic at one (at least) of x and y with respect
to the other. If M is semi-aposyndetic at each 2-point subset, then
we say that M is semi-aposyndetic. Thus every aposyndetic continuum
must be semi-aposyndetic. But the converse does not hold, indeed,
M may be aposyndetic at none of its points yet still be semi-aposyndetic,
as shown in the example below. A set D separates M if M — D is
not connected, and a point z cuts M if there exist points x, y e M — [z]
such that every subcontinuum of M containing both x and y also
contains z. A continuum M is cyclically connected if each pair of
points of M are contained in a simple closed curve in M. A property
(e.g., locally connected, aposyndetic, or semi-aposyndetic) of a continuum
M is hereditary if each subcontinuum of M has that property.

The notion of semi-aposyndesis has recently been shown to be
useful in the study of ^-mutual aposyndesis in the Cartesian products
of continua [8]. Also, C. L. Hagopian has a number of results con-
cerning semi-aposyndetic plane continua [2; 3; 4], the most interesting
being that non-separating semi-aposyndetic plane continua are arcwise-
connected [3]. That semi-aposyndesis is weaker than aposyndesis is
evident: the cone over any regular Hausdorff space S is semi-aposyndetic
[8, p. 240] but clearly not always aposyndetic.

EXAMPLE. A compact planar semi-aposyndetic continuum which

493
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is aposyndetic at none of its points. Let K be a cone over the Cantor
set C (built in [0, 1]), i.e. [0, l ] x C with {0} x C identified. Let B
denote the copy of [0, 1] x {0} in K. Assume that K is situated in
the plane so that B coincides with the line segment {(x, τ/3/6) | — 1/2 <̂
x ^ 1/2}, with the order on B agreeing with that of L from
(-1/2, l/T/6) to (1/2, Ί/~3/6). Let / and g denote the rotation maps
of 120° and 240° respectively. Finally, let M = K\Jf(K) U g(K),
with B\Jf(B) (J g(B) forming a triangle and the rest of M outside
this triangle. It is clear that M has the required properties.

Vought [10, p. 96] showed that hereditary aposyndesis and here-
ditary local connectedness are equivalent. Since the cone over the
Cantor set is hereditarily semi-aposyndetic, it is clear that his result
does not hold when hereditary aposyndesis is replaced by hereditary
semi-aposyndesis. However, in the event that the continuum is
aposyndetic, such a substitution does work. It should be noted that
the proofs of Theorems 2, 3, and 4 are patterned in general after those
of Vought's in [9].

First we extract a result from [8, p. 242]:

LEMMA 1. Let M be a compact metric semi-aposyndetic continuum.
If M is irreducible between two points, then M is an arc.

Another useful and well-known result is

LEMMA 2. Let x be a point of a compact metric continuum M
such that M is aposyndetic at each point of M — {x} with respect to
x. Then x cuts in M if and only if x separates in M.

THEOREM 1. Let M be a compact metric continuum. Then M is
hereditarily locally connected if and only if M is aposyndetic and
hereditarily semi-aposyndetic.

Proof. Suppose that M is not hereditarily locally connected. Then
[11, p. 18] there exist disjoint subcontinua d, C2 converging to a
subcontinuum C disjoint from each d. Let x and y be distinct points
of C. Let xif yι e d (for each i) such that x — lim xζ and y = lim yζ.
For each i, let Aι be an irreducible subcontinuum of d from x{ to y{.
Then by Lemma 1, each At is an arc. Let zelimAt — {x, y) [taking
a subsequence, if necessary]. By the aposyndesis of M, there exist
subcontinua H and K in M — {z} such that x e H° and yeK° (for
any set S, S° denotes the interior of S). We may assume that each
Ai meets H\J K and that no A< is contained in H (J K. Select Zi e At —
(H U K) [for each i] such that z — lim zt. Let Ai be the subarc of Ai
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which is the closure of the ^-component of At — (H\J K). Let A! =
lim A'i [taking a subsequence, if necessary]. Let w e A! — (H U K U {z}),
and let wt e AΊ (for each i) such that w = lim w4. Let Pi and g, denote
the endpoints of Al. We may assume that w{ precedes z4 in the order
that Al has from ^ to g*. For each i, let Di be the subarc of Al
defined by Di = [pi9 Zi] for odd i, and A = [ŵ , ĝ ] for even i. Finally,
let B denote the continuum C U f f U Ϊ U d J A ) * β y hypothesis, 5
must be semi-aposyndetic. However, it is easily seen that B is
aposyndetic at neither of w and z with respect to the other. This
contradiction concludes the proof of the theorem.

Bing [1, p. 499] showed that for compact metric continua in which
no subcontinuum separates, aposyndesis at a point implied local con-
nectedness at that point. Vought [9, p. 258] allowed aposyndetic sub-
continua to separate and obtained the same conclusion. When semi-
aposyndetic subcontinua are allowed to separate, we show that if M
is both aposyndetic and semi-locally-connected at x, then M is con-
nected im kleinen at x, but not necessarily locally connected at x.
Whether the "semi-locally-connected at x" is actually necessary is
unknown to the author. (Clearly semi-locally-connected at x without
aposyndetic at x is not sufficient, because of the cone over the Cantor
set.) First we prove a useful lemma.

LEMMA 3. Suppose B is a subcontinuum of the compact metric
continuum M, x is a point of M — B, and A is a subcontinuum of
M irreducible from x to B. If A\J B is semi-aposyndetic, then A is
an arc.

Proof. By Lemma 1, we need only show that A is semi-aposyndetic.
Suppose there exist distinct points w, ze A f] B. Since A U B is semi-
aposyndetic, there exists a subcontinuum H of A U B such that, say,
weH° and z 0 H. It x e H then any subcontinuum of H irreducible
from x to B would contradict the irreducibility of A. Thus x <t H.
If A — H is connected, then Cl (A — H) is a continuum missing w
but containing x and z. This contradiction implies that A — H = E (J F,
separated, with xeE. The continuum Hi) E contains both x and w.
Thus any subcontinuum of H U E irreducible from x to B would con-
tradict the irreducibility of A. Thus A f] B consists of only a single
point w.

Suppose that y, ze A such that A is not semi-aposyndetic at {y, z}.
By the semi-aposyndesis of A U B, there is a subcontinuum H of A U B
such that, say, yeH° (relative to A (J B) and z 0 H. By the choice
of y and z, it follows that Hςt A. Then H — {w} = E (J F, separated,
with y e E. Hence E U {w} is a subcontinuum of A containing y in
its interior (relative to A) and missing z. This contradiction com-
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pletes the proof.

THEOREM 2. Let M be a compact metric continuum in which
only semi-aposyndetic subcontinua separate. If M is both aposyndetic
at x and semi-locally-connected at x, then M is connected im kleinen
at x.

Proof. Suppose M is not connected im kleinen at x. Then [11,
p. 18] there exists an open set U containing x, and a sequence Cl9 C2,
of closures of distinct components of U such that xeC = lim Cif and
C Π Ci = φ (for each i).

We may assume that x is a non-separating point of ikf, since if
K is a component of M — {x}, then x is a non-separating point of
of K U {x}, and we would need only show that each K U {x} is con-
nected im kleinen at x in order to complete the proof.

Since M is semi-locally-connected at x, M is aposyndetic at each
point of M — {x} with respect to x. Hence M — U can be covered by
a collection of subcontinua missing x, and by compactness, a finite
number of these cover M — U. Then since x does not separate, by
Lemma 2 we have that x does not cut. Hence the union of this finite
collection of subcontinua is contained in a subcontinuum missing x.
Thus we may assume that M — U is connected.

We first note that if B is any subcontinuum of d irreducible
from xt to Bd U [Bd denotes boundary], then B I) (M — U) is a sepa-
rating subcontinuum of M and hence is semi-aposyndetic. Thus by
Lemma 3, each such continuum B is an arc. Now for each ί, let
pi9 qi^Ci — U [pi and qt possibly the same point] such that there are
arcs Ti and S* in (C* Π U) U {Pi) and (C< Π Z7) U {gj respectively ir-
reducible from Xi to Pi and ĝ  respectively. Let p = lim Pi and g —
limg^ (taking a subsequence of {CJΓ=i if necessary). If p = q for
each possible choice of sequences {Pi}T=i and {gJΓ=i> then M would not
be aposyndetic at x with respect to p. Hence there are sequences
{Pi}T=i and {qi}T=i such that p Φ q. For each i, let A< be an arc from
Pi to qι contained in Ti U £*; hence A; — Z7 = {p*, g j . Let A = lim A*
(taking a subsequence, if necessary), let w and £ be distinct points of A,
and let wh z{ e Ai — {pi9 g j (for each i) such that w = lim wt and z = lim zi9

We may assume that for each i, w4 precedes «4 in the order that At

has from p^ to q^ For each i, let A be the subarc of At defined by
Di — [Pi, zi\ f° r 0 (id i, and A = [w*, ĝ ] for even i. Finally, let B
denote the continuum (M — U) I) A\J {U Dt). Then 5 is not semi-
aposyndetic at {w, z) but it does separate M. This contradiction estab-
lishes the theorem.

A well-known example (see Figure 3-9 of [5, p. 113]) of a con-
tinuum which is connected im kleinen at x but not locally connected
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at x satisfies the hypotheses of Theorem 2 and hence shows that the
conclusion cannot be improved to "locally connected" as in the cases
of Bing's and Vought's results.

THEOREM 3. A compact metric continuum M is hereditarily locally
connected if and only if M is aposyndetic and each separating sub-
continuum is semi-aposyndetic.

Proof. Using Theorems 1 and 2 (and the fact that a continuum
is locally connected if it is connected im kleinen at each point), the
proof of Theorem 3 is essentially the same as Vought's proof [9, p.
259].

The final result is a "semi-aposyndetic version" of Vought's
Theorem 3 of [9, p. 260], which generalizes Bing's result [1, p. 504]
that a compact metric continuum in which no point cuts and no sub-
continuum separates must be a simple closed curve.

We first prove two lemmas.

LEMMA 4. Suppose that no point cuts in the compact metric
continuum M, x is a point of the open set UaM,Bd U is nondegen-
erate, and each subcontinuum of M irreducible from x to Bd U is an
arc. Then for each ε > 0, there exists an arc A in Cl U with end
points in Bd U such that the distance from x to A is less than e.

Proof. We shall assume that each arc S irreducible from a point
p of Uto Bd Uis ordered from p to Bd U. Furthermore, for a, be S,
S[a, b] denotes the closed interval of S from a to b; open and half-
open interval notation denote analogous subsets of S.

Let T be an arc irreducible from x to Bd U, and let b be the
point of T Π Bd U. Let Q be the set of all points yeT such that
there exists an arc S containing y and irreducible between two points
of Bd U. Since no point cuts, there exists an arc S' containing x and
intersecting Bd U — {6} but missing b. Then in T U S' there is an arc
which contains a point of T — {b} and is irreducible between b and
some other point of Bd U. Hence Q Φ 0 . Let q = gib Q. We need
only show that q = x.

Assume that q Φ x. Since q does not cut x from Bd £7, there
exists an arc D from x to Bd U missing q. Since q = gib Q, D Π
T{q, b] Φ 0 . Let y be the first point (with respect to the order on
D) of D ΓΊ T(q, b]. Let z be the last point (w.r.t. D) of D[x, y] Π T[x, q].
We may assume that D = T[x, z] U D[z, y] (J T[y, b}.

Since q is either in Q or a limit point of Q, there exists a point
we T(z, y) Π Q (possibly w = q). Thus there are arcs A and B each
from w to Bd U such that A Γι B = {w}. We may assume that w
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precedes all other points of (A U B) Π T[w.r.t. T]. If D Π B = 0 ,
then 2 G Q because of the arc ΰ U T[£, w] U D[z, δ] But since this
contradicts the fact that q = gib ζ), we have that D f] B Φ 0 . Let
v denote the first point (w.r.t. D) of D ΓΊ -B. If A Π .D[2, ̂ ] = 0 , then
2GQ because of the continuum A {J T[z, w] {J D[z, v] (J B[v, br] where
b' is the point of B Π Bd ?7. This contradiction implies that A Π
D[z, v] Φ 0 . Let p be the first point (w.r.t. D) of i n D[z, v] and
let a be the point of A f] Bd U7. Then A[p, α] U D[z, p] U T[z, w] [J B
shows that zeQ. This contradiction implies that q = x and the proof
is complete.

LEMMA 5. Suppose that M is a compact metric continuum in
which no point cuts and only semi-aposyndetic subcontinua separate.
If M is semi-aposyndetic at [x, y), then M is aposyndetic at x with
respect to y.

Proof. Assume that M is not aposyndetic at x with respect to
y. By semi-aposyndesis, there exists a subcontinuum B<zM—{x}
such that yeB°. Let C, Cl9 C2, ••• be the closures of distinct com-
ponents of M — B such that x e lim C{ c C. Using Lemmas 3 and 4,
we can construct (for each i) points p{ and qζ in B Π C* and an arc
Ai irreducible from pt to #< in d such that A< Π B = {ph q) and lim At

is non-degenerate [taking a subsequence, if necessary]. Let A = lim Ai
and select distinct points w, z e A. Let wi9 Ziβ Ai — {pi9 g j (for each
i) such that w = lim Wι and ̂  = lim ̂ . We may assume that w{ pre-
cedes ^ in the order that Ai has from p{ to gί# Let D{ be the subarc
of Ai defined by Dι = [p ,̂ «J for odd i, and D^ = [̂ ,̂ ĝ ] for even i.
Then (U A) U A U B is a subcontinuum which separates Λf but which
is not semi-aposyndetic at {w, z). This contradiction concludes the
proof of the lemma.

THEOREM 4. A compact metric continuum M is hereditarily
locally connected and cyclically connected if and only if no point cuts
in M and only semi-aposyndetic subcontinua separate M.

Proof. Since the necessity is obvious, we consider the sufficiency.
Using Theorem 3, Lemma 2, and [7, p. 138], it is clear that we need
only show that M is aposyndetic.

Suppose that x and u are points of M such that M is not aposyn-
detic at x with respect to u. Since no point cuts in M, M is both
aposyndetic and semi-locally-connected on a dense Gδ-subset Z of M
[6, p. 412]. By Theorem 2, M is connected im kleinen at each point
of Z. Let y, z e Z — {x, u}, and let H and K be disjoint subcontinua
in M — {x, u) such that y e H° and z e K°.
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Suppose that M — (H U K) is connected. Then the continuum
Cl [M — (H\J K)] is semi-aposyndetic since it separates y from z.
Hence M is semi-aposyndetic at {x, u). By Lemma 5, M is aposyndetic
at x with respect to u. This contradiction implies that M — (H U K)
is not connected.

Thus M - (H U K) = D U E, separated. One of H U D U K and
HU E [j K must be a continuum. We shall show that the other is
also. Let HU D U K be a continuum and suppose that H{J EU K =
PϋQy separated subcontinua, with HaP and KaQ.

The continuum H (J D U K is not irreducible about if U î > or else
points in D will cut P from Q. Let TΓ be a proper subcontinuum
of H{J DU K containing H U K. Suppose P Φ H and Q Φ K. Then
the three continua H U D U iζ P U ΐ^, and Q U ΫF each separate ikf
and hence are semi-aposyndetic. Also each of x and u is in the interior
of one of them. Thus their union, namely M, is semi-aposyndetic at
{x, u}. Then by Lemma 5, M is aposyndetic at x with respect to u.
Thus it cannot be the case that P Φ H and Q Φ K. We assume,
without loss of generality, that P = H. Then Q = K\J E.

In order to show that x e D, we suppose that this is not the case,
i.e., that xeE. The continuum Q is not irreducible about Ku{x}>
or else x will be cut (in M) from K by any point of E — {x}. Let
T be a proper subcontinuum of Q containing both x and K. In order
to show that Q — T is connected, we suppose that Q — T = Tt [j T2, sep-
arated. Then T U TΊ and T u Γ 2 are separating, hence semi-aposyndetic,
subcontinua. Assume that u$ T, so that ue ϊ\, say. Then Γ u ^
is aposyndetic at either (1) u with respect to x, or (2) x with respect
to ^. In the first case, it would follow immediately that M is aposyn-
detic at u with respect to x, and by Lemma 5 we would have a
contradiction. In the second case, M would be aposyndetic at x with
respect to u because of the continuum which is the union of T2, T,
and the subcontinuum of T (J 2\ missing n and containing # in its
interior (relative to TΊjTΊ). This contradiction implies that ueT.
Each of T U 7\ and Γ u Γ2 are semi-aposyndetic at {#, %}. Without
loss of generality, we may assume that there is a subcontinuum S±

of T (J Ti such that α? e S? (relative to T U TΊ) and u $ S,. Now T [J T2

cannot be aposyndetic at x with respect to u since it would follow
that M also is aposyndetic at x with respect to u. Thus there is a
subcontinuum S2 of ϊ7 U Γ2 such that t6 e S2° (relative to T U T2) and
x g S2. The continuum Γ U Si separates T U 2\ into sets A1 and JE?X

(otherwise S2 U Cl (7\ — Sx) would be a continuum with u in its interior
and missing x, and by Lemma 5 we would arrive at a contradiction).
Similarly T U S2 separates Γ U T2 into sets A2 and B2. Then Γ U ^ U
S2 U A1 U A2 is a continuum. Since it separates M, it must be semi-
aposyndetic. Thus it contains a subcontinuum S3 which, say, misses



500 LELAND E. ROGERS

x and contains u in its relative interior. In a similar manner, T U
& U S2 U B1 U B2 is a semi-aposyndetic subcontinuum of M. If it con-
tains a continuum missing # and containing u in its relative interior,
then the union of that continuum with Ss will miss x and contain
u in its interior (relative to M) and by Lemma 5, we would arrive
at a contradiction. So there must be a subcontinuum S4 missing u
and containing x in its interior (relative to ΓU Sλ U S2 U i?i U B2).
Again in a similar manner, Γ U ̂  U S2 U δi U 4 2 is a continuum which
separates M and hence is semi-aposyndetic. In case this continuum
is aposyndetic at x with respect to u, then it follows that M is also.
Thus there is a subcontinuum S5 which misses x and contains u in
its relative interior. Then £3 U Sδ is a continuum missing a? and con-
taining t& in its interior (relative to M) and by Lemma 5, If is aposyn-
detic at x with respect to u. This contradiction implies that Q — T
is connected. The dense Gδ-set Z intersects Q — T, so the continuum
Cl (Q — T) is decomposable and hence can be written as the union of
two proper subcontinua X and Y. Suppose X does not intersect T.
Then x is in the interior of the continuum YD T that separates M.
It follows that M is semi-aposyndetic at {x, u}. Then by Lemma 5,
we arrive at a contradiction. Thus both X and Y must intersect T.
Each of the continua X\J T and YD T separate M and hence are
semi-aposyndetic. Using an argument similar to the one above (which
involved ΓuTΊ and Γ u T2), we arrive at a contradiction.

Since the assumption that x e E has led to a contradiction, it must
be that x e D. The set D cannot be connected, or else, Cl D is semi-
aposyndetic since it separates M, and by Lemma 5 we would have a
contradiction. Thus D = D1 U A> separated, with x £ Dx. Let A denote
the ^-component of D1 U H U K. Since D^U H\J K has at most two
components, a G i 0 . If Ka A, then A is a continuum which separates
D2 from U7, and hence is semi-aposyndetic. Then by Lemma 5, we
would arrive at a contradiction. Thus we suppose that K Π A — φ.
Then A meets H, and Cl A meets both H and iΓ. Let Όf = A U #
and £" = A Then if (J if U D' is connected while if (J JSΓ U £" is not.
However, earlier (the portion of the proof which preceded this para-
graph) we showed that x could not lie in such a part of a separation
of M — (if U K). This contradiction implies that the original supposi-
tion that H U E U K is not connected is false. Hence both H\J D I) K
and H\J E{j K are continua.

Suppose both H\J D[jK and Hi) E U K are irreducible about
if U if. Since M has no cut points, no point of D cuts any other
point of D from Hf] K in ifU-DUif. Assume that if cuts a point
d oΐ D from if in if U D U if. Since no point cuts in M and H Π Cl D
cuts the point d from if in M, then if Π Cl i) must contain more than
one point. If H n Cl D n Cl # Φ φ, then Cl Z) U Cl E is a separating,
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hence semi-aposyndetic, subcontinuum, and by Lemma 5 we have a
contradiction. Thus HnCID nC\E=φ. Consequently, ClH° f] Cl D Φ φ,
or else the continuum H (J D U K would be the union of two separated
sets Cl H° U (H Π Cl E) and K U Cl D. Next, using Lemma 5 and the
fact that the continuum Cl D U K U Cl E is the complement of H°,
it follows that H° is connected. Similarly, K° is connected. Suppose
Cl H ° contains a proper subcontinuum R which intersects both H Π Cl D
and H Π Cl E. Then the continuum Cl D U R U Cl E is semi-aposyndetic
since it separates H° — R from K°, and by Lemma 5 we reach a
contradiction. Thus C\H° is irreducible from i ϊ n C l D to HnClE.
Similarly Cl K° is irreducible from KΠ CID to Kf) Cl E. It follows
that C\K°\JGID is irreducible from Hf]G\D to iΓΠClJ?. Note
that Cl H° and Cl K ° U Cl Z> are the only two subcontinua of Λf ir-
reducible from H n Cl D to Cl #. Let aeC\H° f]C\D and let 6 e H n
Cl D — {α}. Since no point cuts in M, there exists a continuum i?
which contains 6, intersects Cl £7, and misses the point α. Then R
must contain one of the two continua Cl H° and C\K° UG\D, each
of which contains the point α. Since ag R, we have a contradiction.

Using a similar argument for the case of K cutting b in D from
H in i ϊ U D U K, we have that neither H nor if cuts the other from
any point of D in H\J Dl) K. Thus the upper semi-continuous de-
composition whose elements are points of D together with the two
sets H and K is an arc [1, p. 501]. Similarly, H U E U K can be de-
composed into an arc. Then M is aposyndetic at each point of D U E,
hence at x. This contradiction implies that one of H U D U K and
H U E U K is not irreducible about H\J K.

Let iV be a proper subcontinuum of H{j D \J K irreducible about
H{j K. Since the Gδ-set Z is dense, there exist points p and g in
D — (N U {#, }̂) and i? — {&, u} respectively at which M is connected
im kleinen. Thus there exist subcontinua Pand Q such that Pe P° c
P c Z ) — (iVU {x, n}) and qeQoaQ(zE— {x,u}. As was shown above
(with M - (H U K)), we have that M - (P U <2) = S U T, separated,
such that P U S U Q and P (J T (J Q are continua. We may assume
that Na S. Thus the continuum P U T U Q misses iSΓ (hence iJ (J if)
and therefore is contained in D U E. But since peD and ge i£, the
continuum P u T U Q intersects both parts of the separation DUE.
This impossibility implies, contrary to our initial assumption, that M
is aposyndetic at x. Thus the proof is complete.

Just as in [9, p. 262], an easy application of Theorem 4 yields the
following result due to Bing [1, p. 504]:

COROLLARY. Every compact metric continuum in which no point
cuts and no subcontinuum separates is a simple closed curve.
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BΠNVARIANT PSEUDO-LOCAL OPERATORS ON
LIE GROUPS

L. PREISS ROTHSCHILD

Let G be a connected Lie group whose Lie algebra is not
the semi-direct sum of a compact algebra and a solvable alge-
bra. It is shown that any bi-invariant pseudo-local operator
on G is the sum of an invariant differential operator and an
operator with smooth kernel.

1* Introduction* We consider a class of operators on Lie groups,
satisfying a weak local property. Roughly, a pseudo-local operator
on a manifold M is a continuous linear operator, P, on the space of
compactly supported functions on M, which extends to an operator
P' on the space of compactly supported distributions on M, such that
P ' preserves singular support. It has been shown by Kohn and
Nirenberg [3] that any pseudo-differential operator is pseudo-local.
Stekaer [6] has proved that any bi-invariant pseudo-local operator on
a complex semisimple Lie group is the sum of an invariant differential
operator and an operator with smooth kernel. The proof of this theorem
reduces to verifying that every smooth, invariant function on the Lie
algebra of G minus the origin can be extended smoothly over the
origin. Our main result is the verification of this hypothesis for a large
class of Lie groups, proving the above theorem for these groups. For
a given Lie group, this theorem implies that the class of bi-invariant
differential operators on that group can be substantially extended only
by considering operators which do not satisfy local properties.

After the original version of this paper had been submitted, the
author learned that these results have been extended by Anders Melin
[8] to include any Lie algebra which is not the direct sum of a
compact algebra and an abelian one.1 Independently, the author had
extended the results to include the nilpotent case.

The author wishes to thank I. M. Singer, Victor Guillemin, and
Gerald McCullom for helpful discussions on this work, and the referee
for many suggestions which have greatly improved the exposition.

2* Definitions and notation* Let G be a Lie group and C°°(G),
(resp. C~(G)), the space of smooth functions (resp. smooth functions
with compact support) on G. The dual of C°°(G), which is the space
of compactly supported distributions on G, will be denoted ί?'(G),
while the dual of C~(G), the space of distributions on G, will be
denoted 3f\X).
1. The author is indebted to Sigurdur Helgason for informing her of Melin*s work.
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For ue^\X) we define the singular support of u, denoted sing
supp u, as {xe X\u£ C°°(U) for any neighborhood U of x}.

A continuous linear operator P: C~(X) —+ C°°(X) is called a pseudo-
local operator if it extends to a continuous operator Pr:
such that P' preserves singular support; that is,

sing supp P'u £ sing supp u for ue &

We now assume that there is a Lie group G which operates
differentiably on X. That is, there is a differentiate map z

z:G x X — X

such that z(ab, x) = z(α, 2(6, α?)) for all a9beG, and all a? e X. If / e
C~(X) we define af, the ϊe/ί translate of f by ae G as

J \ X ) =/(s(α,α?)) for x e X .

If X = G, then the riflrAί translate of f by aeG is defined by

/β(6) = /(δα) for aeG .

We call the pseudo-local operator P left invariant (resp. right
invariant) if

P(J) = ΛPf) feCnX) (resp. P(fa) = (Pf)a) .

If G = X is a Lie group, P is called bi-invariant if it is both left
and right invariant.

Let g be the Lie algebra of G, and let 1 denote the identity in
G. G acts a group of automorphisms on g via the adjoint represen-
tation, Ad. For any aeG, xe g, we write a. x for Ad(a)x. A function
/ on g or g — {0} is called invariant if it is constant on the orbits
of G on g. A function on G or G — {1} is called invariant if it is
constant on the conjugacy classes of G. If J^ is a family of func-
tions, J^~G will denote the subset of invariant functions.

3* Pseudo-local operators on Lie groups* Our main result is
the following.

THEOREM. Let G be a connected Lie group and g its Lie algebra.
If g is not the semi-direct sum of a compact algebra and a solvable
one, then every bi-invariant pseudo-local operator on G is the sum of
an invariant differential operator and an operator with smooth kernel.

This theorem has been proved by Stekaer-Hansen in the special
case where g is complex reductive, non-abelian, using the following
reduction to a criterion involvling invariant functions on g.
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PROPOSITION 1 (Stetkaer). Let G be a connected Lie group with
Lie algebra g. If the restriction map r: (C°°(Q))G —• (C~(g - {0})G is
surjective, then every bi-invariant pseudo-local operator on G is the
sum of an invariant differential operator and an operator with smooth
kernel.

For the proof of this proposition see Stetkaer [6].

We shall refer to the condition on g in the proposition as Stetkaer's
hypothesis.

Stetkaer's verification of this hypothesis for the case where g is
complex reductive uses a result of Kostant ([4] Theorem 7). Kostant's
theorem implies the existence of a hyperplane t> c g — {0} and a smooth
map t: g —* Ό satisfying the following conditions,

(i) There is a dense subset r c g such that for any xex, there
exists a unique x' e fc> with a.x = xf for some ae G.

(ii) For any xex, t(x) = xf. In particular, if y e Ό Π r, then t(y) = y.
Conditions (i) and (ii) above show that any invariant function / on
g — {0} is completely determined by its values on Ό. Since Ό c g —
{0}, the function fot is defined and smooth on all of g. Therefore
fot is the desired extension of / since in agrees with / o n g — {0}.

Since Kostant's result does not extend even to real reductive Lie
groups, we shall use a substantially different approach in our proof.

4* Proof of the main theorem* We shall verify Stetkaer's
hypothesis in the case where g is not the semi-direct sum of a compact
Lie algebra and a solvable Lie algebra. If / is an invariant function
which is smooth on g — {0}, it will be shown by explicit computation
that all partial derivatives of / can be extended continuously over 0.
We shall define a one parameter subgroup {αJί6Λ of G and show that
for a suitable basis of g the transformation of the partial derivatives
with respect to this basis can be easily computed (Lemma 3). In var-
iance of / under the action of this one-parameter group is sufficient
to prove the theorem, since the action of {at}teR pushes "most" small
elements in g — {0} to the unit sphere.

Let g = Qt + g2 be a Levi decomposition of g, with gL semisimple,
and g2 solvable. By assumption, gL is not compact. From the struc-
ture theory of semisimple algebras, it is well known that gL contains
a subalgebra u, where u is isomorphic to £1(2, R), the Lie algebra
of the real special linear group. (For the proof of this, as well as
the details of the representation theory of u, to be used later, see
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Serre (5), Chapitre IV and VI) or Helgason ([1] Chapter VI].) For
any x e g let ad x be the endomorphism defined by ad x(y) = [x, y]
for all y e g; i.e. ad is the adjoint representation. If u is any such

subalgebra, let xen be the inverse image of the element (Q __ A

under a fixed isomorphism of u with §1(2, R). From the representation
theory of three-dimensional simple Lie algebras there is a vector sum
decomposition

where gίri} = {3/ e g | [x, y] = r^}, g(~ri} = {?/ e g | [x, y] = - r, τ/}, g(0)

{2/e 01 [#> 1/] = 0} where the r, are all positive integers.

Let g+ = Σ 8(r''} and g~ = Σ 8("Γj"}

We make the convention that r_j = — r, . Let α?Ol, ^o2, •••, Xo i0) be a
basis for g(0), and for each j , positive and negative, let x^x^ ••• Xjp{j)

be a basis for g(tv} Give g the metric for which the above basis is
orthonormal. We write \y\ for the length of an element y e g. Any
y e g has a unique decomposition y = y+ + y0 + y~, with τ/+ e g+, i/0 e g(0)

and τ/_eg". Then |τ/|2 - |τ/+ |2 + |τ/0|
2 + |τ/_|2.

Let /> be the family of all partial derivatives for the given basis.
We write Dn. for the partial derivative

dxh dxh dxjm

where % = (nίl9 %2, , % w ) , with nάi ^ 0 for all ΐ, for all i, positive,
negative or zero. Any DeD can be written Dn_k Dnjc. The order
of £>„., O(2?Λj.), is defined by

Then the order of D is defined by

0{D) = Σ O(ΰWi) .

The height of D, h(D) is defined by

h(D)=± r,0φ%j).

For any real t, let at = exp ta, where exp: g —> G is the exponential
map. Then {αJίeΛ is a one-parameter subgroup; we shall need only
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the invariance of / under {αj
Then if yeQ{rί\ at y = etriy, where at y denotes the adjoint action

of at on the element 2/eg. The following lemma shows how the
partial derivatives transform under the action of at.

LEMMA 2. Df(at-y) = e~th{D)Df(y) for ye^yφ 0, for any DeD.

Proof. We prove the formula by induction on the order of D.
Suppose first that D = d/dxjg. Then

by the invariance of / ,

- iir» f(V + ee-tfJgf<) - f(y)
ε~0 £

-i-tJL = e-WDfiv).

Now assume the lemma is true whenever O(D) < k. If O(D) = k,
then D = (d/dx^D, where 0(5) = k - 1.

D ) - Df{aty)

= lim e-
£->0

Df(y))

lim ^/(j/ + sg"'%^

ee
dxh

= e~th(D)D ,

which proves Lemma 2.
LEMMA 3. Let ye g - {0} αraZ δ > 0 such that \y\ < δ. Then for

DeD and any ε > 0, there exists yf eg, | # ' | < δ, such that

( 1 ) τ/'+ ̂  0 and y^ΦQ

and

( 2 ) \Df{y)-DfW)\<ε.

Proof. Since D/ is continuous at y, there exists a neighborhood
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V of y such that zeV implies |Df(y) - Df{z)\ < ε. The intersection
of V with the ball of radius δ around the origin is again a neighborhood,
V, of y. Since \y\2 = | j / + | f + \yo\

2 + |?/_|2, if either y+ or y_ is 0,
we may choose z+ e Q+ and zL e g~ sufficiently small so that y' = y +
z+ + zL is still in F ' which proves the lemma.

We now define a compact neighborhood U of width 1/2 around
the unit sphere, i.e.,

U= {yeg\l/2£\y\^ 3/2} .

Since [7 is compact, for any D e />, s > 0, there exists ^ > 0 such that

IVi - ViI < δD ==> I D / d / 0 - Df(y2)| < ε f o r a n y y l f y 2 e U .

LEMMA 4. Let DeD with h{D) Φ 0. Then for any ε > 0, there
exists a neighborhood SD of 0 in g swcft ίfcαί i/ y e SD — {0},

Proo/. Let M = maxzeU \Df{z)\, Then for any te R,zeU
\Df(at z)\ ^ |e~ίA(ί>)ikf |, by Lemma 2. We shall assume, to minimize
notation, that h(D) > 0. The proof for h(D) < 0 is similar. Choose
t, satisfying \e~^h{D)M\ < ε. Then \e-th{D)M\ < ε for all t > tλ. Now
let r = maxi=1,2...Jfcri, and let δD = min (1/2, e~hlr). We define SD as
the sphere of radius δD, and we shall show that this satisfies our
condition. For suppose y = y+ + yQ + y~e SD. By Lemma 3 it suffices
to assume that y+ Φ 0 and τ/_ Φ 0. Since \y^ = |τ/+|2 + |τ/0|

2 + 12/-IS
we have |τ/_[ < ^ . Since τ/_ ^ 0, there exists t such that |α_ t # | = 1.
Then

2/+) I ^ 12/o + V+\ < SD ^ —

So that ci-t ye U. But

so that

which proves that t > ίlβ Therefore, since a,-t*ye U, it follows from
the definition of t, that |Df(at (α_f y)) \ < ε. Since at-{a_t-y) = ?/, this
proves Lemma 4.

LEMMA 5. For any DeD with h(D) = 0 and any ε > 0,
α neighborhood SD of 0 in Q such that if y, yr eSD — {0}, then

\Df{y)-Df{y')\<ε.
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Proof of Lemma 5. Choose δ, 0 < δ <. 1, such that for any z, z' e U,

\z -z'\<δ implies \Df(z) - Df(z')\ < ± ,
5

and let SD be the ball of radius δ/2 around 0. Now let y, y' e SD be
arbitrary. We will show that | Df{y) - Df{y') \ < e.

We write

y = y+ + Vo + v-

and

v' = v+ + vΌ + v'~

as before. By Lemma 3 we may assume that y+, y_, yW- are all
nonzero. We show first

( 3 ) I Df(y0 + y+) - Df(y) \ <± and | Df(y'o + y'+) - Df{y') \ <± .
5 5

For this, choose t > 0 such that \at y+\ = 1. As in the proof of
Lemma 4, at y and at (y0 + y+) e U. Then \at y - at-(y0 + yt)\ =
\at yJί<\y~\<δ. By the choice of δ, we have \Df(at y) — Df(at (y0 +
y+)) < e/5. Since Λ(JD) = 0, Df is invariant under αέ, so that the first
inequality of (3) holds. The proof of the second is the same.

By continuity of Df at y0 + y+ and yΌ + y'+, we may choose g_ e
g~ with |g_| sufficiently small so that

( 4 ) | Df(y) - Df(y0 + y+) \< e/5 and |Df(y') - Df(y[ + τ/'+) | < e/5 ,

where ^ = g_ + 2/0 + y+ and ^' = g_ + yΌ + #+. Now choose s > 0
such that |α_ s g_| = 1, which is possible since g_ ^ 0. Then α_s ̂ e
£7 and α_s ^' e C7. We shall show

( 5 ) \Df(y)-Df(y')\<±.
o

Indeed,

|α_ s ^ - a-a y'\ = |α_ s (?/0 + y+) - «-β (2/ί + 2/ί)l

^ |α_..(y0 + 2/+)| + Iα-.(i/5 + y'+)\

which proves \Df(a-9 y) — Df(a_s y') \ < e/5. Then (5) follows immedia-
tely since Z?/ is invariant under α_s.

To complete the proof of Lemma 5, note that



510 L. PREISS ROTHSCHILD

\Df{y) - Df(y')\ ^ \Df{y) + Df(ya + y+)\ + \Df{y') - DM + y\)\

+ \Df(Vo + V+) - Df(y)\ + \Df(y'o + y\)
- Df(y')\ + \Df{y) - D(y')\

<± + ± + ^ + ± + ±}yy (3), (4) and (5) = e .

We may now complete the proof of the theorem. Lemmas 4 and 5
show that for any D e />, the function Df can be extended continuously
over 0.

We shall assume the following, which can be proved using ele-
mentary calculus.

(6) If h(x) is a function on R such that dh/dx exists and is
continuous off 0, then h is differentiable if the function dh/dx can be
extended continuously over 0.

By (6) and induction, it follows that Df exists and is continuous
on all of Q for any DeD.

This finishes the proof of the theorem.
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THE FIXED POINT PROPERTY FOR ARCWISE
CONNECTED SPACES: A CORRECTION

R. E. SMITHSON AND L. E WARD, JR.

Several years ago the second author stated a fixed point
theorem for a class of arcwise connected spaces which includes
the dendroids as well as certain nonunicoherent continua.
Subsequently the first author detected a flaw in the proof.
The present collaboration has produced a correct proof. Since
the theorem has not been subsumed in the literature of the
intervening years and since other authors have alluded to it,
it seems desirable to publish the new proof.

For recent references to the theorem, see [1], [4] and [7].
The original, erroneous argument can be found in [5]. (The error
(p. 1277) occurs in the assertion that S' = \J (S'r) is connected, and
hence that ^V* has a maximal member.)

In the present exposition a few changes have been made in
terminology. In what follows an arc is a compact connected Haus-
dorff space with exactly two non-cutpoints. A space X is arcwise
connected if for each two elements x and y of X with x Φ y, there
exists an arc [x, y] contained in X. It is convenient to write [x, x] =
{x} and [x, y) = (y, x] = [x, y] — {y}. A circle is the union of two arcs
which meet only in their endpoints. We write • to denote the
empty set. If e e X then an e-ray is the union of a maximal nest
of arcs [e, x]. If R is an e-ray then

[efx):[e9x]aR}9

where the bar denotes closure. If X is not compact then it may be
that KR is empty, but in the compact case this cannot occur.

THEOREM. If X is an arcwise connected Hausdorff space which
contains no circle, if eeX and if f:X—+X is continuous, then f
has a fixed point or there exists an e-ray R such that f(KR) c KR.

COROLLARY. If X is an arcwise connected Hausdorff space which
contains no circle and if there exists ee X such that KR has the fixed
point property for each e-ray R, then X lias the fixed point property*

Before embarking on the proof of the theorem, some subsidiary
results will be helpful.

LEMMA 1. If X is a Hausdorff space, A is an arc and f:A—+
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X is continuous, then f(A) is arcwise connected.

Since A is locally connected and compact it follows that f(A) is
locally connected. In contrast to the case where A is separable, the
arcwise connectivity of f(A) is not immediate [3]. A proof of Lemma
1 can be found in the thesis of J. K Harris [2]; it is a modification
of an argument first used by J. L. Kelley (see, for example, [6; p. 39].)
We give a sketch of that argument.

If x and y are elements of f{A), then there exists a closed subset
F of A which is minimal with respect to {x, y) c f(F) and f(a) = f(b)
whenever a and b are the endpoints of a complementary interval of
A — F. It follows from this minimality that f(F) is connected and
that x and y are the only non-cutpoints of f{F). Therefore f(F) is
an arc, and so f(A) is arcwise connected.

For the remainder of this paper X is an arcwise connected Haus-
dorff space which contains no circle and ee X. In particular, if x
and y are distinct elements of X then the arc [x, y] is unique.
Consequently the relation x ^ y if and only if x e [e, y] is a partial
order. As usual, if x ^ y and x Φ y we write x < y.

Of course each arc in X has a natural order which does not
necessarily agree with the partial order ^ . If a and b are elements
of X and if p precedes q in the natural order on [α, b], we write [a,
p, q, b].

LEMMA 2. If a, b and c are elements of X such that a <b and
a 3C c, then ae [b, c].

Proof. If b ̂  c then by transitivity the hypothesis that α ̂  c is
contradicted. Therefore, by the uniqueness of arcs there exists d Φ
b such that [e, b] Π [e, c] = [e, d\. Moreover,

a e [e, b] - [e, d] c [d, b] c [d, b] (J [d, c] = [6, c] .

LEMMA 3. Let f:X-+Xbe continuous and suppose x and t are
elements of X such that x < t < f(x), t < f(t) and f(x) gΞ f(t). Then
there exists ye (x, t] such that f(y) e [f(x), f(t)] and f(y) ^ f(x).

Proof. By the uniqueness of arcs there exists ze X such that
[z, /(»)! = [e, /(&)! ΓΊ [/(«), f(x)] c [fit), f(x)], and therefore by Lemma
1, [z, f(x)] c f([x, t]). Because f(x) S /(*) and z ^ f{t) it follows that
z φ f(x). Consequently there exists ye (x, t] such that z — f{y)

LEMMA 4. If f: X—> X is continuous and if p and q are elements
of X such that [f(p), p, q, f{q)\, then there exists xe [p, q] such that
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x = f(χ).

Proof. By a straightforward maximality argument there exists
[x, y] c [p, q] which is minimal relative to [f(x), x, y, f{y)] If f(x) Φ
x then x = f(xt) where xx e (x, y] so that [xl9 y] contradicts the mini-
mality of [x, y]. Therefore f(x) = x.

A subset C of X is called a chain if it is simply ordered with
respect to the partial order ^ .

LEMMA 5. If xe X such that x ^ f(x) and if there exists tL e X
such that ίi ^ /(ίx) ^ x, then f has a fixed point.

Proof. Let T be a subset of X which is maximal with respect to
T\Jf(T) c [e, x] and t ^ f(t) for all te T. Since Γ c [e, a?], there is
a least upper bound ί0 of T. We will show that ί0 = /(ίo)

Suppose first that t0 ^ /(ί0) and f(tQ) S U Then there exist
disjoint open sets U and V such that toe V, f(V) c ί7and U f) [e, t0] =
• = VΠ[e, f(t0)]. If ίe T is chosen so that [t,to]c:V, then [/(ί),
/(ίo)] c f([t, t0]) c Ϊ7 since, by Lemma 1, /([£, ί0]) is arcwise connected.
Since t < f(t) and £ g£ f(to)9 it follows from Lemma 2 that £ e [/(£)>
/(ίo)] c Z7, and this contradicts our assumption that C7 and V are
disjoint. Therefore, either /(ί0) ^ ί0 or ί0 ^ /(ί0).

If /(ίo) < ί0 then there exist disjoint open sets 0 and W such that
£0e0 and f(0)aW. If ye T is chosen so that [y, ί0] c 0, then [/(?/),
/(ί o )]cΐΓ and, since /(ί0) <y ^ f(y), it follows that ye W. Again
this is a contradiction and therefore ί0 ^ /(ίo)

If ί0 < /(ί0) then there are disjoint open sets Ur and V such that
ίoe V, f(V') c Z7' and J7' Π [e, ί0] = D If se[tOf x] is chosen so that
[ί0, s] c F', then s < /(ί0) and hence [/(ίo), /(s)] c Z7'. By Lemma 3
there exists se(ί0, s] such that f(z)e[f(to),f(s)] and f{z)<,f(Q.
Since 2 < /(z) ̂  /(ί0) ^ a?, the maximality of the set T is contradicted.
Therefore ί0 = /(ί0).

Proo/ o/ ίλe theorem. Let ^ denote the family of all subsets
S of X such that S U /(S) is a chain and ί ^ /(ί) for each ί e S.
Clearly {e} e ̂ , so by Zorn's Lemma £f has a maximal member So.

Suppose So U /(So) c [e, x] for some x e l If x S f(χ) then /
must have a fixed point by Lemma 5. If x ^ /(a?) for each x such
that So U /(So) c [e, a;] then by maximality both x and f{x) are members
of So and hence x = /(#)•

Therefore we may assume that So U /(So) is cofinal in some ray
R. It follows readily that So is cofinal in R. We will show that if
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f(KB) — KR Φ • then / has a fixed point Choose yeKB such that
f(y) e X — KB, then there is a generalized sequence xn (i.e., a function
whose domain is some ordinal number) in R such that xn < xn+1 and
%% —+ V* Since So is cofinal in R, the sequence xn can be so chosen
that there exists yneSof) [xn, xn+ί], for each n.

If there exists n, such that xni $ [e, f{xn)\ then [f(yn), yni, x%1,
f(%n)]> so that by Lemma 4, / has a fixed point. Consequently we
may assume xn ^ f(xn) for each n. Moreover, since f(y) ί KR we
may assume f(xn) & R, for each n.

If there exists n2 such that f{xn) ^ f(f(%n2)) then we may find
m such that |/w e [e, f(f(xn.))] and therefore [/(τ/J, ym, f(xn), /(/fe2))].
Again, / has a fixed point by Lemma 4. Hence we may assume that
#n < /(»») is /(/(»n)) But then the hypotheses of Lemma 5 are
satisfied.
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ZEROS OF SUMS OF SERIES WITH HADAMARD GAPS

L. R. SONS

If / is a function of the complex variable z in the unit
disc and the power series expansion for / about zero can be
expressed as a finite sum of series with Hadamard gaps, then
f(z) assumes every finite value infinitely often provided the
coefficients in the power series expansion of / do not tend to
zero and the average value of (log+l/\f(reiθ) \)p does not grow
too rapidly as r -»1~ for some p > 1.

1* Introduction and statement of results* Let / be a function
analytic in \z\ < 1 for which

(1) f(z) = c0 + Σ Wnk

where {nk} is a sequence of positive integers for which

(2)
nk

The series in (1) is said to have Hadamard gaps.

If q is greater than about 100, G. and M. Weiss [9] proved f(z)

assumes every finite value infinitely often provided

ό ) 2J I ck I = oo .
k=0

If q > 1, W. H. J. Fuchs [2] showed f(z) assumes every finite value
infinitely often provided

(4) lim sup \ck\ > 0 .

In [3] Fuchs has extended his result to show that / assumes every
finite value infinitely often in each sector

S= {z\a< avgz < β and \z\ < 1}

where a and β are fixed real numbers.
The original result of Fuchs may also be extended as follows:

TEOREM 1. Let {nk} be a sequence of positive integers for which
(2) holds. Let I be a fixed positive integer, and let n^ for i = l, 2, , I
be integers for which

nk^ < nk

l) < rik

ι~ι) < < ni1} < nk .
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Suppose f is a function analytic in \ z \ < 1 for which

f(z) = a0 + Σ (α*£Z)sΛ* * + ana-DZn^ι) + . . . + a^uz*™ + ankz
%k) ,

( 5 ) „ ^

= Σ c^ .
fc=o

Suppose (4) ΛoWs αwd /or some p > 1 ί/^re exists a constant C with
0 < C < + °

(6 ) Λ_P(log+l/| /(«") I)W ^ c(-L\2\\ogn/\ f(reiθ) \)dθ)'
2τrJo \2τrJo /

for a sequence of values of r approaching one. Then f(z) assumes
every finite value infinitely often in \z\ < 1.

Two immediate corollaries of Theorem 1 are:

COROLLARY 1. Assume the hypothesis of Theorem 1 with n{

k

a} =
nk — a for k = 1, 2, 3, and 0 < a ^ I. Then f(z) assumes every
finite value infinitely often in \z\ < 1.

COROLLARY 2. Let f be a function analytic in \ z \ < 1 for which

f(z) = Σ ckz* = fo(z) + f(z) + + ft(z)

where for each i, fi(z) has a power series expansion about zero with
Hadamard gaps. If (4) holds and for some p > 1 there exists a con-
stant C with 0 < C < + oo such that (6) holds for a sequence of values
of r approaching one, then f(z) assumes every finite value infinitely
often in \z\ < 1.

Corollary 1 is a special case of Theorem 1 and extends a result
of C. Pommerenke [6] who showed that functions of the type of
Corollary 1 without the assumption (6) must assume every value at
least once- (G. Schmeisser [7] has recently extended the method in
[6] to show the Pommerenke-type series assume every value infinitely
often). Corollary 2 follows from Theorem 1 by noticing that f(z) can
be rewritten, if necessary, to be in the form (5).

For functions of the form (5) for which

limsup }OgM^ > 2(2 + 0
r->i~ — log (1 — r)

where M(r) denotes the maximum modulus of f(z) on \z\ = r, we

remark in [8] t h a t

— log (1 — r)
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where n(r) denotes the number of zeros of / in | z \ ̂  r. It seems
probable that functions of the type of Theorem 1 also assume every
finite value infinitely often in each sector

{z I a < arg z < β and | z | < 1}

where a and β are fixed real numbers. It has been shown by P.
Erdos and A. Renyi [1] that if {nk} is an increasing sequence of natural
numbers satisfying

lim inf (nk - %)1/(*""'} = 1 ,

then, for any sequence {ωk} of natural numbers for which

lim ωk = + oo

there exists a sequence {mk} of natural numbers such that

0 <̂  mk — nk < ωk

and a function g, analytic in | z | < 1 with the power series expansion

fc=o

where the bk are positive, such that g(z) is unbounded in \z\ < 1, but
bounded in the domain \z\ < 1, |arg#| > ε, for any ε > 0.

If / is an analytic function in | z \ < 1, D. Gaier and W Meyer-Konig
[5] have defined the radius Rψ defined by z ~ reiψ, 0 ^ r < 1, singular
for / if f(z) is unbounded in any sector \z\ < 1, ψ — e < argz < φ + ε
with ε > 0. They showed that if / is unbounded in \z\ < 1 and the
power series expansion for / about zero has Hadamard gaps, then
every radius is singular for /• We have

THEOREM 2. Suppose f is a function which is analytic in | z \ < 1
and has the power series expansion (5). Suppose

lim sup {max |cΛ |r f c} = co .
r->l*~

Then each radius Rφ(0 <£ ψ < 2π) is singular for f.

In section two the necessary lemmas are stated and the theorems
are proved, while section three contains the proof of the essential
lemma which enables us to use the idea of G. H. Hardy and J. E.
Littlewood of accentuating the dominance of the largest term in the
series (5) by repeated differentiation (c.f. Fuchs [2]).

2* Proofs of the Theorems* We need three lemmas:
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LEMMA 1 (Fuchs [2]). Let g be a function analytic in \z\ < R.
If for some positive integer p

M (\z\<R),

and

then g(z) assumes in \z\ < R every value w lying in the disc

I w - g(0) I < KRpAp+ιM~p

where K is a positive number depending only on p.

LEMMA 2 (Gaier [4]). Let E be a closed subset of {z\\z\ = 1} and
assume that E has measure 2πy where 0 < 7 < 1. If p is a polynomial
with N terms, then

max I p{z) | ^ CN{i)-max |p(z) \
| z | = l zeE

where

( 7) log CN(i) = (r2—^ - 7-^—W 3 .
\1 _ 7 1—7/

LEMMA 3 Assume the hypothesis of Theorem 1. Let p, v, and
a be positive integers where 0 <; a ^ I. For k = 1, 2, 3, - ϊβί n(

k

0) —
nA. Define

So = exp{ — p/nla)} , Si = exp \ —:

and

where SQ < S < Sx; 0 ^ /3 ̂  ϊ; α^d fc = 1, 2, 3 . T/^e^ /o?* a fixed
7 Ί{n£/& 0 < 7 < 1 there exists an integer p0 depending on q and I
such that for p > p0 and v > vo(p)

Z-i \Wk,(D + yVkAi—i) + . . + Wk,{o)) <C ——(G3Z+3(7)) H/j,,(α) ,

where C3Z+3(7) is defined by (7).

Proof of Theorem 1. We note that it suffices to show /(z) assumes
zero infinitely often in \z\ < 1. So suppose /(z) is zero only a finite
number of times in \z\ < 1 and denote these zeros by zl9 z2, * ,Zj.
Then N(r, 1/f) = 0(1), and it follows from the first fundamental theo-
rem of Nevanlinna theory that
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(8) m(r, f) = m(r, 1/f) + 0(1) .

For 0 < r < 1,

ΣK|
\fc=O

on a set of θ of measure not less than μq > 0 [10, p. 2161], so

(9 ) m(r, f) —> co

as r approaches one by condition (4)

For a value r' for which (6) holds, let g*(r') denote the set of θ
in [0, 2π] at which

(10) log+ - > —m(r', 1/f) .

Denote the measure of ί?(r') by | ^ ( r ' ) | . Then using Holder's in-
equality and (6)

πm(r', 1/f) £ \ log+ ^

\Jsf(r')\ | / ( r Ό

eft?

Thus,

(TΓ^TΓC)1^)^

Define 7 by

2ττ7 = (7r/(2τrC)1/ί3)g *

Let p = m a x ^ ^ i | ^ | , and let

U = l im s u p \ck\ .

If ?7 < oo, let N be the least integer such that

k,|<|ί/

for k > N. If U= *o, let N= 0.
Define

μ(r) = sup I ck \ rk , (0 ^ r < 1)
Je>N

Let F = F(r) be the largest integer such that
1 Theorem 8.20 on page 215 easily extends to finite sums of series with Hadamard

gaps, and so Theorem 8.25 on page 216 does also.
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If u — oo, we see

\cv\rv > 1 , (r>r0),

and also V(r) —> co as r —> 1~. If U < oo, we see

and again F(r) —* oo as r —• 1"" since there are infinitely many integers
k with

Using the notation of Lemmas 1 and 3, we choose p >̂ max (iSΓ, j>0)
and choose r so close to one that

where n[a) = V(r), n^ > 2p, and v > vQ(p). We may assume
is a value r' for which (6) holds. Let

T(z) = j k Σ _ i ( o , « ) « i > + ••• + α . 4 « *) .

By Lemma 3

Σ ( Σ I α.«> I r *' TΓM<)) ^ ^(r) Σ (Wt.a) + + Wk,m) ,

^ 21 o. («) I r<α) \ (C^iy))^ Wv, (a) .
4

Hence,

f[p){rSeiθ) = T{p){rSeiθ) + E{rSeiθ)

where

Consequently,

and using Lemma 2 on the polynomial T{p)(rSeiθ) where r S i s a value
r' for which (6) is valid we find
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for values of θ in
Therefore if r' = riSoS^112 is a value for which (6) holds, then we

may apply Lemma 1 to

g(ζ) =

with

where p and v satisfy the hypotheses of Lemma 3. Then

R*A*"M-* > C.(p, q, I, 7) I <*.(-> I (rS^iSo/Sd9*™ >

> CA(p, q, I, i)μ(r) ,

>Cδ(p,q,l,y,U).

Thus /(z) takes every value w in the disc

\w - f{r{SΆ)ll2eίθ)\ < Q(p, q, I, 7, U) .

But by (10) we note that

' 2 O | < exp ( - -ί mMSoSO171), 1//)) ,

and because of (8) and (9) we conclude that when r is near enough
to one

\MSoSduteiβ)\<Cδ(p,q,l,yf U) .

Thus f(z) will assume the value zero at points arbitrarily near | z —
1 which contradicts our earlier assumption and proves the theorem.

Proof of Theorem 2. Suppose there is some radius Rφ which is
not singular for /, and so there exists an ε > 0 such that \f(z) \ is
bounded in the sector Sf = {z\φ — ε < arg^; < φ + ε, \z\ < 1}. Then
for each complex number α, f(z) — a is also bounded in S^ Thus
taking 2πy — 2ε, the argument of Theorem 1 shows / assumes a
infinitely often in SK Since a is arbitrary, | / | is unbounded in £f,
and therefore Rψ is singular for /.

3* Proof of Lemma 3* If nψ < p, then WkΛβ) = 0. Turning to
P ^ nψ < n[a), we first observe that for fixed β with 0 ^ β ^ I,

ί > l , (ft = 1,2,3,. . .) .

Assume Wk+2Aβ) Φ 0 and n{£l2 ^ ^iα ). Then
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a

< sup exp {p(l — t + log t)}
0<ί<l/g

^ exp {p(l - q) - log q) .

Hence the right-hand side of (11) is less than A-1 =
provided

v> log q — 1 + q '

Proceeding in a similar manner, we may also show

WVy{a) A WvΛa) A

when p > pt. Consequently for WkΛβ) Φ 0 where k <̂  v — 3 and kΛ-2n
v — 1, we see

(12) WkΛβ) . FPfc+2,(j) TΓ,,g>(/ί) ^-3,^) < / J ^ y fO < θ < ί)

and for WkΛβ) Φ 0 where k <£ v — 2 and fc + 2π = i; we see

wk+2Λβ) wMt{β) w^Λβ) w»tW ~
Using (12) and (13) provided p > #„ we get

Σ (wkΛl) + ̂ ,α_υ + ... + wkfW) <
k<l

^,α_υ + + wkfW) <
A

( U ) ^-2(1 +

N o w for & Ξ> i; > y o(p) a n d x a n y i n t e g e r w i t h 0 < ^ ^ p — 1, w e
h a v e s i m u l t a n e o u s l y

X ^ oi/» I ^k+2\ Ή'vΛ t X ^

) •/ViKP) n* \ MKP) I rvι\<X) n*
lvk »V \ ίθk ' IVV tΛ/

and

/γ% \β) /γ / ryi (p)

Then when nf ^ n[a),

Vτk+2,(β)

WkΛβ)

\(ί-D
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where t = rik%/rik

β) ^ q. For t ^ q, θ{t) ^ θ(q), so

(15) Jg±ω£L <; 2 e x p \ - \ p ( q - 1 - logq)\ ,

when nψ ^ n[a). Hence the right-hand side of (15) is less Ithan I/A
provided

q — 1 —

Proceeding in a similar manner we may also show

when p > p2. Consequently for k >̂ v + 2 ^ yo(p) + 2 and k = v +
we see

κ } wk-2Λβ) wk^Λβ) w,+2Λβ) w,Λa) ~ \A) ' K ~ μ -

and for k ;> v + 3 > vo(p) + 3 and k = v + 2n + 1, we see

Π 7 ) ^fe,(^) rVk-2,(β) Vrv + 5,(β) Wu+z,(β) ^ / J-^A (0 < β <

wk^Λβ) wk-iΛβ) w,+t,(β) wVtW

 = \ A I ' = p =

Using (16) and (17) provided p > p2, we get

Σ {WkΛl) + wk,a-» + ... + wk,w) < 2

fc> + l

Combining (14) and (18) we now have the lemma provided p0 is the
maximum of px and p2 (and remembering that A = 1 + 16(ί + 1)C3|+S(7)).

The authoress is grateful to the referee for his helpfulness.
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INTERPOLATION SETS FOR UNIFORM ALGEBRAS

A R N E STRAY

Let A be a uniform algebra on a compact Hausdorff space
X and let E c X be a closed subset which is a ft. Denote
by BE all functions on X\E which are uniform limits on
compact subsets of X\E of bounded sequences from A.

It is proved that a relatively closed subset S of X\E is an
interpolation set and an intersection of peak sets for BE if
and only if each compact subset of S has the same property
w. r. t. A. In some special cases the interpolation sets for
BE are characterized in a similar way. A method for con-
structing infinite interpolation sets for A and BE whenever
x G E is a peak point for A in the closure of X\{x}, is pre-
sented.

With X as above let S c X be a topological subspace. Then Cb(S)
denotes all bounded continuous complexvalued functions on S and we
put 11/11 = sup{|/(aO|:&eS} if feCb(S).

A subset S of X\E closed in the relative topology is called an
interpolation set for BE if any / e Cb(S) has an extension to X\E
which belongs to BE. If there exists / e BE such that / = 1 on S
and I/I < 1 on (X\E)\S, we call S a peak set for BE. If S has both
this properties it is called a peak interpolation set for BE. Peak and
interpolation sets for A are defined in the same way.

It is easy to see that BE is a Banach algebra with the norm
N(f) = inf {sup% | | /J | : {fn} a A, fn —>/ uniformly on compact subsets
of X\E}. It is an interesting problem in itself when this norm coin-
cides with sup norm on X\E.

In case X = {z: \ z | <; 1} and A is the classical disc algebra of all
continuous functions on X which are analytic in D = {z: \z\ < 1} the
interpolation sets for BE (where E is a closed subset of dX) are char-
acterized by that S Π dX has zero linear measure and that S Π D is
an interpolation set for H°°(D), the algebra of all bounded analytic
functions on D. This result was obtained in [8] by E. A, Heard and
J. H. Wells.

Their work has been generalized in different ways. Various
authors have considered more general subsets E of {z: \z\ ̂  1} and
more general algebras of analytic functions. ([2], [3], [4], [6], [9]
and [10]).

In this note we wish to generalize the results of Heard and Wells
to the setting of uniform algebras. We start with an extension of
Theorem 2 in [8].
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526 A. STRAY

THEOREM 1. Let S c X\E be closed in the relative topology.
Assume X is the maximal ideal space of A. The following statements
are equivalent:

( i ) Given g e Cb(S), e > 0 and an open set Uz) S, there exists
feBE such that f = g on S, \\f\\ = \\g\\, \f\ < ε on (X\E)\U and
N(f)^\\g\\(l + ε).

(ii) There exists a constant M such that if geCb(S),ε > 0 and
Uz> S is open we can find fe BE such that f = g on S, \f\ < ε on
(X\E)\U and N(f) £ M\\g\\.

(iii) Each compact subset of S is an interpolation set and an
intersection of peak sets for A.

Proof. That (i) => (ii) is trivial.
(ii) => (iii). Choose geC(K) with \\g\\ = 1.
Let Ka S be compact, U and W open sets such that K c W (Z

W c U c U c X\E and choose ε > 0. By hypothesis there exists
gγ e BE equal to g on K such that | g, \ < ε/2 on U\ W and N(gx) ̂  M.

Hence we can find g2eA with \\g2\\ <̂  M, \g — g2\ < ε on K, \g2\ < ε
on U\W and \\g2\\ ^ M. By ([8], Lemma 2) applied to the restriction
map BE — C(K) we get that any g e C(K) we get that any g e C(K)
has an extension / to Xsuch that feA,\\f\\^ M/(l - ε) and | / | <
e/(l - ε) on U/W. Essentially by Bishops "1/4 - 3/4-Theorem" (See
[5], Th. 11.1 p. 52) we can use what is proved until now to find a
compact set Kγ and fe A such that f — 1 on Ku \f \ < 1 on Ϊ7VKΊ
and KdK.ciW. By "Rossis Local Peak Set Theorem" ([5], p. 91)
K, is a peak set for A and (iii) is proved.

It remains to prove (iii) => (i). We only indicate how to modify
our proof of Lemma 2.1 in [10] to apply to the present situation. As
in that lemma we construct a sequence {/»}~=i c A with the properties
listed there. Let t e < 0 , 1 > . The sum ΣΓ/» = f e BE and the proof
of Lemma 2.1 gives (i) if we can show that N(f) ^ 1 + t. This is
obtained by constructing {fn} such that | |/ n + / w + 1 | | ^ 1 + l/2 ί for
n = 0,1, •••.

This can be obtained if when constructing fH+1 we arrange it so
that | / n + Λ + 1 | = IΛI + IΛ+il on Kn+ι U Kn+t (Ku+ι, K%+2 as in [10])
and then if needed, modify fn+ι to h fn+1 where he A equals 1 = \\h\\
on Kn+ί U ̂ + 2 U Kn+z, is small where |/n + /Λ+11 may be large and
has a small imaginary part.

We now state a lemma which is due to A. M. Davie:

LEMMA 1. There exists a sequence {Qfc}Γ=i of polynomials with the
following properties:
(1) Σ Γ Qk(z) —*1 uniformly on compact subset of {z: \z\ < 1}
( 2 ) Qk(L) = 0 / o r k = 1,2, . . . α^d Σ Π Q * ( « ) I g 3 i / |^ | ^ 1.
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For a construction of {Qk} see the proof of Theorem 2.4 in [1].
We now have:

THEOREM 2. Let E be a peak set for A and let S c X\E be
closed in the relative topology. The following statements are equiva-
lent.

(i) S is an interpolation set for BE.
(ii) There exists M > 0 such that if K c S is compact and g e

C(K) we can find feA equal to g an K and with \\f\\ ^ Af||flr||.

Proof, (ii) follows from (i) as in the first part of the proof that
(ii) => (iii) in Theorem 1. For the converse an argument used by
Davie in [1] works: Choose he A peaking on E and put Ek = S Π
{x: \Qk°h(x) I ̂  ε h~k] where ε > 0 is given in advance. Let g e Cb(S)
with | | # | | = 1. Choose by hypothesis gkeA equal to g on Ek with
110Λ| I ̂  M and put G = Σ*Z=i(Qk°h)-gk. Then by Lemma 1 GeBE,
\\G\\ ̂  SM and if xeS we have

\G(x)-g(x)\ =

£Σ* e2~lc = ε .
1

By Lemma 2 in [8] (i) follows.
The hypothesis that E is a peak set for A seems unnecessary, but

we needed it to apply Lemma 1. It would be of interest to get some
examples where Theorem 2 holds without assuming E to be a peak
set.

A case which deserves investigation is when A is an algebra of
generalized analytic functions ([5], Ch VII) viewed as a uniform algebra
on its maximal ideal space. Then BE is very easy to describe when-
ever E is a closed subset of the Siϊov boundary of A. In particular
the norm N(f) coincides with sup norm on X\E in this case.

We want to give two examples where a more detailed description
of the interpolation sets for BE can be given.

(a) Let U c Cn be a strictly pseudoconvex domain with C2

boundary and let X be the closure of U. Let A be the algebra A(U) =
{feC{X):f\u is analytic}.

In this case Theorem 2 is valid if E is any closed subset d U and
the interpolation set S can then also be characterized by the following:

(I): Each compact subset of S Π 3 U is a peak interpolation set
for A,
and

(II): Sf] U is an interpolation set for H~(U), the algebra of all
bounded analytic functions in U.
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For a proof of this note that (i) => (ii) in Theorem 2 holds whenever
E is a closed G> That (ii) => (II) is a simple normal family argument
and I also follows from (ii) by a result of N H. Varopoulos [11] and
since each xedΐl is a peak point for A(U) in this special case.

To obtain (i) from (I) and (II) one can argue as in the proof of
Theorem 2.2 in [10] To use that proof one needs an approxima-
tion result similar to Theorem 2.1 in [10]. This nontrivial result is
contained in a recent work of R. M. Range [9j.

(b) Assume A is a Dirichlet algebra on its Silov boundary Y.

Let E be a peak interpolation set for A and let S c X\E be
closed in the relative topology and assume S\ Y countable. Then one
can prove that S is an interpolation set for BE if each compact subset
of S Π Y is an interpolation set for A and if for some constant C the
following result holds: If P is a nontrivial Gleason part for A and
S Π P = zu z2, and au a29 are numbers such that \ak\ <* 1 for
k = 1, 2, there exists / e H°°(P) such that /(zfc) = αA for & = 1, 2,
and I/I ^ C on P. (For the necessary definitions see [5] on page 34,
142 and 161).

Using this hypothesis and the Wermer-Glicksberg decomposition
([5], Thm. 7.11, p. 45) we can prove that S U E is an interpolation
set for A. This is done in the same way as Glicksberg proves Theo-
rem 4.1 in [7]. But then S is an interpolation set for BE by Theorem
2.

In [8] Heard and Wells described an explicit method for con-
structing infinite interpolation sets for B[x] if x e X is a non-isolated
peak point for A. Their method didn't depend on Carlesons characteri-
zation of the interpolating sequences for H^(D).

We indicate here how the polynomials {Qk} can be used for a
similar construction avoiding an unnecessary hypothesis about con-
nectedness which Heard and Wells assumed. ([8], Theorem 3).

THEOREM 3. Let xe X be a peak point for A and Pc X\{%} a
set which contains x in its closure. Then an infinite interpolation
set for B{x} contained in P can be constructed.

Proof. Choose e > 0 and f eA peaking at x. For k = 1, 2,
choose numbers nk and mk such that nk < mk < nk+1 and put Hk =
Σ?jf Qj°f- Using Lemma 1 it is easy to see that we can arrange it
such that the sets Ek = {x: \Hk(x)\ ^ ε2~k} and

Bk = PΠ{x:\Hk(x) — 11 < e2~*}

are nonempty for k = 1, 2, and that Et Π E5 = 0 if i Φ j .
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If we choose xk e Bk for k = 1, 2, then S = {x^i is an inter-
polation set for B[x}. For if g e Cb(S) and we put G = ΣΓ g(%k)Hk then
GeB{x], \\G\\ £3\\g\\ by Lemma 1 and \G - g\ < ε\\g\\ on S.

Comments on Theorem 2:
We want to point out that the hypothesis that E be a peak set

cannot be omitted. If A is any uniform algebra for which there
exists an infinite interpolation set F not meeting the Silov boundary,
one obtains a counterexample by taking E to be a limit point of F
and S = F\E. For an example of such an algebera A we refer to
Theorem 2.8. in [1]. On the other hand A. M. Da vie has recently
proved (private communication) that in case A is the algebra R(X)
and X is a compact plane set, Theorem 2 is valid without assuming
E to be a peak set.
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APPLICATIONS OF RANDOM FOURIER SERIES OVER
COMPACT GROUPS TO FOURIER MULTIPLIERS

ALESSANDRO FIGA-TALAMANCA AND J. F. PRICE

The Fourier series of a function on a compact group can
be "randomized" by operating on each of the Fourier coef-
ficients by independent random unitary operators. In this
paper the theory of random Fourier series is used to prove
several new results for a type of Rudin-Shapiro sequence and
for Fourier multipliers. Thus in § 2 it is shown in effect that
2R(L*, I/O <= W{L\ L2) for all p, qe [1, oo] except for the pair
(p, Q) = (°°, 1)> while in §3 the theory of random Fourier series
is used to construct a type of Rudin-Shapiro sequence. This
sequence is then used in § 4 to obtain, for compact groups in
one case, and compact Lie groups in another, slightly more
restricted versions of several known families of strict inclu-
sions for Fourier multipliers over compact Abelian groups.

1* Notat ion and preliminaries* Throughout this paper we sup-

pose that G is a compact group (always Hausdorff) with normalized

Haar measure λG and that Γ is the set of equivalence classes of
continuous irreducible unitary representations of G. The spaces of
p-integrable functions, continuous functions and Radon measures over
G will be denoted by LP(G), C(G) and M(G) [or Lp, C and M] respec-
tively, while their respective norms will be denoted by || ||p> II ΊU
and IHU We will identify each function with the measure which
it generates.

If μeM(G), then μ is uniquely represented by the Fourier series

μ~Έd(y)trlμ(Dr)Dr( )],
γeΓ

where: Dr is a representative (which we assume to be fixed throughout
the sequel) of the class y e Γ; d(y) is the (finite) dimension of 7; tr
denotes the usual trace; and μ is the Fourier transform of μ with
respect to {Dr: 7 6 Γ}, that is

μ(Dr) = \ Dr(x)*dμ(x) ,
JG

for each y e Γ, Dr(x)* denoting the Hubert adjoint of Dr(x).
Let Hr denote the Hibert space of dimension d(y) corresponding

to the representation Dr, and let © denote the set consisting of func-
tions W on Γ such that W(i) is an endomorphism of Hr for each 7.
We can now define the "randomizing group" for G. Let & denote
the product group ΠTer^{Hr), where ^{Hr) is the compact group
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of unitary endomorphisms of Hr. Clearly gf may thought of as a
subset of @. Whenever μ e M(G) and U e & we denote the series

Σd(y)tr[μ(Dr)U(y)Dr]

by μu. The following two results are basic to this paper.

THEOREM 1.1. Suppose that & is equipped with its Haar measure
and that μ e M(G) has the property that μu represents a measure for
every U in a subset of & with positive measure) then μ is in L2(G).

THEOREM 1.2. Suppose that feL2(G). Then fu is the Fourier
series of a function in Γ\ISP<O° LP(G) for almost every U in gf, where
<& is equipped with its Haar measure.

The above two theorems are due to Figa-Talamanca and Rider
(see [4, (36.18)] and [2] or [4, (36.5)]).

MULTIPLIERS 1.3. If A and B are any two spaces selected from
LP{G), 1 ^ p ^ oo, C(G) and M(G), we define 2ft (A, B) to be the set
of We® such that

Σ,d(7)tr[w(y)μ(Dr)Dr]
γer

is the Fourier series of an element in B (we will denote this element
by Twμ) whenever μ belongs to A. Clearly the operator μ ι-> Twμa

is linear, while its continuity is an immediate consequence of the
closed graph theorem. Thus we define a norm on W{A, B) as the
usual operator norm on the set {Tw: We SK(A, B)}, and we denote this
set by M(A, B).

2* Multipliers and pseudomeasures* Let GL denote the subset
of 6? consisting of elements W such that

where || TF(7)|| denotes the usual operator norm for endomorphisms of
Hr. Whenever G has the property that sup{d(7): 7 6 Γ) is finite [for
example, if G is Abelian] and A, B are selected from LV(G), C(G) and
M(G), then it is banal to show that

(2.1) Wl(A, £)£<£«, ,

(see [4, Theorem (35.4), part IV]) and hence that each TeM(A,B)
may be written in the form T: f \—> f*μ, where μ is a pseudomeasure
(see [6, §2.2]).
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The inclusion (2.1) is known to be valid for some pairs A, B over
an unrestricted compact group (see, for example, the table on pp. 410-
411 of Hewitt and Ross [4]) and in this section we extend its validity
to some further pairs, thus completing five squares of Hewitt and
Ross's table.

THEOREM 2.1. Suppose that {A, B) is one of the pairs (Lp, Lq),

(Lq, L1), (L\ M), (L~, Lp) or (C, Lp) where 1 < p < 2 < q< oo; then

(2.2) m(A, B) = (£. .

REMARKS 2.2. (1) Four cases remain open: (L^^L1), (L°°, M), (C, L1)
and (C, M). We were not able to decide whether (2.1), and hence
(2.2), is generally true for these cases. It is straightforward to show
that 3ft(L~, M) = m(C, M) = 2K(C, Lι). Also whenever S^Γ has the
property that sup{ώ(τ): 7G Γ) = oo, it is not true that there exists
We ©V^ with supp WaS such that We Wl(C, L1) (cf. Theorem (35.4),
part V, of Hewitt and Ross [4]). For example, when S is a Λ(p) set
for some p > 1, Theorem 2.1 above applies to show that whenever
WeWl(C, L1) has the property that supp W^S, then We 6L; examples
are known of sets S which are Λ(p) for all p > 1 and yet sup{d(τ):

ΎeS} = co (see Remark 10 of [2] or (37.11) (a) of [4]).
(2) There can be no analogue of Theorem 2.1 for non-compact

locally compact Abelian groups. For example, if G is a non-compact
LCA group and 1 ^ p < q :g ^o, then there exists a multiplier operator
from LV{G) into Lq(G) which cannot be written as convolution with
a pseudomeasure; see Larsen [5, Theorem 5.5.5].

Proof of 2.1. By inspection of Table (36.20) of [4], it is clear that
to prove equality in (2.2) we need only show that 3K(A, B) S-®~. Sup-
pose that l < p < 2 < g < co and that WeW{Lq, M), that is, that
WfeM for all fe Lq. Since 2 < q < oo, whenever fe Lq, then

fϋiΊ\ >f(Dr)U(y)

is the Fourier transform of an Lq function for a set of U in g? of
measure 1 (Theorem 1.2). In this case WfU is the Fourier transform
of a measure for all such U and so, by Theorem 1.1, Wf must be
the Fourier transform of an L2 function. Thus We M(Lq, U) and
since it is know that W{Lq, U) = SKoo[4], we have proved (2.2) for
the pairs {L\ Lp), (Lq, U) and (L\ M).

If % is a subset of @, write g* - {TF*: TFeg}, where TF* is
defined by T H TΓ(7)*. Since we have just seen that 3K(2/, M) = ©̂
and since it is obvious that (GL)* = GL, the proof of (2.2) can be
completed by showing
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(2.3) SPΪ(C, Lqf) s Wl(L9, My .

However (2.3) is a simple consequence of the theory of adjoint
operators. For if WeWl(C, Lqf) we can define T£: Lq-+M by

\ gd(T$f) = \ (Twg)-fdXG
JG JG

for feLq,geC. Thus, whenever feLq and g is a trigonometric
polynomial,

= \ mnf) = \ (τwg
JG JG

= Σrd(y)tr[(TwgΓ(Dr)*f(Dr)]

= Σrd(Ύ)tr[g(Dr)*W*(Ύ)f(Dr)] .

Thus (T*fΓ(Dr) = W*(y)f(Dr) for all / in Lq showing that W* e
Wl(Lq, M), from which follows the required validity of (2.3).

We now look at the inclusion relation opposite to (2.1). The fol-
lowing simple proposition will describe exactly the cases when we
have

(2.4) @ o£Src(If*, Lq) .

PROPOSITION 2.3. Suppose that G is infinite; then the inclusion
(2.4) is valid if and only if q ^ 2 ^ p.

Proof, (i) II q ^ 2 ^ p, then Lq^L2^Lp and so Wl(Lp, Lq) 3
m{L\ U). However M(L\ U) = ^ and so (2.4) is satisfied.

(ii) On the other hand, suppose that p < 2 and that (2.4) is
valid. Then certainly 3^ S3K(LP, Lq) and a straightforward applica-
tion of Theorem 1.1 implies that L p g L 2 , an absurdity when G is
infinite compact.

(iii) Finally we have the case 2 < q ^ oo and 2 ^ p <^ oo. If
we also suppose q Φ oo, then

3K(I/, I/O S 3W(C, IΛ) s 2K(iv9', AT)*

by (2.3), and the proof proceeds as in paragraph (ii). The case q = oo
follows easily from the inclusions.

3* Rudin-Shapiro sequences* Let G be a compact group and
t any number in (2, oo]. By a Rudin-Shapiro sequence of type t (briefly,
a £-jRS-sequence) we shall mean a sequence (hn)nBN9 where N={1, 2, •},
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of functions in U(G) with the properties

ί i n f p n | | a > 0 , s u p | | M * < - >
( ' llim||^m = 0.

(Recall that by \\K\U we mean sup{||feΛ(Dr)||: 7eΓ}.)
When t = oo the above definition is essentially that of the Rudin-

Shapiro sequences discussed, for example, in Gaudry [3] (where it is
shown that oo -.βg-sequences exist for all non-discrete locally compact
Abelian groups) and in Edwards and Price [1, §5.4 and §§A.1-A.4]
(where further sufficient conditions are given for the existence of
oo-iϋg-sequences). In this section we show that ί-i2>S-sequences, t < oo,
exist for all infinite compact groups. However, we would point out
that the proof is completely existential in nature. Similarly to [1,
§5.4], it is easy to see that if (hn) satisfies (3.1), then we can con-
struct a sequence (kn) from (hn) with the properties

(3.2)

where B1 and B2 are strictly positive numbers independent of n.

LEMMA 3.1. (a) Let G be an infinite compact group and let t e
(2, oo). Then there exists a Rudin-Shapiro sequence (hn) of type t.
Without loss of generality we can take (hn) with \\hn\\z = 1 for all
ne N.

(b) Moreover, if G is also a Lie group, then there exists a second
t-RS-sequence, (hi) say, with \\hn\\2 — \\ht\\z{ = 1), hn*hi = ht*hn, and
a positive nonzero number p independent of n such that

( \ \ Ω 1 + ι i p \ \ h \\2lp < 1 1 / ? * * / ? II < I I Λ \\2lP

V 1 / Γ 11 " ' T i l I oo ^ M ϊ l n * Γvn I I P = II r i n | | o o 9

for all ne N, and 1 ^ p ^ 2.

REMARK 3.2. When G is the circle group (the simplest compact
Lie group) the original Rudin-Shapiro sequence (φn) consists of trigono-
metric polynomials such that φn takes only the values ± 1 on its
support [0, 2% One might suspect that in this case Lemma 3.1 (b)
would be satisfied by taking hn = ht = ΦJWΦΛIU Certainly (i) is satisfied
(with p = 1) but however (ii) is not since ||few||L = II^J|Γ2> whereas

= l l Σ β l " /H^llr2~iog2"||55Ii||2-
2

ί m=0 Ml
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This difference is not essential: by convolving t h e nth te rm of

the classical Rudin-Shapiro sequence with the Fejer kernel of order

2n one obtains sequences which, after normalizing, satisfy p a r t (b) of

the lemma. This depends on the fact t h a t for p > 1 Fejer kernel

and t h e Dirichlet kernel have essentially the same Lp norms. For

our purposes Rudin-Shapiro sequences based on Fejer type kernels

are more convenient.

Proof of 3.1. Let (Un) be a contracting sequence of open, nonvoid,

symmetric, central (that is, stable under inner automorphisms of G)

sets in infinite, compact G with the property t h a t \imnXG(Un) = 0.

[When G is also a Lie group we learn from (44.29) of [4] t h a t there

exists a number k > 0 such t h a t t h e U'ns may be selected to also

satisfy

,Q Qv ίX(Un) ^ kX(UJ
( 8 8 ) \

Define χn to be the characteristic function of Un. Since each Un

is central, the Fourier series of each χn has the form

X»~Σir*rd(7)%n(Dr)tr[Dr] ,

where the χn(Dr) are complex numbers. By the proof of Theorem 4
of [2] (which is Theorem 1.2 above), there exists a number B(t), in-
dependent of n, and a subset ^ n of & with measure 1 such that

(3.4) I I Z J r i | 4 ^ 5 ( ί ) | | χ . | | f

for all W in %fn. Since G is compact, the measure of c2/~γ = ^T C* is

also 1 so that ^ Λ and ^ w * have a nonvoid intersection. Thus cor-

responding to each n we can, and will, choose Wn in %fn n ^ Λ *

Let K = MUnr
ιl2l> and K = \{Un)-ιV*. Then

and

Thus (hn) is a £-i2S-sequence, and so is (hi) by similar reasoning.
Clearly \\hn\\2 — \\ht ||2 = 1 and hϊ*hn — hn*hl (since both convolu-

tions have λίϊ/J-^χJ 2 as their Fourier transforms), so that if G is a
Lie group we have only to prove (b) of 3.1. The right-hand inequality
for p = 2 is a trivial consequence of the fact that the norm of
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the operators f\^f*K from L2 into L2 is ||&»|U To prove the left-
hand inequality first note that \\hi *&»||p = λ(E7Λ)~1 | |χn*χw | |p.

Suppose that the sequence (Un) is selected with the extra pro-
perties (3.3). Whenever xe U2n,

because if y e U2n and x e U2n, then y~ιx e Un. Therefore

Thus

(since H ^ l ^ ^ \\K\l = (UnY
12) as required for (i), where /> = Ar1.

To complete the proof of 3.1 (b) we establish the following straight-
forward string of inequalities:

= \\k\\ι,
4* Strict inclusions for Wl{Lp, Lq). In this section we use the

existence of Rudin-Shapiro sequences of type t, t < oo, to prove several
strict inclusions for the spaces 2ft(Z/, Lq). In particular, our results
will imply:
and then use interpolation.

4.1. If p, q and r belong to [1, oo] and satisfy 1/p
1/r, then

1/q <; 1 —

whence we have, by considering the operators g\-+ g* / ,

(4.1) Lr(GΓQWl(Lp, Lq)

(where Lr(Gy denotes the subset of © consisting of Fourier transforms
of functions in Lr{G)). If furthermore 1 < p ^ q < ^, p Φ qf and
1 < r ^ oo, Theorem 4.3 below shows that the inclusion in (4.1) is
strict whenever G is infinite.
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4 2. If G is a compact group, then

(A 9\ crγ> /" T v\ T Q\\ i— 9(\}ί T v T v\
y± Δ) VJCylj ι

9 AJ 1) ^ VJv\Ju , LJ )

whenever p1 ^ p <̂  qγ. If furthermore (? is an infinite compact Lie
group and 2 < p < q19 then Theorem 4.4 below will show that inclu-
sion (4.2) is strict.

The above two results are essentially extensions to compact groups
or compact Lie groups of results in Gaudry [3] and Edwards and
Price [1, §5] for locally compact Abelian groups; in fact we follow the
broad outlines of the proofs used in [3].

THEOREM 4.3. Let G be an infinite compact group and let r
belong to (1, oo]. Then whenever 1 < p rg q < oo and p Φ q\ there
exist elements in 9K(LP, Lq) which are not in Lr(G)~.

Proof. Suppose that the hypotheses of the theorem are satisfied
and that furthermore Wl(Lp, Lq) § Lr(GΓ. By the closed graph theorem
this imbedding is continuous so there exists a number K such that
for every function in LU(G), with 1 — 1/u = 1/p — 1/q (see (4.1)), we
have

(4.3) 11/11,^*112/11™,

where ||2VI|p,g denotes the norm of the multiplier operator g\->g*f
from Lv into ZΛ We will show that (4.3) is impossible.

There are two cases.

Case 1. 1/p + 1/q < 1. In this case an application of the Riesz-
Thorin convexity theorem yields immediately that

II T II < II T \\a II T I | i—«
II J-f\\p,q ^ II ^ / | | 2 , 2 | | J-fWs',00

where 1/p = a/2 + (1 - a)/s' and 1/q = a/2. Since || Tf\\2>2 = | |/ |U and

l | ϊ / | | . , l β β = 11/11., we have

(4.4) HΓ/iu^s n/112,11/ ι ιr β

with a = 2/q Φ 0 and 1/β = q(l - 1/q - l/q)/(q - 2) Φ 0. Put t -
max{̂ 6, s, r'}; then t Φ oo and from §3 we know that there exists a
sequence (kn) of U functions satisfying (3.2). Substituting in (4.4)
yields

(4.5) \\TkJ\p>q^ c o n s t . 2-annί~a

which tends to zero as n tends to infinity since a Φ 0.
On the other hand

(4.6) llfc l l r ^ \\kn\\t, ^ B& .
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Inequalities (4.5) and (4.6) together contradict (4.3) when 1/p + 1/q < 1.

Case 2. 1/p + 1/q > 1. A similar application of the convexity
theorem yields

II T II < " II T \\a II T 111—or
II •*- f\\p q ~ II - * / l | 2 , 2 | | •*• fWus

= ιι/n~ιι/ιιr
where 1/p = a/2 + 1 — a, 1/q = a/2 + (1 — a)/s in which case a =
2p' Φ 0 and 1/s = p(l/q + 1/p ~ l)/(2 - p) Φ 0. Inequality (4.3) may
be contradicted in a manner similar to that of Case 1 by using a
sequence satisfying (3.2), again with t = max {w, s, r'}.

THEOREM 4.4. Suppose that G is an infinite compact Lie group
and that p0, q0, pu #i(ε[l, oo]) have the properties that p0 <̂  g0, l/p0 +
l/q0 < 1, Pi < co and q1 ^ 2. If furthermore qx > q0, then there exist
elements in Wl(LPQ, Lq°) which are not in Wl(LPι, ZΛ)

This result remains valid when 3Jt(LPo, Lg°) is replaced by 9K(L?o,
LpΌ) and/or W{LP\ Lqή is replaced by 2ft(ZΛ, Lpϊ).

Proof. Suppose that G and p0, q0, pu qι satisfy the hypotheses of
the theorem. By arguing as in the proof of Theorem 4.3 it is clear
that the result may be proved by finding a sequence (hn) of functions
such that

(4.7) min{ | |2\J | P j , f f l , || ThJq[,p[}/ max {|| 2\J | P θ i ί o , \\Thn\\q>,P>}~+^

a s n —> oo.

Let (hn) and (hi) denote a pair of £-i2S-sequences satisfying Lemma
3.1 (b) with t equal to the maximum of pl9 (q0 — 2)/qQ(l — l/q0 — l/p0)
and (2 — q'0)/qΌ(l — l/q0 — 1/Po) Then, by proceeding as in the proof
of Theorem 4.1, we have

(4.8) max (||TΛJ|,0,ff0> || ThJg{,p,) ^ const. \\hn\\^ .

On the other hand we have, by the definition of the norms,

and

\\Tin\\<ί.pί = H K J k . i ^ \\h.*K\\J\\h*\\9ι,

where T[n is t h e operator fv-*hn*f (see t h e discussion in 5.3 of [1]).
Thus

(4.9) m i n ( | | Γ A J | , l i f l , | |2\J | f f i i P j ) ^ \\K**K\\*J\\K\\9l .

Now it is easily shown t h a t if g e Lqi with qγ ^ 2, t h e n
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\\g\\l ^ \\g\\i\\g\\^)qi where 2 - β + (1 - β) -Ql ,

and so

(4.10) \\h:*hu\\qι^ \\h**hnnh**hn\\τι+^.

Applying 3.1 (b), (4.10) and the definition of a £-iϋS-sequence yields

min(\\ThJ\Pvqi\\ThJ\q[,p,) ^ (^ΊI^JU)2 / ^

where A is a non zero positive mumber. This inequality combines
with (4.8) to show that (4.7) is satisfied whenever q1 >q0 since ||λ»|U~*0
as n—* co.

COROLLARY 4.5. Theorem 4.4 (and hence also 4.2) remains valid
for compact group G which have a closed normal subgroup GQ such
that G/Go is an infinite (compact) Lie group.

REMARKS 4.6. (i) We do not know whether Theorem 4.4 remains
valid for all compact groups or, for that matter, whether part (b) of
Theorem 3.1 remains valid in the general case. We should remark
that the construction of Rudin-Shapiro sequences for compact Abelian
groups is more complicated for groups which do not have a torus as
a factor group; see Gaudry [3].

(ii) In the notation of [4], G has the property of Corollary 4.5 if
and only if there exists a finite subset 7i, •• ,7 f c of Γ such that
[%, '"Ύk\ is infinite. This follows from (28.10) and (28.6) of [4] com-
bined with the fact that a compact group G is a Lie group if and
only if its dual Γ is finitely generated.

Proof of 4.5. Suppose that Go is a closed normal subgroup of G
and that Γo is the dual (hypergroup) of G/Go. Let AQ = A(Γ, Go)
denote the annihilator of GQ in Γ; then there exists an isomorphism
φ between hypergroups Ao and Γo in such a manner that for each
7 G i 0 we can choose Dφir) so that

Dψ{r) oπ = Dr ,

where π denotes the natural projection from G onto G/Go. For the
sequel we suppose that the Dψ{r) are chosen in this manner. Thus,
for example, if / is an integrable function on G/Go and

f~Σrd(%)tr[f(Dr)DrQ] ,

then
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(4.11) / o π ~ Σ d(y)tr[f(Dnr))Dr] .
reA0

For each μe($(Γ0), we define μ' e@(Γ) by μ' — μoψ on Ao, and
zero otherwise. Corollary 4.5 is an immediate consequence of Theorem
4.4 and the fact that μem(Lp(G/G0), Lq(G/G0)) if and only if μ'e
Tt(Lp(G), Lq(G)). The proof of this final equivalence is routine. (For
example, see Lemma 4.6 of [3]; use can also be made of equations of
the form (4.11) above and (A.3) (A.5) and (A.6) in the appendix of
[1]).

Added in proof. The authors have been able to show that
Theorem 4.4 (and hence also 4.2) are valid for an unrestricted com-
pact group. The proof will appear elsewhere.
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