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SOUSLIN’S CONJECTURE AS A PROBLEM
ON THE REAL LINE

A.P. BaarTZ AND G.G. MILLER

This paper is concerned with properties of real sets whose
existence is related to Souslin’s conjecture. One of these
results is subsequently used to show that Souslin’s conjecture
is second order determined, i.e., (2 +,SC) VvV (£ .~ SC).

By Souslin’s congecture (SC) we mean: every linearly ordered set
with at most countably many pairwise disjoint intervals is separable.
(A linearly ordered set L is separable if it has a countable subset
such that between any two points of L there is a point of the subset).
We first display a subset of the power set of the real line R whose
existence is equivalent to ~ SC. Then we reformulate the conjecture
geometrically as a question concerning a single subset of R of a
certain type. Finally we point out that Souslin’s conjecture is second
order determined.

E. Miller [4] proved that ~ SC is equivalent to the existence of
a Souslin tree, i.e., an uncountable tree of countable height and
countable width. A tree is a partially ordered set in which the set
of all elements below any given element is a chain. The height of a
partially ordered set P is the least cardinal m such that no chain in
P has cardinality greater than m. A is an antichain if no two elements
of A are related. The width of P is the least cardinal n such that
no antichain in P has cardinality greater than .

PRrROPOSITION 1.1. The ewxistence of a Souslin tree is equivalent
to the existence of an uncountable collection of real sets such that

1. any two sets in the collection are either disjoint or one of them
18 a subset of the other, and

2. of & is any uncountable subcollection, then < has two disjoint
members and two mondisjoint members.

Proof. Assume there is a Souslin tree S. Let f be a one-to-one
function from some uncountable subset of S into E. For each ze S,
let U@®) ={y:x <y}, and let & = {f(U(x)):xe€S}. Then % has
the desired properties.

Conversely, if there is such a collection &, let A < B mean
BS A, for A, Be # . Then & is a Souslin tree.

An application of Proposition 1.1 is found in §5. In the next
section we show how a Souslin tree can be represented as a single
subset of the line.
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278 A.P. BAARTZ AND G.G. MILLER

2. We first represent certain binary relations. For this purpose
let G < R and denote by G* the set of all those points xe G which
are midpoints of a nondegenerate segment whose endpoints are both
in G. We shall call G* the set of midpoints in G. Define a relation
a on G* by setting

xay iff © # y and there exists z€ G such that

2.1) y is the midpoint of the segment xz.

Note that xzz stands for [z, 2] or [z, x] according as z < z or z < .

PROPOSITION 2.1. « is a (strict) partial order for G* iff for all
elements x, y, z€ G* we have

A. (asymmetry) if © and y are the respective midpoints of yv
and xu, and if we @G, then v¢G.

B. (tramsitivity) if y is the midpoint of xu and z is the midpoint
of both yv and zw, and if w, ve€ G, then also we G.

The proof is immediate since no point is both midpoint and end-
point of the same nondegenerate segment.

THEOREM 2.2. Let 6 be any antireflexive relation on a set P of
cardinality no larger than that of the continuum. Then there exists
a subset G of the real line for which the relation a defined by (2.1)
18 1somorphic to 6.

Proof. Let f be a one-to-one function mapping P into a Hamel
basis for R. Let

(2.2) U ={2f(q) — f(p): p, g€ P, pig}
and
(2.3) G = UU2f[P]U f[P] U {0} .

For each pe P, f(p) is the midpoint of the segment 2f(p)0, whose
endpoints belong to G. Thus f[P]c G*. If yeG*, on the other
hand, then there exist distinct points z, z€ G, such that 2y =z + w.
Also, y e G. Writing « = ¢,a, + ¢a, and z = c,a; + ¢, with a, € f[P],
we have

¢, =2 and ¢ = -1 if 2e¢U,
(2.4) ;=2 and ¢,= -1 if zeU,
€1 €{0,1,2} and ¢, = 0 otherwise.

Assuming now that ye U, y = 2a — b, we have 4a — 2b = 2y =
S'e;a;, and since a # b, (2.4) implies that only ¢, =2 =¢, 0, =a = a,



SOUSLIN’S CONJECTURE AS A PROBLEM ON THE REAL LINE 279

is possible. But this leads to ¢, = —1 = ¢,, @, = b = a,, and hence to
2z = x, which contradicts our assumption.

The cases ye2f[P] and y = 0 similarly lead to the conclusion
z = x. Thus by (2.3) we have y e f[P], and hence G*f[P].

To see that f is an isomorphism, let p, g€ P, poq. Then x =
27(q) — f(p) is a member of UC G, and f(qg) is the midpoint of the
nondegenerate segment xf(p). Thus f(p)af(q). Conversely, if zay
in G* = f[P], say z=f(p),y = f(g), then = =2f(q) — f(p)eG by
(2.1). We use (2.3) and the independence of f[P] to show that ze U,
and again the independence of f[P] to see that pdq.

Comment 2.3. An obvious generalization of Theorem 2.2 permits
us to represent an arbitrary antireflexive relation in a vector space
of sufficiently large dimension over a field of characteristic 5 or larger.
Here again “y is the midpoint of x2” means 2y =z + x, x = 2. For
characteristic smaller than 5 we might mention that f[P] -+ G*.

COROLLARY 2.4. Let P be any partially ordered set of cardinal
number no larger than that of the continuum. Then there exists a
subset G of the real line such that P s isomorphic to the partially
ordered set G* of midpoints in G.

This follows directly from Proposition 2.1 and Theorem 2.2.

We are now ready to apply Theorem 2.2 to trees. In a slight
restatement of 2.1, A becomes: no segment with endpoints in G is
trisected by points of G; B can be summarized by the phrase: G is
midpoint transitive. Henceforth we assume that G has these two
properties.

Chains in G* are generating subsets of G* in the sense that any
two distinct points «, ¥ of a chain generate a segment with endpoints
in G, one of © and y acting as an endpoint of the segment, the other
as the midpoint; ie. if u =2y — 2, v=2x — y, then ue G or vegG.
We call a subset X of G* segment free (antichain) if every subset of
X of cardinality = 2 fails to be generating. X is free (from above)
in G provided that for any two distict points «, ¥y € X and any u, v, z€ G,
z is not the midpoint of both the segments xu and ywv.

Combining these notions with 2.1 we obtain our main result.
Width bounds the cardinality of segment free sets and height that
of generating sets in G*.

THEOREM 2.5. The existence of a Souslin tree 1is equivalent to
the existence of a subset G of the real line whose set G* of midpoints
wm G is uncountable and satisfies
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no segment with endpoints in G s trisected by points of G,
G s midpoint transitive,

segment free subsets of G* are free in G,

segment free subsets of G* are countable,

generating subsets of G* are countable.

g o=

Proof. 1. and 2. imply that « is a partial order, by 2.1. 3. is the
tree property, and 4. and 5. together with the fact that G* is un-
countable make the tree G* into a Souslin tree. Thus the existence
of G implies the existence of a Souslin tree, and if a Souslin tree
exists, then G exists by 2.4.

4, In this section we conclude by applying a real line character-
ization of Souslin’s conjecture to obtain a foundations result. In [2]
and [3] the continuum hypothesis is shown to be second order deter-
mined, i.e.,

(2 -,CH) vV (2 -, ~CH)

where 2~ denotes Zermelo’s axioms with the axiom of infinity and
CH the continuum hypothesis. The reader is referred to Kreisel and
Krivine [3] for a detailed discussion.

A modification of the proof in Kreisel and Krivine applies to
Souslin’s conjecture:

ProPOSITION 4.1. Souslin’s conjecture is second order determined,
Te€uy

(2 =, 80) Vv (2 5~ SC) .

Proof. Let C, be the collection of all hereditarily finite sets
without individuals, and for n € w, let C,ppey = Cuiy U F(Cyyr), where
& denotes the power set. From Proposition 1.1, Souslin’s conjecture
states that any collection of real sets which under set inclusion forms
a tree of countable height and countable width is countable. We may
thus canonically formulate Souslin’s conjecture as follows:

[XcFPCo) N(we X NyeX—az2Ny=9¢VaeCyV yca)
A(YCXA(@eYANyeY—aNy=29)
V@eYAyeY—ocyvyca)—Y=<C)—-X=C,.

This is expressed by means of quantifiers over C,.; since one-to-one

correspondences between subsets of C,., are elements of C,.,. Con-
sequently [3; p. 192] we have (2" —,8C) V (£ +, ~ SO).
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ON SOLUTIONS IN THE REGRESSIVE ISOLS

JOSEPH BARBACK

Let f(x) be a recursive function and let Ds(X) denote
the Nerode canonical extension of f to the isols. Let A and
Y be particular isols such that D;(A) = Y. The main results
in the paper deal with the following problem: if one of the
isols A and Y is regressive, what regressive property if any
will the other isol have. It is shown that if A is a regressive
isol then Y will be also. Also, it is possible for Y to be a
regressive isol while A is not. In this event there exist re-
gressive isols B with D«{(B) =Y and B <, A. Extensions of
these results for recursive functions of more than one variable
are discussed in the last section of the paper.

1. Introduction. We will assume that the reader is familiar
with the primary definitions and results of the papers listed as re-
ferences. We will cite some particular definitions and results that
have a special role in the paper. FE will denote the set of nonnegative
integers, 4 the collection of isols, A4* the collection of isolic integers,
and 4, the collection of regressive isols. If f is a partial function
from a subset of F into E then 6f will denote its domain. If f: E"—
E is a recursive function then D, will denote the canonical extension
of f to the isols. Two sets « and g will be separated, written «|g,
if there exist disjoint r.e. supersets of « and 8. j(x, ¥) will denote
the familiar recursive pairing function defined by,

Jj@,y) =+ 12+ @ +y+ 1,

and %k and ! the associated functions with the property j(k(x), l(x)) =
x. [p,] will be the canonical enumeration for the collection of all
finite subsets of FE, [6]. Associated with this enumeration is the
recursive function r(x) having the property »(z) = card p,. We will
use a >, to stand for union among sets (and also a¢ + for a union of
two sets).

2. Recursive functions of one variable. Let f: E— E be a
recursive function. If f is a combinatorial function then its extension
D; will map 4 into 4, and if f is an increasing function then D,
will map 4, into 4,. Each combinatorial function of one variable
will be increasing, but not conversely. The condition needed for D,
to map 4, into 4, is that f be an eventually increasing function, [1].

THEOREM 1. Let f: E— E be a recursive function and A and Y be

283



284 JOSEPH BARBACK

isols such that D;(A) = Y. If A is a regressive isol then Y will be
regressive also.

Proof. Assume A is a regressive isol. Let

g(0) =0,
gn +1) = f(n) + g(n) .

Then g will be an increasing and recursive function. Hence its can-
onical extension D, will map 4, into 4. Since

gn + 1) = f(n) + g(n) ,

it follows from the Nerode metatheorem for such identities (combining
[12, Theorem 10.1] and the representation of the canonical extension
of a recursive function [11, 4]), that

(1) Dy(A + 1) = Ds(4) + Dy(4) .

Because A is a regressive isol and g is increasing and recursive, each
of the isols A + 1, D,(A + 1) and D,(4) will also be regressive. In
addition, Y = D;(A) is an isol and from (1) it then follows

(2) Y<D,A+1) and DA + D ed,.

In view of a result due to Dekker [4, P8 (a)], (2) implies that Y will
be a regressive isol.

REMARK. If f is a recursive function of one variable then although
its canonical extension may not map every isol onto an isol, its value
may be an isol for some. In addition, it may also occur that the
value of D,(A4) will be a regressive isol for an isol A which is non-
regressive. An example of such a recursive function will be given
in the following section. We want to show next that if this possibility
does occur, then there will be a regressive isol B such that D(B) =
D (4). The following lemma essentially gives this result, once the
connection is made between the canonical extensions of recursive
functions and recursive combinatorial functions.

LEMMA. Let f, g: E— E be recursive combinatorial functions and
A and Y be isols which satisfy the identity,

(1) D;(A) = Y + D,(4) .

If Y is a regressive isol, then there will also exist a regressive isol B
with,

(2) DAB) =Y + D,B) .
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Proof. Assume that Y is a regressive isol, and consider separately
the following three cases.

Case 1. A is finite. Then A will be regressive and we may set
B = A.

Case 2. A is infinite and Y is finite. Let Y = pe E. Set
h(x) = p + g(x), for xe E .

Then %~ will be a recursive combinatorial function, since the function
¢ is recursive and combinatorial. By a theorem of Myhill and Nerode
[11, Theorem 7], we also obtain,

(3) D.(4) = Y + D,(4) .
Combining (1) and (3) implies
(4) D;(A) = D,(4) ,

and since A is an infinite isol, it follows from (4) and a theorem due to
Myhill [8], that there will be infinitely many numbers n that satisfy

(5) f(n) = h(n) .

Let m be the smallest number that satisfies (5), and let B = m. Then
B will be a regressive solution to (2), since

D;(m) = f(m)
= h(m)
= D,(m)
=p+ Dg(m)
=Y+ D,(m) .

Case 3. Both A4 and Y are infinite isols. Let ®, and ®, be the
normal combinatorial operators, and let [¢;] and [d;] be the sequences
of combinatorial coefficients that are associated with the functions f
and g respectively. Let o€ A and 7€ Y. Then a and » will each
be infinite and isolated sets, and also n will be regressive. We will
assume that

(6) nla and 77|P,(@) ,

for otherwise an easy modification may be made in the proof. Based
on their respective definitions, each of the functions ¢; and d; will be
recursive, and also
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¢f(a) = (‘7(99, y) lpx g 24 and Y < cr(m)) ’
¢g(6() = (j(x’ y) lloa: g (24 a'nd Y < dr(x)) .

From (1) and (6) it follows also,
(7) Pra) =7 + Py(e) -

Let p be a partial recursive function that establishes (7), i.e., p will
be defined on @,(«), will be one-to-one, and will map

(8) P Ps(Q) =7 + Py(a) ,

one-to-one and onto.
Let y, be a regressive function that ranges over the set 7.

Our first aim is to define two particular sequences of subsets of
a and of 7 respectively, whose corresponding terms will share the
property appearing in (8). With each number » we will associate two
sets «, a subset of a, and 7, a subset of . These sets are meant
to be the collections of those members of & and 7 respectively, that
we can effectively find if we start with the value of y, and use only
the regressive property of the function y,, the separability property
in (6), and the recursive and partial recursive properties that appear
in (8). Note that the inverse function p™ of p will be well-defined
and partial recursive. The particular definition for these sets is as
follows; for n € E, the members of a, and 7, are determined by re-
peated applications of the six rules below,

(1) Y€

(ii) if y,emn, then (y, -+, ¥) & Y

(ii) if y,e7n, and p7(y,) = J(=, w), then p, & «,,

(iv) ifa, -, @€, 0, = (@, =+, ap), ¥ < ¢, DI (@, ¥) €7 and pj(x,
Y) = Ynm, then y, €7,

(v) ifa, -, qpea, 0, = (@, -, a),y <c and pj@, y) = ju,
v), then p, € a,,

(vi) ifa, -, qr€a,, 0, = (a, -+, ), ¥y < d, and p~'9(2, y) = j(u,
v), then p, € «,.

Note that each of the sets 7, will be non-empty, in view of (i). It
may occur that some of the sets «, are empty, however this will be
true for at most only finitely many of the «,. It is easy to see upon
a moments reflection that from the value of the number ¥, one can
effectively enumerate all of the members in each of the sets «, and
N.. It follows that each of the sets a, and 7, (for any number n)
will be r.e. subsets of @ and 7 respectively. Since a and 7 are each
isolated sets, we see that each of the sets a, and 7, will be finite.
It will be useful to list some of these properties and also some that



ON SOLUTIONS IN THE REGRESSIVE ISOLS 287

can be arrived at in an easy manner from the six rules above.

(9) Vo)1, = @] and (Vn)@k)[a,.. = O] .
(10) (V’)’L)(Et)[t =N and N = (yo, Y yt)] .
(11 S a, Sa s -+ and i:‘,anga.

(12) BWEN SRS - and 37, = 7).

In addition, note that the six rules (i) — (vi) have been so defined so
have the following property; if one would simply know only the value
of ¥,, then the totality of those members of & and 7 that could be
found by using only the recursive and regressive features present in
(8) would be the two sets «, and 7, respectively. It follows from this
property that, for ne K

13) p: Prex,) — 9, + Py{a,), one-to-one and onto.
For each number n € E, let the
torre number of », = the largest number ¢ with v, =7, .

In view of (i) and the fact that each of the sets 7, is finite, it
follows that there will be infinitely many torre numbers. In addition
it is easy to see that if ¢ is the torre number of %,, then ¢ = n and
N =Nw= Y -+, ¥). Let t, denote the strictly increasing function
that ranges over the set of all torre numbers. Then

(14) s, = Yoy ==, ytx) ’

(15) ntogvtlgvtzg ]

(16) ta: < k é tx+1 = 7714: = 7}ta:+1’ and
an =37,

In addition, by combining the remark prior to (13) with (16) and
the fact that v, is a regressive function, we can also see that y,,
will be a regressive function (of x). This turns out to be a very
useful property. Another fact that is important to note here is pro-
perty A given below; it follows from (13), (16), the definitions of 7,
and its torre number, and the regressive property of y, .

Property A. If we are given the value of v, then we can effec-
tively determine whether k& < ¢, or there is a number z such that ¢, <
k<t,. In the former event we could also find the value of y,
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and in the latter event both of the numbers v, and v, ., could be
found.

Combining (11), (13) and (15) gives,
(18) a, S a, Sa,< -+, and
(19) p:Pile,) —— N, + Pola,)
one-to-one and onto, for each number x. Since ®; and @, are combi-
natorial operaors, the inclusions appearing in (18) also imply that
Prla,) S Prlay,.)

and

¢g(atx) e @g(azxﬂ) .
Therefore, in view of (15) and (19), we obtain for each number z € E,

. (Prlae,,) — Prlas,)
20 x+1 z
( ) - (77%“ - 77%) + (C/Dg(atﬁ—l) - (¢g(at$)) ’

one-to-one and onto.

We now begin to design a regressive set B whose recursive equi-
valence type will have the desired properties of the lemma. First
with each number y,, a particular finite set 8, will be associated. Let
the functions w, and e, be defined by

w, = cardinality of «,,,
€, = Wy

Cpr1 = Wypy — Wy .

Since y,, is a regressive function and since from the value of y, we
can determine the complete set «,, (refer to the remarks appearing
before (13)), we see that from the value of y, alone, each of the
numbers w, and e, can be computed. Hence each of the mappings
Y, — w, and y, — e, will have a partial recursive extension; in the
notation of [4] these properties are denoted respectively by

(21) Y, =*w, and y, <*e,.

We will assume here that e, = 1 (otherwise the proof would need to
be slightly changed). Then, by (18), it will also follow that ¢, =1
for each number n. For nec E, let

(22) 5n:[.7(ytn, T)I’l":o, 1:"'5 en—]-]'

Then [6,] will be a sequence of mutually disjoint nonempty sets. From
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(21) and (22), we see that by knowing the value of Y., we can effec-
tively find all the members of the set §,; this property will be denoted
by writing

(23) ytn§*5 .
For ne E set
(29 Bn=0,+ 0, + +++ + 0, .

Then, in view of (23) and the regressiveness of v, , it is possible to
effectively find all the elements of 3, from the value of %, . We will
denote this property by

(25) Y, =% Ba

In addition, note that

(26) BERES RS - and

27) card 3, = card «,, for every ve E .
Let

g=3p8.=35,.

We will assume here that the sets 7 and ®,(B) are separated (otherwise
an easy change in the proof would be made), i.e.,

(28) 7|P(B) -

Let B=Req 8. The remainder of the discussion now is toward showing
that B will satisfy the desired requirements of the lemma, i.e., that
B is a regressive isol and that B satisfies (2). Observe that by (28),

N+ PB)eY + Dy(B) .
Hence in order to complete the proof, it suffices to show that

(29) B is a regressive and isolated set, and
(30) P8 =7+ P(B) -

For (29): Note that g will be an infinite set, since ¢, = 1 for
each number n. Also, it is easy to see that if B contains an infinite
r.e. subset, then the set (v, ¥, -+-) would also then include an
infinite r.e. subset. But then the set 7 would contain an infinite r.e.
subset, yet we know that this cannot be true since it is an isolated set.
And therefore we may conclude that g will be an isolated set. We
know that the function y, is regressive. If we combine this fact
with (23) and the definition of B, then it is easy to see that g will
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be a regressive set, and in particular that a regressive enumeration of
its members will be
j(yto! O)’ M) j(ytg € — 1)7 j(ytly 0)’ ct j(ytla € — 1) 3 "% .
For (30): Recall that

oo

(31) B=23,8, where B, =0,+ +++ +0,.

0

Because ¢, and @, are combinatorial operators, it follows from (26)
and (31) that,

(32) PAB) S PB) S ++- and 2,(8) = S 2,(8.) ,

(33) Pu) S ) S -+ and 2,(8) = S 24(8.) »

and also, in view of (19) and (27), that for ne E,

(34) card P4(B,) = cardy, + card ®,(8.,) -
Combining (15), (32), (33) and (34) gives

(35) card @4(8,) = card 7,, + card ®,(3,), and

card (@f(,gkﬂ) - @f(lgk)) = card (77tk+1 - ’7t,,)

36
(36) + card (Py(Brs1) — Po(Be)) -

Now we can define a partial function,

q: PHB) —— 1 + P(B) »

based on the previous two equations. Let
q: PrBo) —*— Ney + ?g(Bo) ’
q: (P(Br+1) — @f(ﬂk)) TR (77%“ - 77:;) + ((pg(IBkH) - q’g(Bk)) ’

where we write —x— to mean that the related mapping is to be
order preserving. From (35) and (36) it follows that the mapping ¢
is well-defined, and from (12), (32) and (33) that ¢ will map ®+(B)
onto 7 + @,(B) in a one-to-one manner. To verify (30), it suffices to
prove that ¢ will have a one-to-one partial recursive extension. Be-
cause the sets @,8) and 7 + ®,B) are isolated, it follows from a
theorem due to Dekker [4, Proposition 9(b)], that ¢ will have a one-
to-one partial recursive extension, if both ¢ and ¢ have partial
recursive extensions. It suffices therefore to verify this latter property,
and this will be our approach here. We will consider first the mapp-

ing q.
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Let we®(B). We now describe a procedure whereby, with the
possible exception of finitely many such w, one can effectively compute
the value of ¢(w). From w first find the particular numbers z and
% with

(37) w = ](x, ’M), (O:c o= B and u < Criz) »

Note that if p, is nonempty then each of its members can also be
found. Moreover, since ®, is a normal combinatorial operator, it
follows that for all but possibly finitely many w e ®,(g) the corre-
sponding finite set p, appearing in (37) will be nonempty. From now
on let us assume that p, is nonempty. Members of o, will be of
the form j(y,,, v), and for each such member we can find the corre-
sponding values of y, and ». In addition, the values of ¢, and k
can also be determined, by using the regressive properties of y, and
Y.,- Let k* denote the largest value of k such that j(y,,, v) € 0., for
some number v. Then, it is easy to show that

W E PHB,) , if k* =0, and
WE PHBr) — Pr(Br)y If B = 1.

We know, by (25), that from the value of y,, we can effectively find
all the members of the set B,.. In addition, note that if £* = 1 then
also the members of the set 8., can be found, for we may regress
down from y,,, to y,,. , and apply (25). In a similar manner, in view
of (14), it follows that from the value of y,, we can find all the
members in the set

77% ’ if k* = 0, and
77tk* - Y]tk*__li if k* z 1 .
Finally, by combining these properties with the fact that the normal

operators ¢, and @, are each recursive, it can be seen that the
members in each of the sets below can be effectively determined,

PABy) and 7, + P,(Bo)s if k* =0 and,
ClDf(lgk*) - (pf(Bkﬂ_l) and
(Y]tk* - 7}%*——1) + (q)g(ﬁk*) - QDg(Bk*ml)), lf k/ 2 1 .

It follows directly from this property and the definition of ¢, that
the value of ¢(w) can now be computed. Therefore, there will be a
procedure that is effective and which will enable one to compute g(w)
for all but a possible finite number of we ®,(8). It is readily seen that
this feature implies that the mapping ¢ will have a partial recursive
extension.
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An approach very similar to the previous one can be employed to
show that the mapping ¢! will also have a partial recursive. For
this reason we will omit the main details for doing this, and will
only mention the two essentially new observatians that we would
have been required to make. The first is that given any number
w e + P,(B) one can effectively determine whether we” or we @, (5).
This property follows from the separability of the sets » and #,B)
given in (28). The other observation is that if we7, then one can
effectively find the particular numbers s, £*, t,. and y,,, that are related
to w in the following way, w = ¥, and

W E Ny, ,if k*=0,
WE (N, — Ny )s i ¥ =1

This particular property follows from (14), (16), Property A and the
regressive properties of the functions y, and y, . The importance of
the second property lies in the fact that it means that from the value
of any we?, one can effectively find y,,,, and therefore also deter-
mine the appropriate sets,

B., and 7, ,if k*=0,
Beys Beyois Vere and 7, if B* = 1.

It is then with these two observations that a similar approach, as
with ¢, will lead to showing that ¢ will have a partial recursive
extension.
In view of the remarks made up to this point, we see that the
mapping
@ Pr(B) —— 7 + Py(B)

will have a one-to-one partial recursive extension. This verifies (30)
and complets the proof of the lemma.

THEOREM 2. Let f: E— E be a recursive function and A and
Y be isols such that

(1) D,A) =Y.

If Y is a regressive isol, thewn there will also exist regressive isols B
such that,

DiB) = Y.

Proof. Let us assume that Y is a regressive isol. Let f* and
f~ be the positive and negative recursive and combinatorial functions
that are associated with f (refer to [11]). Then for every number
xe K, f(x) = f(x) — f(x), and also
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Dy(A) = D; + (A) — Dy — (4) .
Therefore, by (1), it also follows that
D;+ (A =Y+ D;,— (4.

If we now apply the previous lemma to this equation, we see that
there will be a regressive isol B such that

D;+ (B =Y+ D;— (B,

and from this identity it also follows that D(B) = Y.

REMARK. Theorem 2 is our principal result and it is easy to
observe that it follows almost directly from the lemma. It turns out
that, as a consequence of the manner in which the lemma was proved,
a slightly stronger form of both the lemma and the theorem can be
established. We would like to state without a proof the particular
form that is related to the theorem. It involves the Nerode canonical
extension of the familiar binary relation < (among numbers) to the
isols. The extension procedure is introduced in [12], and for the
relation < its extension will be denoted by =<,. It can be shown
that the regressive isol B constructed in the proof of the lemma (in
each of the cases considered there) is related to the isol A by B =<,
A. Based on this fact one can obtain the following result.

THEOREM A. Let f: E— E be a recursive function and A and
Y be isols such that DA) = Y. If Y is a regressive isol, then there
will exist regressive isols B such that B <, A and D/ B) = Y.

3. An example. It is possible that the canonical extension of a
recursive function may map an isol that is nonregressive onto an isol
that is infinite and regressive. We would like to give an example
of such a function. First some definitions are needed.

If « and B are two sets of numbers, then & <* 8 will mean that
either « is a finite set and card « < card B, or else both « and g
are infinite sets and there is a partial recursive function p such that,
o = 0p, p(@) = B and p is one-to-one on a. If A and B are two isols
then 4 <* B will mean that there are sets @< A and g€ B such that
a <* B. Let min (a, by denote the familiar recursive function minimum
(a, b), and let D,,;, denote its canonical extension to A°. min (a, b) is
not an almost combinatorial function, and therefore its canonical
extension will not map 4* into 4. On the otherhand, it is proved in
[3] that D, will map 4% into 4,. In addition, by combining results
in [3] and [4], one obtains for A, Be€ /g,



294 JOSEPH BARBACK

Dyin(A, B)=A— A<*B.

Concerning isols and regressive isols the following property due to
Dekker [4] is also needed; if S and T are any isols, then

(%) S<Tand Ted,—=Sed,.

In the result below we will construct the kind of example that was
described earlier. We note that the functions j(z, ¥), k(x) and I(x) that
appear in its proof refer to those particular recursive functions in-
troduced in §1.

THEOREM 3. There is a recursive function h(x) and an isol C
such that D,(C) e 4y and yet C ¢ Ay,

Proof. Define
h(x) = min (k(x), l(x)) .
Then & will be a recursive function, and for a, be K
hi(a, b) = min (a, b) .
Therefore also,
D,Dy(U, V) = Duin (U, V), for U, Ved.
Select A, Be A, such that
(1) A<*B and A+ B¢dy;

the existence of such a pair of regressive isols is proved in [2]. Then
it follows

D,Di(A, By = Dpin (A, B) = A,
and in addition, if we let C = D;(A, B), then also
(2) D,(C) = Ae ;.

The function j(x, y) is recursive and combinatorial, and therefore its
canonical extension will map 4* into 4. In particular, we see that

(3) C=DiA, Bed.
Let us now verify
(4) C=D;A, Bedy=—=A+ Bed,.

First consider the implications,
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D;(A, B)e A = 2D;(A, B) € g
—2A+ (A+ B(A+ B+ 1)ed,
= A + Bed,.

The first two implications are clear. The last one follows from (x)
and the property,

A+B=<24+(A+ B(A+B+1).

Together they imply (4). In view of (1), (3) and (4) we obtain Ce
A — Ay, and if we combine this property with (2) the desired result
follows directly.

N. B. The fact that the familiar j function is combinatorial we
first learned from some unpublished notes of Erik Ellentuck. Once
this property is pointed out it is easy to show, and we will leave it
for the reader.

4. Recursive functions of several variables. We would like to
describe some of the results that can be obtained for recursive func-
tions of more than one variable that are similar to those given in §2.
First let us note some features that distinguish the one and more
than one variable cases. We know that for a recursive combinatorial
function of one variable, its canonical extension will map regressive
isols onto regressive isols. On the otherhand, even for recursive
combinatorial functions of two variables, it need not be true that
their canonical extension will map pairs of regressive isols onto re-
gressive isols. For example, Dekker showed in [4] that it is possible
for both the sum and the product of two regressive isols to be an
isol that is non-regressive. The characterization of those recursive
functions of two variables whose canonical extensions will map re-
gressive isols to regressive isols was given by Mathew Hassett in
[9]. The following is a special case of a theorem also due to Hassett

[8].

THEOREM B. (Hassett) Let f: E"— E be a recursive and com-
binatorial function. Let A, ---, A, be n regressive isols whose sum
A, 4 «oo + A, is also regressive. Then the value of DA, ---, A,)
will be a regressive isol.

Note that when # = 1 in Theorem B one obtains the earlier result
mentioned about recursive combinatorial functions of one variable.
Based upon the procedure for representing the canonical extension of
a recursive function (in terms of the canonical extensions of recursive
combinatorial functions)and applying Theorem B, analogues of Theorems
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1 and 2 can be obtained for functions of more than one variable. We
conclude the paper with statements of these two theorems.

THEOREM C. Let f: E"— E be a recursive function and A, «--,
A, and Y be isols with Ds(A,, -+, A,) = Y. If the sum A, + «++ +
A, is regressive, then the isol Y will also be regressive.

THEOREM D. Let f: E*"— FE be a recursive function and A,, «--,
A, and Y be isols with Ds(A,, -+-A,) =Y. If Y is regressive, then there
will be regressive isols B, +++, B, such that the sum B, + .-+ + B,
will be regressive and also DB, ---, B,) = Y.
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HOMOTOPY AND ALGEBRAIC K-THEORY

BARRY DAYTON

A notion of homotopy is described on a category of rings.
This is used to induce a notion of equivalence on the categories
of projective modules and to construct a K-theory exact
sequence. The topological K-theory exact sequence is then
obtained from the algebraic K,, K; sequence.

1. Homotopy. In this section we describe the homotopy notion
and the notion of equivalence it induces on the categories of projec-
tive modules.

A cartesian square of rings is a commutative diagram of rings

A 4,

™ lhl lfz
AT 4,

where A = {(a,, a,) € A, X A,|f(a) = fy(ay)} and h,, h, are restrictions
of the coordinate projections. We will further assume that f, is sur-
jective. If .2 is a category of rings and F: 2% — 2 is a functor
we call F cartesian square preserving if the functor applied to a
cartesian square gives a cartesian square.

DErFINITION 1.1. Let .o be a category of rings. A homotopy
theory &7 for ¢ is an ordered quadruple (I, ¢, ¢, #) where [ is a
cartesian square preserving functor and ¢,¢:I—1,,7:1, — 1 are
natural transformations such that ¢ (A)w(4) = 1, = ¢,(A)x(4) for Ae
5L

For a homotopy theory 5% = (I,¢,¢,7) on 2 and f,9: B— A
morphisms in 52" define f ~ ¢ if there exists a morphism h: B—IA
in 2 such that f = ¢h, g = ¢,h; h is called a homotopy of f to g.
Let = be the smallest equivalence relation on .27 (B, A) containing
~; if f = g we say f is homotopic to g.

Note that a homotopy theory gives rise to a homotopy category,
i.e. a category whose objects are those of .27 and whose morphisms
are homotopy classes of morphisms.

Let & be an arbitrary category and G: 9% — & be a covariant
functor A homotopy theory 57~ = (I, ¢, ¢, #) on 9%  is called compatible
with G if G(z(4)) is an isomophism for each Ae 9% Note that if
¥ is compatible with G then G(,) = G() = G(7)™' consequently if
f =g, then G(f) = G(9).

297
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For any ring A let P(A) denote the category of finitely generated
projective right A-modules. Given a ring homomorphism f: A — B
denote by f: P(A) — P(B) the covariant additive functor defined by
f(M) = M @, B on objects M of P(A) and f(a) = a® 1 on morphisms
of P(A). It is well known that if M is A-projective then M @, B is
B-projective.

If A,A,---,A,,B,+--, B, are rings, if fi: 4, _—A;and g;: B;_,— B,
are ring homomorphisms, if A,;=B,=A, A,=B,=Band if f,fo_i +++ fi=
9.Jes *+- g1, we denote by {f}, «--, f./0,, *+-, g.> the canonical natural
equivalence f, +++ f,—§, +++ §i; it is straightforward to verify that

(i) = (el

(forndalt) yfecnt)

that

whenever h: B— C and that
hyfly ”',fn\ _ fl: "')f'n.
< ) —< >2M

h” gl? * Y ge/‘v gly "'yge

for h: C — A where the subscript M means that the natural equivalence
is evaluated at the module M e P(C).

DEFINITION 1.2. A homotopy theory 57 = (I, ¢, ¢, ) in 2% in-
duces an S#%~equivalence = . in each category P(4), A € .9 as follows:
given M, Ne P(A) write M ~ .. N if there is a Q¢ P(IA) such that
M~ Q, N~ ¢,Q and let = be the smallest equivalence relation on
the set of isomorphism classes of objects in P(4) containing ~ ... If
M = ., N we say that the modules are equivalent mod-S#2

The homotopy theory 57 in .2 also induces an equivalence rela-
tion = .. in the set Iso(M, N) of isomorphisms M — N of A-projectives
by letting ¢, ~ - ¢, denote that there is an isomorphism 6: M — TN

such that
_ [T ¢ 7. 1
9; = < 1 >N(lﬁ)<7r, ¢; >M

for = 0,1 and letting = .. be the smallest equivalence relation con-
taining ~ . on the set Iso(M, N). If ¢, = .4, we say the isomor-
phisms are equivalent mod S£

9o 7]
Note that if M’ -~ M —3 N L, N’ are isomorphisms and if ¢, =

P1
¢, mod 57 then also pg,®w = pé,0 mod SZ It is not difficult to show
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that if f: A — B is a morphism in 2" then M = Nmod 5# in P(A)
implies M = fNmod 2# in P(B) and ¢, = ¢, mod 5# implies Fo, =
Ffé.mod 57 in P(B). It is also easily seen that if f= g: A— B and
Me P(A) then fM = M mod 5# in P(B).

Given a ring with unit R, an R-algebra will mean a unitary R-
algebra. If A is an R-algebra, then a: R — A will denote the unique
R-algebra homomorphism such that a(1) = 1. In addition to the above
results we then have:

LEMMA 1.3. Let 9% be a category of R-algebras and R-algebra
homomorphisms and let 57 = (I, ¢, ¢,7) be a homotopy theory on ¢
Let f=g9g:A— B in 2% let M, Ne P(R) and let ¢<lso (@M, aN).

Then
(%5) o), = (BL) Gen(GL) mod o7
in Iso (bM, bN).

Proof. We may assume f ~ g. Letting h: A — IB be a homotopy
from f to g, define w: ZbM — #bN by

@= <(Z, h> ( ())<a k>

It is easily verified that ® shows that the two isomorphisms are
equivalent mod 5%

Equivalence mod 54 works well with cartesian squares. If (*) is
a cartesian square we can construct the fiber product category
P(A) X pa,y P(A,), [2, p. 358] in which objects are triples (M, ¢, N)
where Me P(A), Ne P(4,) and ¢: flM —»ﬂN is an isomorphism in
P(A,); and the morphisms (M, ¢, N)—(M', ', N’) are pairs (@, B)
where a: M — M’e P(A), 8: N— N'e P(4,) and ¢(fa) = (,8)¢. By
Milnor’s theorem [2, p. 479] the functor F: P(A) — P(A) X puy P(A,)
given by F(M) = (hM, hfi/hafidu, M) and F(e) = (ha, ha) is an
equivalence of categories. Making this identification, the following
is a projective module analogue of a theorem on vector bundles. [1,
Lemma 1.4.6].

ProprOSITION 1.4. Let 57 = (I, ¢, ¢,7) be a homotopy theory on
2 and (*) a cartesian square in %7 Let Me P(A), Ne P(A) and
¢ = ¢: FM — F,Nmod 52 Then (M, ¢, N) = (M, ¢,, N) mod 5~ in
P(A).

Proof. Assume ¢, ~ .. ¢, and let w: ZF.M — #F,N show ¢, ~ .- b1
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N\ Py
Define w': If #M — If,ZN by
[ — f2y T ﬂ:a If1>
o = (2L,
Since

1A 1A,

Ihlj lffz

14, 7, 14,
is by hypothesis also a cartesian square we have (TM, ', ZN) € P(IA)
and direct calculation shows that ¢;(ZM, ', #N) ~ (M, ¢;, N) for j =
0, 1.

2. A connecting homomorphism. In this section we obtain an
explicit formula for a connecting homomorphism useful in construecting
algebraic K-theory exact sequences.

Let K,, K, be the algebraic K; functors [2, p. 445]. If 9% is a
category of R-algebras and R-algebra homomorphisms define K;(A) =
K(A)/Im K;(a). If f1 A— B is a morphism in 2% then f.a = b and
we let K;(f): K;(A) — K,(B) be the induced map. It is simple to verify
that K,, K, are functors on .2 and moreover that K;(4) is isomor-
phic to the usual reduced group whenever A is an augmented R-algebra.

THEOREM 2.1. Let 57 be a homotopy theory on a category 2%~
of R-algebras compatible with K, Let

B— R A— R
|l b
B -, 4, AL 4,

be cartesian squares in 27, h: B,— A, such that fh = g and I?O(Bl) =
0. Then there is a unique group homomorphism o: K(B) — K,(A) such
that

S[(6.M, 9, N)| = [(@M o<%> N)]

for M, Ne P(R).

Proof. For Q = (b.M, 4, N) e P(B) define

DQ = (aM ¢<%J>M, N) e P(A) .

1y
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Once one has established

(i) If Q ~ @, then DQ, = DQ, mod £

(ii) D(Ql @ Q) ~DQ, P D,

(ii) D(OM)=aM

(iv) every element of K,(B) is of the form [Q]
it follows easily that 6 is well defined, unique and a group homomor-
phism. Because proofs of assertions (ii)—(iv) are themselves straight-
forward and do not depend on homotopy, we will prove only (i).
Suppose then that («, 8): (.M, ¢, N) — (bM’, ¢', N') is an isomorphism.
Then we have ¢’ = @(B)(8)g(a”"). By Lemma 1.3

A direct computation gives

g, = (80) F(BE) ()t

SO

o (L), = a@e(pL) o

where

7= () BeG),

1y

Therefore (using Proposition 1.4)

(a0, o<%-§> N') = (a0, aO(B)(¢)<CZ‘1”—J;>Mf(7), N') mod 57

Since (v, 87 is an isomorphism from this latter module to

~ ./, f>
(alM, 5L N)
the assertion (i) is proved.

3. An exact sequence. In this section we use the homomorphism
of 2.1 and the standard K, K, exact sequence to construct a 5-term
exact sequence.

An R-algebra A is called proper if the morphism Ky(a): K,(R) —
K(A) is injective. We note that either of the following two conditions
is sufficient to insure that an R-algebra A is proper:

(i) A has as an augmentation, i.e. there is a e: A — R such that
ea = 1,



302 B. DAYTON

(ii) R is a principal ideal domain and A is a commutative R
algebra.

LEMMA 3.1. Let (*) be a cartesian square of proper R-algebra.
Then there ts an exact sequence

Ry(A) — R(A) ® K(4) — R(A) >R (A)
— KO(AL) @ KO(AZ) — KO(AO)

which 1s functorial with respect to tramsformations of cartesian
squares.

Proof. Since
R—> R

L]

R— R
is a cartesian square, by [2, p. 481] we have the commutative diagram

0 0 0

l 1 1

K.(R) — K\(R) ® K(R) — K\(E) — K(R) — K(R) @ K,(R) — Ry(R)

| l [, | | J

K((A) — K(A) @D Kx(Az) — K\(A) _‘3_‘) K(A) — KO(Al) @J{O(Az) — Ky(A,)

l l Lo J J

kl(A) E— I?x(Ax) D I?l(A2) — KX(AO) i’ I?O(A) I I?O(Al) &) I?o(Az) — KO(AO)

| 1 [ l |

0 0 0 0 0 0

where the columns and the first two rows are exact. An easy chase
shows that the third row is exact.

We wish to give an explicit formula for the morphism 4. For
this we have:

LEMMA 3.2. Let A, A, and A, be proper R-algebras and

A 2SR

s

A, — A,

be a cartesian square. Then the connecting homomorphism of 3.1 s
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given by

5la.M, o] = [(dM a<%£>M M)] for MeP(R).

0

Proof. Since the full subcategory of P(A;) with objects a,M, M e
P(R) is cofinal, K,(A,) and hence K.(A,) is generated by elements of
the form [d,M, a] [2, p. 355]. But

o[a.M, a] = a[ff’@M, < . }z f,>,f‘< = f; f>M]

_ [(fdM <a’ ‘; a0>Ma< a, i: f >M, édM)] — [@aM]
=[(a 30 a(®L) )]+ 0

from [2, 4.8 p. 365] since [@M] e Im K (a).
In order to apply 2.1 we need

LEMMA 3.8. Under the hypotheses of Theorem 2.1 the diagram

R(4) —2s R(B)— R(B) = 0

I oo
3 Bo(f")

K\(A) — K(4) — K(4)

commutes.

Proof.
st = (60,0222 o)) = [ (o0, (2, (225 )]
- [(dM a<‘la_f> M)] — 3[a.M, a] .
Also since K, (B) = 0 it can be seen that if
[N]e R(B), [N] = [(b.M, 4, N)], M, N¢ P(R) .
Thus

R a1, 6, M) = B[ (a0 (L) W) | = et = 0.

THEOREM 3.4. Let 2% be a category of proper R-algebras and
57 be a homotopy theory on 7% compatible with K, Let
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SR ™
) Cl/ Vi 131/ P

B
Al
.,/ ;o \fA/

f
A4, A

be a diagram in 2% where fh = g, all other squares commute and
the vertical squares are cartesian. If K,(C) = KB, = 0 then

R(C) B jyB) - R(4) — RA(A) — R(A)

18 exact

Proof. From 3.1 and 3.3 we get a commutative diagram

E(A) ——— K0 — Ky Cp=0
| |
/ D) J
/ |
/ i
/ / | |
v/ K4y ————— KyB ————— Ry(B)=0
/ ’ |
/ 1 l J
> () N 5 ~ -
Ki(4) K4y Ky(4) ——— K (A4) ——— Ky(4)

where the rows are exact. A diagram chase gives the result.

4. The topological K-theory exact sequence. In this section
we use 3.4 to construct the topological K-Theory exact sequence.

Let R denote the real or complex numbers. For a compact
Hausdorff space X let CX be the ring of continuous R-valued funetions
and for a continuous funection f: X — Y let f*: CY — CX be the induced
ring homomorphism. Denote the one point space by * and take .o
to be the category of rings CX and ring homomorphisms. We will
consider .2 to be a category of C* = R algebras. Define J:. %% —
%" by JCX = C(X x I) where I denotes the unit interval and J(f) =
(f x 1)*. Define ¢, ¢, 7w by <, i, #* where 1;: X— I is given by
i;(x) = (z, 7) and 7(x, t) = @, m: X x I — X. It follows easily that 57 =
(/, &, ¢, ™) is a homotopy theory on .22 We recall that K/(X) =
K,(CX) where K is topological K, functor. If X is a pointed space
the reduced group as defined above coincides with the usual reduced
group. It follows from standard results on vector bundles [1, Lemma
1.4.3] and on the correspondence between vector bundles over X and
projective modules over CX that 5# is compatible with K. Alterna-
tively it can be easily proved directly that if M, Ne P(X) then M =
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Nmod 57 if and only if M~ M.
We then have

THEOREM 4.1. Let X be a compact Hausdorff space, A X a
closed subspace. Let SA, SX denote the suspensions of A, X respec-
tively. Then there is an exact sequence

KI(SX) — K (S4) — Ki(X/A) — KI(X) — K (4)
Proof. Consider the diagram

Si

AN ANERVAN
A

where TX denotes the cone on X and h is any continuous function.
Applying the functor C we get a diagram of the form (*) and it is
not hard to show that the vertical squares are cartesian. Since TA
is contractible hi = j so *h* = j*. Thus theorem (3.4) applies to
give the desired exact sequence.

The long exact K-theory sequence follows in the usual manner
by splicing sequences of this form together.
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WEIGHTED CONVERGENCE IN LENGTH

WiLLiAM R. DERRICK

This paper studies the lower semicontinuity of weighted
length

(") liminfgrnfdsg Srfds,

n—roo

where the sequence of curves {7.} converges uniformly to the
curve 7, and f is a nonnegative lower semicontinuous function.
Necessary ard sufficient conditions for equality in (*) are
obtained, as well as conditions which prevent y from being
rectifiable. Reguirements are given for the attainment of the
weighted distance, from a point to a set, and the families of
functions, for which weighted distance is attained or (*) is
satisfied, are shown to be monotone closed from below. Finally,
the solutions to the integral inequality

) -1z rds,

are shown to be compact if the initial values y(0) lie in a
compact set.

Let v be a curve in Euclidean m-space E™ and f be a real-valued
function on E™. The (f)-weighted length of v, S fds, has proved of

fundamental importance in establishing the pathr-cut inequality for
condensers [2], [3] and the relationship between capacity and extremal
length [5], [8]. Theorem (2.4) provides necessary and sufficient condi-
tions for weighted convergence in length, and (2.10) gives conditions
under which the weighted distance, from a point to a set, is attained.
Corollary (2.6) is a useful special case of [8, Lemma 3.3]. In (38.1) the
family of functions, for which weighted distance is attained, is shown
to be monotone closed from below, and Theorem (3.2) establishes the
compactness of the set of solutions to the contingent equation (**),
similar to a result of Filippov [4].

2. Convergence theorems.

NoTATION 2.1. Let E™ denote FEuclidean m-space consisting of
all m-tuples = = (x,, ---, z,) of real numbers with inner product
@, ¥y = D", 2y, for all z, y in E™ and norm |z| = {z, )"*. Through-
out this paper, points in E™ will often be denoted by the letters «
and y, whereas the letters s, ¢t will be reserved for real numbers. The

307
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complex plane is designated by the symbol & .

Let Int A, cl 4, A denote the interior, closure, and boundary of
the set A, respectively. The open ball of radius ¢ centered at 2 will
be indicated by the expression B(z, t).

A function f: E™— E™ is Lipschitz on the set A in E™ if there
is a constant M such that

[f@) — fiy)| = Mz -y,

for all 2,y in A. If n =1, the gradient of f, grad f, will exist
L, — a.e. in A, where L, is the m-dimensional Lebesgue measure.
The Hausdorff 1-dimensional measure in E™ will be denoted by H* (for
its definition and properties see [1]). Then H'(A) represents the length
of the set A in E™.

DEeFINITIONS 2.2. Two funections 7:[e, b] — E™, v* = [¢, d] — E™
are Fréchet-equivalent if

inf sup [7(H) — v*(R(®)| = 0,

where h:[a, b] — [¢, d] is a homeomorphism. A Fréchet equivalence
class v of continuous functions into E™ is called a curve in E™, and
each member of the class is called a parametrization of .

The length of a curve v is given by

Hi(v) = sup ; [Y(Eie) — ()]

where 7: [a, b] — E™ is any parametrization of v and 7« is a partition
of [a, b]. Note that H'(v) < Hy(v), unless the set of multiple points
of v has H'-measure zero (see [7, p. 125]). A curve v is rectifiable
if Hi(v) < o. In this case we can write

Hi(y) = grolHl = SZ]grad Y(t)|dt .

A rectifiable curve can be parametrized with respect to arc-length
(see [6, p. 259]); we denote this parametrization by <v(s). Note that
|grad v(s)| = 1, H* — a.e. in [0, HL(v)], since |v(s) — ¥(s*)| =< |s — s*]
implies that |grad v(s)| £ 1, H' — a.e., and

"L

Hi(v) = g |grad v(s) |ds .

If f: E™— E' is a Borel-measurable function and v is a rectifiable
curve, define (as above)

[ sam = ' s rad w1t



WEIGHTED CONVERGENCE IN LENGTH 309

then in the event v is parametrized by arc length,

jT fdH = g:li(r}”(“/(s))ds .

In particular, if 0 < S < Hi(v), we define

Sm FAH" = S F(v(s))ds -

A curve v is locally rectifiable if Hi(v N cl B0, k)) < o, for all
k=1,28, ..., where 7N cl B(0, k) are the subcurves of v with images
in el B(0, k).

THEOREM 2.3. Let {v,(s)} be a sequence of rectifiable curves in
E™, such that Hi(v,) = L >0 and 7,(0) —¥,. Let vs be an accumula-
tion point of the set {v,(S)},0 < S = L. Then some subsequence {7,;}
converges uniformly on [0, S| to a curve v containing v, and vs such
that for every nonnegative lower semicontinuous function f: E™— E*,

(1) lim infg A = g fAH" .
e Jig 7

Proof. Since all but finitely many points of {v,(S)} lie in
B(v, S + 1), so does vs. By selecting a subsequence and reindexing
we can assume 7,(S) —vs. Each v, is Lipschitzian with constant 1,
so {v,} is equicontinuous on [0, S], and uniformly bounded by |v,| +
S + 1. By Ascoli’s Theorem, some subsequence {7,;} converges uni-
formly on [0, S] to a function v: [0, S]— E™. Clearly v is a curve
from 7, to vy, and is Lipschitzian with constant 1. Thus, |[gradv| < 1,
H' — a.e., and by Fatou’s lemma and the lower semicontinuity of f

lim infg JAH = gslim inf £ (v, ()t ,
Tl 0 oo

= | ronar = | ram.

COROLLARY 2.4. Assuming the hypotheses wn Theorem (2.3), the
condition

(2) lim Ssi grad v, (t) — grad v(f)|dt = 0,

J—roo

holds if and only if

~

(3) lim

j—roo Srnj[sl

fam: =\ fam:,

Sfor every continuous function f: E™— E'.
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Proof. Let M be a bound for f on B(v, S + 1). Given ¢ > 0,
the uniform convergence of {7,;} and (2) imply that, for sufficiently
large 7,

Srn‘deI - S,del = S:’fc’%j — fovligrad,,|dt

+ Sflfovugrad y,, — grad v|dt < (S + M) .

Thus (2) implies (3). Conversely, if f =1, then

S:limg dH' = Sslgradv(t)Idth,
josea N7y 4181 0
and it follows that |gradv| = 1, H* — a.e. By the triangle inequality,

| grad v,, — grad 7 |*
=4 —|gradv,; + grad7 = 42 — | grad v,, + grad 7)),

so Schwarz’s inequality yields
N 2 S
(4) [S | grad,, — gradv[dt] = 4S<2S— S | grad v, + grad’yldt) .

But {v.; + 7} converges uniformly to 2y on [0, S], so Theorem
(2.3) implies

(5)  liminf Ssl grad v, + grad v|dt = zgs; grady|dt = 2S .
Jooo 0 0
Combining equations (4) and (5) we find
N 2
0 < lim inf (S | grad v,, — grad 7[dt>
jooo 0

< lim sup (SS] grad v, — grad 7|dt>2

j—ooo

=48 (2S — lim infSS] grad Vu; + grad 7|dt> <0,
0

which yields (2).
EXAMPLE 2.5. Let 7,:[0, 27] — % be given by 7,(s) = (¢™)/n.
Note these functions converge uniformly to the constant function

v(t) = 0. Although (1) holds, (3) clearly does not, and

Szﬂ grad v,(t) — grad v(t) |dt = gzﬂemidt —or.
0 0

COROLLARY 2.6. Let {v.(s)} be a sequence of rectifiable curves in
E™ such that v,(0) — v, and 7,(8,) — V5,0 < s, =S < co. Then there
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is a subsequence {v,} and a curve v containing v, and vs such that

j—roo

(6) lim inf§ FAH' = § Fam",
rnj[sn J.] T
for every monmegative lower semicontinuous function f: E™— E*.

Proof. Let v} be the restriction of v, to [0, s,]. Extend v to [0, S]
by setting vi(t) = vi(s,), for s, <t < S. Each v} is Lipschitzian with
constant 1, so, as in Theorem (2.3), some subsequence converges uni-
formly on [0, S] to a curve v containing 7, and v, and having Lipschitz
constant 1. By passing to a subsequence, we can assume 8y, = 8* in
[0, S]. Then v(s*) = v5 since

[7(5%) = 75 ()| = [V(s™) — ()| + [s* = 8,1 =0

For every ¢ > 0, Sn; > s* — ¢ for large j, so by Fatou’s Theorem

joo

lim inf S FAH = tim in oz opat
Tl joe  Jo J

> g:*—sf(v(t)dt > S L JAH,

7[s*—e]

from which the result follows.

THEOREM 2.7. Let {v,(t)} be a sequence of curves in E™ such that
Hi(7,NelBO, k) < L, < oo, for all n, k=1,2, «++, and 7,(0) — 7.
Then some subsequence {7,;} converges uniformly on compact swbsets
to a curve v containing v, such that

(7) liming | fam = | ram,

for every monnegative lower semicontinuwous function f: E™— E'.

Proof. There exists an integer K such that v, and all v,(0) lie
in B(0, K). In each closed ball cl B(0, k), k = K, reparametrize a
restriction of v, by arc length

Vient [0y Senl = Vo »

where 0 < s,, < L, is either the first real number such that v,,(s;.)
lies in 0B(0, k) or Hi(v,), if no such number exists. If denumerably
many 7, lie in some B(0, k) the proof follows by Corollary 2.6. Other-
wise, delete all v, which lie in B(0, k¥ + 1). Then a subsequence of
{Y&+na(1)} converges to a point p, in cl B(0, K + 1), and Theorem 2.3
yields a subsequence {7 ..;} converging uniformly on [0, 1] to a curve
7' containing v, and p,. Delete all v,, lying in B(0, K + 2). A sub-
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sequence of {7¥xzn,(2)} converges to a point p, in ¢l B(0 + 2), implying
a subsequence, which we also denote by {Vx12,}, converges uniformly
on [0, 2] to a curve +* containing v, and p,. Continuing in this manner
we note that ~+* is an extension of v’ for k > j, hence there is a
7: [0, «<) — E™ and a subsequence {v, } obtained by Cantor’s diagonali-
zation process such that {v,]} converges uniformly to v on compact
subsets of [0, ). By Theorem 2.3 we have that for every real number
S > Oy

joroo

liminfg delgg fdH!,
T3S Jr1si

for every nonnegative lower semicontinuous function, hence the proof
is complete.

REMARK 2.8. Observe, from the construction above, that v is
bounded if denumerably many 7, lie in some B(0, k), and is unbounded
otherwise, as a consequence of the hypothesis Hi(v, N el B0, k) <
L, < oo.

Theorem 2.7 is true if we replace this condition by the requirement
that Hi(v, N cl B0, k)) < oo, for all positive integers »n and k, since if
denumerably many <, lie in some B(0, k) and no uniform bound exists
on their lengths, an argument similar to the rest of the proof above,
using curves of length = j, sequences of points {v,()},7=1,2, ---,
and diagonalization, yields a subsequence {7, } converging uniformly
on compact subsets of [0, ««) to a curve v for which (7) holds. Of
course, v might then be a constant function as in Example 2.5.
Moreover, it is no longer true that v is unbounded if only finitely
many v, lie in each B(0, k), as is seen in the next example.

ExampPLE 2.9. In E? select the points

e (PRl ().

- /}t - DRI
cn_<%+1,m>,n—l,2,

Let v, be the polygonal arc obtained by joining the points a,, b, a,,
by, <+, a,, b,, ¢, be straight line segments in their given order. Clearly
Hi(v,Ncl B, k)) < o, for all n, and v, lies in B0, k) iff n <k — 2.
However, if we parametrize these arcs by arc length, then {v,} con-
verges uniformly on compact subsets of [0, =) to the polygonal arc
v joining the points a,, b, a,, b,, +--.

LemMmA 2.10. Let K be a closed subsets of the bounded arcwise
connected set A in E™ y a point in A — K, I" the family of curves
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joining y to K im A, and f: E™— E'a positive lower semicontinuous
function. Then there is a curve vy in I such that

(8) S”de‘ = inf ST FAH"

Proof. Assume the right side of (8) equals M < « as otherwise
any v will do. Let {v,} be a minimizing sequence of curves in I".
Since f(x) = a > 0 on cl A, for sufficiently large » we have H.(v,) <
2M/a. Parametrizing these rectifiable curves by arc length so that
7.(0) = y and 7v,(s,) belongs to K, for s, < 2M/a, Corollary (2.6) and
the compactness of K imply the existence of a curve v, in I" such
that

M< ST FAH! < liminfg fdH' = M.
f I Tnj
REMARK 2.11. If A is unbounded, the same result may be obtained
by requiring that the lower semicontinuous function f be bounded
below, by a positive constant, on A.
One may also weaken the requirement on the lower semi-continuous
funection f by asking that it be nonnegative and satisfy

(9) H'({w: f(x) <e}) = o(l) .

Then M > 0 and a minimizing sequence {7,} can be chosen, for M <
and sufficiently small e, such that

Hi(v,) < oQ@) + 2MJe .

The proof follows as before. Condition (9) can not be removed entirely
as is seen by letting A be the closed unit disk in &, K =04,y = 0,
and f be the characteristic function on the complement of the set

(2(®): 2(t) = (L — t7)e™, 1 = £ < oo}

3. Some compactness theorems. Let ¥ be the set of functions
fi: E™— E*' for which Theorem 2.3 (2.6, or 2.7) holds, and 8 the set
of functions which permit the verification of Lemma 2.10. Clearly %
and B properly contain the nonnegative and positive lower semi-
continuous function respectively, since the function values may be
changed on sets of H'-measure zero without affecting (1) or (8).

THEOREM 3.1. Let {f,} be a nondecreasing sequence of functions
wm A and f(x) = lim,f.(x). Then f is also in W. The same result

also holds for B provided fi(x) = a >0 on cl A.

Proof. Let {v,} be a sequence of curves satisfying the hypothesis
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of Theorem (2.3). Then by the Lebesgue monotone convergence theorem
and (2.3), we have

(10) S faH* < Tim sup (Tim infS fde1>§1im infg fdH",
T Tm Tn

Jo—oca n—00 n—o0

implying that f lies in 2. Let M equal the right side in equation
(8). There is nothing to prove if M = oo, so let M < . For each
f: there is a curve v, such that

Skakdﬂl = inf SrfdeI — M, <M.
Since
(1) M; = | fAH S| fAH S Mo i sk,
the sequence {M,} has a limit M* < M. Moreover
ai(r) = | rdH < M,
.

so the curves {v,} satisfy the hypothesis in Corollary (2.6). Hence
there is a curve v such that (6) holds for each f,. Thus by (10) and (11)

M= S fdH" < lim sup (lim infS fjdHl>
r e

joo koo

< limsup (liminf M) = M* < M.

oo koo

Now let A be a subset of ™, 0 << S < o, f: E™— E' a nonnega-
tive lower semicontinuous function, and

D= Dulf, 8) = {%7(0) € 4, 176) ~ 7(0)| zgm]fdﬂa ETEN

Then ®, is a subset of the Banach space of all continuous functions
on [0, S] with the sup norm.

THEOREM 3.3. If A s compact, them D, is compact.

Proof. Let {v,} be a sequence of curves in ©,. By Theorem (2.3),
some subsequence, which will also be denoted be {v,}, converges uni-
formly on [0, S] to a curve v, with v(0) in 4, and satisfies

S : }del < liminfg : fAH < |v(s) —v(0)},0=s=< S.
7[0,s n—00 7uls]
Reparametrizing v by arc length (Hi(v) =< S) and extending it to
[0, S], as in the proof of (2.6) shows that v belongs to D,.
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COLLECTIVELY COMPACT AND SEMI-COMPACT
SETS OF LINEAR OPERATORS IN
TOPOLOGICAL VECTOR SPACES

M. V. DEsHPANDE AND N. E. JosHI

A set of linear operators from one topological vector
space to another is said to be collectively compact (resp.
semi-compact) if and only if the union of images of a neigh-
bourhood of zero (respectively every bounded set) is relatively
compact. In this paper sufficient conditions for a set of
operators to be collectively compact or semi-compact are
obtained. It is proved that if 7, — T asymptotically, where
X is quasi-complete and T, are W-compact then {T,— T}
is collectively compact. The final section deals with collec-
tively weakly compact sets. It is proved that in a reflexive
locally convex space a family of continuous endomorphisms
is collectively weakly compact if and only if

K = {K* E¥— E%}

is collectively compact.

The concept of collectively compact sets of linear operators on
normed linear spaces was introduced by Anselone and Moore [3].
This concept was studied in greater detail by Anselone and Palmer
[1, 2]. Some of the results in these papers were extended to more
general spaces in [4]. In this paper some further generalizations
are obtained.

2. Let X and Y be topological vector spaces and &~ [X, Y],
the set of continuous linear operators on X to Y. The underlying
scalar field will be assumed to be the field of complex numbers,
unless otherwise stated.

DeFINITION 2.1. A subset .2 < ¥ [X, Y] is said to be collec-
tively compact (respectively, weakly compact, totally bounded) if and
only if there exists a neighbourhood V of zero in X such that
=2V = {Ka: Ke 27, xe V} is relatively compact (respectively weakly
compact, totally bounded) in Y.

REMARK. It is obvious that .27 collectively compact = .27 col-
lectively weakly compact. However, if Y is a Montel space, the
reverse implication is also true.

317
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PRroOPOSITION 2.1. Let 27 C ¥ |X, Y] be collectively compact and
Y, a quasi-complete locally convex space. Then the following state-
ments hold.

(@) The convex hull of 27 1is collectively compact.

(b) The balanced hull of .27 1is collectively compact.

(¢) The absolutely convex hull of 2% 1is collectively compact.

(d) The closure of .2 in the pointwise topology, and therefore in
AF X, Y is collectively compact.

(€) The set 33 MK, K,€ 2% D30 [ M1 =206,0>0, NZ oo} is
collectively compact, the convergence of the series being in £ [X, Y].

Proof. (a) Let {.27" be the convex hull of 97 As .2% is col-
lectively compact, there exists a neighbourhood V of zero in X such
that .2V is relatively compact in Y. Now,

CoVel(FV)ci(Z V),

where bar denotes the closure. Since %"V is compact and Y is
quasi-complete, [( 2 V) is compact [9, 20.6(3)]. It follows that .5~
is collectively compact. The proofs of (b)—(e) are similar to those
in [1].

PropoSITION 2.2. Let X, Y and Z be topological wvector spaces
and .2 Cc L |X, Y], # x4 X, 4 CZF|Y, Z] then:

(a) 2= collectively compact and _7Z equicontinuous — .7 7
collectively compact.

(b) .27 collectively compact and 4~ relatively compact in the
FNX, Y] = 4727 1s collectively compact.

Proof. (a) Since .27 is collectively compact, there exists a
neighbourhood V of zero in X such that .2#"V is relatively compact
in Y. Further, by the equicontinuity of _#, there exists a neigh-
bourhood W of zero in Z such that 2 W< V. Hence

(o YW V.
From this the assertion follows.

(b) See [4], Prop.2.3 (b).

COROLLARY. If i c ¥ [X, Y] tis collectively compact and
A CFNZ, X] ts bounded where Z is barreled and X locally convew,
then 52~ 7 1s collectively compact.

* ¢2[X, Y] with the topology of uniform convergence on bounded sets of X.
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Proof. For, if Z is barreled and X is locally convex then
A < A [Z, X] is bounded if and only if it is equicontinuous.

It is proved in [1] that a compact set of compact operators on a
Banach space is collectively compact. We shall prove a similar but
slightly weaker result for topological vector spaces. For this, we
introduce the following definitions.

DEFINITION 2.2. A linear operator K¢ . [X, Y], where X and
Y are topological vector spaces, is said to be semi-compact if it maps
every bounded subset of X into a relatively compact subset of Y.

It is obvious that a compact operator is semi-compact. The con-
verse is also true if X is a quasinormed space.

DEFINITION 2.3. A set of linear operators .7 c < [X, Y] is
said to be collectively semi-compact, if and only if, for every bounded
set BC X, .27 B is relatively compact in Y.

It is clear that a collectively compact set of operators is collec-
tively semi-compact and the propositions proved so far, for collec-
tively compact sets, are also true for collectively semi-compact
operators if X is bornological and Y locally convex, because, a semi-
compact operator is bounded on bounded sets and therefore continu-
ous if the domain space is bornological.

We prove the following

LEMMA 2.1. Let & be an equicontinuous family of operators
on a compact set .oF into a topolological wvector space Y. Let & be
compact with respect to the topology of pointwise convergence. Then
the set 7 (2¢) = {f(K): fe s, Ke.2} is compact.

Proof. & is equicontinuous, therefore, f(K) is jointly continu-
ous, in the sense, that the map (¥ x %) —Y defined by
(f, K) — fK is continuous relative to the product topology [8, 8.14].
Now & X .2¢ is compact, hence .& 9%, the continuous image of
F X .27 is compact.

The following proposition generalizes the theorem 3.6 in [4].

ProPOSITION 2.3. Let X, Y be locally convex spaces, X borno-
logic. Let .27 be a set of semi-compact operators, compact in
LX, Y. Then .27 is collectively semi-compact.

Proof. Define a map f,: < [X,Y]—Y by f.(K)= Kz for
Ke & |X, Y] and each ¢ B, a bounded set in X. Consider the set
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Z = {f,: e B}, We prove that & is equicontinuous. Let V be
a neighbourhood of zero in Y. Then the set W = {K: KBC V} is a
neighbourhood of zero in ¢4[X, Y]. Now,

F W= {fK): f,eF, Ke W}
= {Kx: Ke W, xc B}
=WB)cV.

This proves the equicontinuity of .#. Now, the closure .# in the
pointwise topology is also equicontinuous. Also, &# Kc Z# K = KB
which is compact by hypothesis on .9 Hence & K is relatively
compact in Y, for each Ke .2 From this follows the compactness
of & [8,§8, Problem H]. From Lemma 2.1 we deduce that & & o~
is compact. But . B = .% < & % Hence .% B is relatively
compact. This implies that .2¢" is collectively semi-compact.

COROLLARY. If Y 1is complete, then every totally bounded set
2 of semi-compact operators in 4 [X, Y] is collectively semi-
compact.

Proof. In this case <5[X, Y] is complete. Hence .5 is com-
pact. By the proposition % is collectively semi-compact. Then so
is o¥:

PROPOSITION 2.4. Suppose X, Y are locally convex spaces. Let Y
be reflexive. Then every set .22 of semi-compact operators bounded
wn 45X, Y] is collectively weakly semi-compact.

Proof. Since .2 is bounded in <5 [X, Y], 2# B is bounded for
every bounded set Bc X. Since Y is reflexive, every closed bounded
set is weakly compact. [10, Th. 36.5]. The conclusion follows.

3. Convergence properties of collectively compact sequences of
operators.

ProposITION 3.1. Let X and Y be topological wector spaces, Y
sequentially complete. Let T, T, < [X, Y] for all n. Then:

@ T,—»Tin £[X,Y] of and only of T,— T in pointwise
topology and {T, — T} is totally bounded in 4 [X, Y].

(b) If, in addition, X ts bornologic and Y locally convex, then
T,— T i #[X, Y] and each T, — T semi-compact= {T, — T} is
collectively semi-compact.
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Proof. (a) It is evident that T,— T in H#I[X, Y] T.—T
pointwise and {T, — T} is relatively compact, and hence, totally
bounded.

For the reverse implication assume that 7, — T - 0 in <4 [X, Y].
This implies that for a given neighbourhood V of zero in Y, and
bounded set B in X, there exists a sequence n; such that (T,,—T)(B)
¢ V, for each i=1,2 ---. Since {T, — T} is totally bounded,
there exists a Cauchy subsequence {TMJ_ — T} which must converge
in ¢&5[X, Y] by completeness of Y. Because T, — T — 0 pointwise,
it follows that T,,— T—0 in £ [X, Y]. Therefore (ij — T)(B)
< V, 3 > N, a positive integer. This is a contradiction.

(b) This follows from the fact that a totally bounded set of
semi-compact operators is collectively semi-compact if Y is a complete
locally convex space and X is bornologic (Cor. Prop. 2.3).

REMARkS. If T, — T pointwise and X is of second category, the
Banach-Steinhaus theorem implies that the {T,} is equicontinuous,
and hence, the pointwise convergence is uniform on the compact sets
of X. On the other hand, as proved in (a) above, {T,— T} totally
bounded and T, — T pointwise imply convergence in &4 [X, Y], i.e.
uniform convergence on bounded sets. This leads to the following
propositions.

ProrosITION 3.2. Suppose T, — T pointwise on X, where X 1is
bornologic and of second category. Suppose > < & |[X, X] is col-
lectively semi-compact. Then (T, — T) K— 0 in & [X, X] uniformly
for Ke 27

ProposiTiON 8.3. Let T, — T pointwise and .2 C ¥ [X, X] be
totally bounded im the pointwise topology. Suppose X 1s complete
and of second category. Then T,K-— TK pointwise uniformly for
Ke 27

Proofs. Similar to Propositions 3.1 and 3.2 in [2].

4, Asymptotic convergence and collectively compact sequences
of operators.

The concept of convergence of operator sequences in the uniform
operator topology in the normed spaces, is generalized in the follow-
ing manner in [5].

DEFINITION 4.1 A linear operator K on a topological vector space
E into itself is said to be the asymptotic limit of a sequence K, of
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linear operators, if and only if, there exists a neighbourhood V of
zero in E, a sequence «, of scalars — 0 as n— < and a bounded set
BcC FE such that (K — K,) Vca, B, for n =1,2, -... This mode of
convergence will be denoted by K, K, and K will be called the V-
asymptotic limit of K,.

DEFINITION 4.2. A linear operator K on E to itself is said to be
V-totally bounded if and only if V is a neighbourhood of zero and
KV is totally bounded in E.

DEFINITION 4.3. If K is the V-asymptotic limit of K, and if
each K, is V-totally bounded, K is said to be asymptotically V-total-
ly bounded.

ProrosITION 4.1. If K is asymptotically V-totally bounded, then
K is V-totally bounded.

Proof. [5,4.2-1].

PropoOSITION 4.2. Let T, T,e & [X, X] and let T be the V-
asymptotic limit of T, where each T, is W-totally bounded. Then
{T, — T} is collectively totally bounded.

Proof. T,—» T and each T, W-totally bounded implies T is W-
totally bounded (Prop4.1.). Now, T, > T = there exists a sequence
«, of scalars — 0 as # — o>, a bounded set BC X such that

(r, — Th(W)ca,B for all » .

Let V be any neighbourhood of zero. Choose a balanced neigh-
bourhood V, of zero such that V,+ V,c V. Since B is bounded,
BcaV, for some scalar «. Therefore, (T, — T)Y(W)cCa,aV,. We
can choose N such that |aw, | <1 for > N. Hence (T,—T)(W)CV,
for n > N. It follows that

U (T, - YWy < U(T: = T)(W) + V..
As (T; — T)(W) is totally bounded for each ¢, so is their finite
union. Hence, Y AT, — TY(W)c UL, (x; + V) for some M, a
positive integer, and x; ¢ E. Hence,

U (T, - T)(W)cg(xmu V).

This proves the proposition.
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COROLLARY 1. Let T, T,e ¥ [X, X] where X is quasi-complete.
Suppose T, is W-compact i.e. T, (W) is relatively compact for some
neighbourhood W of zero in X. If T, T, then {T,— T} is col-
lectively compact.

Proof. T, T and each T, W-compact= T is W-compact be-
cause X is quasi-complete [5,4.2-1 Cor. 3]. From the above pro-
position it follows that U.(T, — T)(W) is totally bounded. Hence,
the closure U,(T, — T)(W) is bounded and closed and, therefore,
complete by the quasi-completeness of X. Thus, U.(T, — T)(W) is
totally bounded and complete, and therefore compact.

COROLLARY 2. If T,-» T on a neighbourhood W of zero in X, and
each T, is W-totally bounded, then {T, — T} is collectively compact
of X is a Montel space.

Proof. From the Proposition 4.2 it follows that {7, — T} is col-
lectively W-totally bounded, and, therefore W-collectively compact,
as X is a Montel space.

ProposITION 4.3. Let T, T, where T, Te ¥ [X,X]. If
9 c X, X] is collectively compact, then (T, — T)K-»0 uni-
formly on 57

Proof. Since .2#" is collectively compact, there exists a neigh-
bourhood A of zero in X such that 9% A is compact in X, and hence
bounded. Now, T, T = there exists a neighbourhood W of zero
in X, bounded set B < X, and a sequence «, of scalars — 0 such that
(T, — TY(W)C a, B for all n. As .2 A is bounded, .22”AC rW for
some scalar ». Hence, (T, — T)(>7A)c (T, — TY(rW)c (ra, B), for
all #n. Since «, and B are independed of 9 (T, — T)K - 0, uni-
formly on 97

5. Collectively compact sets in weak topology. In this section
we consider the inter-relation between a collectively compact set of
operators and its dual family.

ProposITION 5.1. Let E be a locally convex topological wvector
space and 27 a family of continuous endomorphisms, uniformly
bounded on a neighbourhood V of zero in K. Let 27 * be the family
of dual operators. Then 9 * considered as the set of mappings
(K*: Ef — EX} 1s collectively compact, where E; is the strong dual
and Ej} the w*-dual of E.
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Proof. By hypothesis, .2V = B is a bounded set in E. Con-
sider neighbourhood W of zero in K} defined by

W={r: rer, Sup <y /> <1

_ {f: fe By, Sup [<x,K*f>l<1}.

K"’eeﬂ"*
It then follows that

fe W=l<x, K*f>i<1 for all xe V, and K*e 5%
= K*feV®°, the polar of V in E, for all K*e.27™*
—_— W VO .

Now, by the Banach-Alaoglu theorem [8, Th. 17.4], V° is w*-
compact in E*. Hence .2 *W is relatively compact in E}. This
completes the proof.

PROPOSITION 5.2. Let E be a semi-reflexive locally convex space
and 27, a family of continuous endomorphisms on K. If 2 1s
uniformly bounded on a meighbourhood V of zero im E, then .2
considered as o family of operators from (E})F— (EF)k is collectively
compoct.

Proof. From Proposition 5.1 it follows that the family .25* of
operators from E} - EZ is collectively compact. Therefore, there
exists a neighbourhood W of zero in E* such that B = 2*W is
relatively compact in E} and, hence, bounded in w*-topology. From
semi-reflexivity and from the fact, that a weakly bounded set is also
bounded in the initial topology [8, Th. 17.5], it follows that B is
bounded in E. From Proposition 5.1, it follows that

G =K (B —— (B) )

is collectively compact. Also .2 = .2 ** by the continuity of each
Ke 277 Hence the result.

COROLLARY. Let K be a continuous linear endomorphism on FH,
a locally convex space. Suppose K is bounded on a meighbourhood of
zero itn K. If E is reflexive, then K 1s weakly compact.

PRrROPOSITION 5.3. Let E be a locally convex, reflexive space, and
2 a family of continuous endomorphisms on E. Let 5¢°* be the
corresponding dual family of endomorphisms on E*. Then 5 1is
collectively weakly compact if and only if 55°* as the family of
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operators {K*: E} — KL} is collectively compact.

Proof. Suppose .27* is collectively compact as the family of
operators {K*: Ef — E)}. Then there exists a neighbourhood W of
zero in EF, such that .2 "*(W) is relatively w*-compact. This im-
plies, since E is reflexive and, therefore barreled, that .27 *(W) is
equicontinuous, [10, Th.33.2]. Hence, there exists a neighbourhood
V of zero in E, such that 2 *(W)c V°, the polar of V. [10, Prop.
32.7]. Therefore,

[<K*w, )| <1,
for all xe V, K*e %, we W=— % (V)C W°.

From the reflexivity of E and the Banach-Alaoglu theorem, .22°(V)
is relatively w-compact. This proves that .27 is collectively weakly
compact.

The converse follows from Proposition 5.1.

COROLLARY. Let K be a continuous endomorphism on a reflexive
locally convex space E. Then K is weakly compact if and only if
K*: Ef — KX is compact.

This is a partial generalization of the Theorem 2.13.7 in [7].
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SOME H* SPACES WHICH ARE UNCOMPLEMENTED IN L*

SaMueEL E. EBENSTEIN

Let 77 denote the compact group which is the Cartesian
product of 7 copies of the circle where j is a positive integer
or w. If 1<p=colet L?(77) denote the space of complex
valued measurable functions which are integrable with respect
to Haar measure on 7Y. If j is finite we shall write » instead
of j. The subspaces H»(T") of L?(T"), i.e. the Hardy spaces
of T*, have many well-known properties. A family of sub-
spaces H?(T*) of the L?»(T«) is defined and they are shown
to have many of the same properties as the H?(T"). However
a major difference between H?(T<) and H?(T") is observed.
If 1<p<c then H?(T") is complemented in L?(T"), but
H?(T<*) is uncomplemented in L?(T®) for 1 < p < o unless
p =2

Special properties of homogeneous functions in H'(T“). Let j
be a positive integer or w. If j is finite we shall write # in place
of j. We shall let T" denote the compact group which is the Car-
tesian product of # circles, and T the compact group which is the
‘Cartesian product of countably many circles. The dual of T* is the
direct sum of n copies of the integers, and the dual of 7T¢ is the
direct sum of countably many copies of the integers. If ge T", then
we write

g = (zly 'ZZJ ct Yy zn)
where each z; is a complex number of unit modulus. If ge T it has
a similar representation, but we must take a countable family, i.e.
g = (zly 229 zSy ...) .

By abuse of notation if ¢ < n < -, we let 2; denote that ge T" or
g< T* which has the following representation:

g:(ly "‘,1,275, 1! “.)

where z; occurs in the 7th place. We shall write m, for the normalized
Haar measure on 7" and m for the normalized Haar measure on 7.

The dual of T" can be written as >, Z, and if z¢ >, Z then
we write

r = (xly Loy * v, xn)
where each z; is an integer. The dual of T* can be written as >, Z,
and if xe >\, Z, then we write

327
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xr = (xu P2y Xy, ”')

where each x; is an integer, and for any particular x, only finitely
many 2; are nonzero.
We define 4, > 7, Z and AC 37, Z by

A, = {x:x;, = 0 for all 4}
A = {x:2, =0 for all 7} .

We need the following definitions to define H?(T%). Although the
definitions could be stated in terms of 77 it is easier to state them
in the context of arbitrary compact abelian groups.

DEFINITION 1.1. Suppose G is a compact abelian group with dual
group I'. If 1 < p < - let L?(G) denote the space of complex valued
measurable functions which are p'™ power integrable with respect to
Haar measure on G. If E is a subset of I, f will be called an E-
Function if fe LNG) and f(v) =0 if vyeI' ~ E, where f(v) is the
Fourier transform of f evaluated at .

DEFINITION 1.2. Suppose 1 < p < « then L%(G) = {f: fe L*(G)
and f is an E-function}.

DEFINITION 1.3.

HA(T") = L2, (T")
H?*(T*) = LA(T°) .

The properties of H?(T") are discussed in [7]. These spaces are
related to analytic functions in several complex variables which are
defined on the interior of the #n-polydisc in C", and are subject to
certain growth conditions near the distinguished boundary 7". If
j = w, there is no analogue of the interior of the wn-polydisc. However
we still have many of the nice properties of H?(T").

It is possible to imbed H?(T") in H?(T*) in a natural way. We
have the following homomorphisms

T, T - T
(By, Boy * 0y By Rpgr =02 ) —— (R, Roy *** 2,)
and 7w, induces an isometry I,.
I'n, . H;D(Tn) _— HP(T(U)
f — foﬂ'n .

(1)

DEFINITION 1.4. Suppose fe H'(T") and s is a positive integer or
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0. Then the s homogeneous component of f = ,P,f), where ,P.(f)
is defined by its Fourier transform

F@) if S =s

P.(F)(@) =
w AN = | 0 otherwise

That is if f has Fourier series
f(g) ng az(gy ﬂ?) ’
then ,P,(f) has the following Fourier series:

nPs(f)(g) ~ x‘e?;;‘ ax(g’ .’X}) .

Jz;=s

N
Then ,P,(f) is a trigonometric polynomial since ,P,(f) has finite support.

DEFINITION 1.5. Suppose fe HY(T*) and f = ,P,(f) for some s.
Then we say f is homogeneous of degree s. The previous definition
is motivated by the following fact: If A is a complex number of unit
modulus and we write » to mean the point (A, N, A, «++, ) of 7™, then

fong) = Nf(g) for all ge T

if f is homogeneous of degree s. Clearly if f is homogeneous of
degree s its Fourier transform has finite support, so f is a trigonom-
etric polynomial and hence fe H?(T*) for 1 < p < . It is easy to
show that ,P, is a bounded linear operator from HY(T") into H?*(T")
for each p. However it is not obvious that we can define an operator
P, on H'(T*) which is analogous to ,P, on HYT") because the sum
that should define P(f) for fe HY(T*) is not necessarily finite. The
following lemma helps show that P, can be defined as a bounded linear
operator from H'(T*) into H*(T*).

LEMMA 1.6. Suppose s is a positive integer or 0, and 1 < p < oo,
Then there exists a projection P, on H*(T*) with || P,|| = 1 satisfying:

~

Sf@) if Juw; =

0 otherwise

P - { . Fe HNTY).

That s ©f f has Fourier series
f(g) Nx%az(gy x) ’

then P,(f) has the following Fourier series:

Ps(f)(g) ~ %az(g5 x) .

Zax;=s
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Proof. Consider the following subgroup H of 32, Z:
H= {x:xeiZ and 2z, = 0} .

But (3=, Z)/H is a quotient group of >, Z and hence its dual which
we shall call D, is a compact subgroup of 7°. Let m, be normalized
Haar measure on D. Since Dc T% we can calculate the Fourier
coefficients of m, with respect to D2, Z. It is easy to calculate that

My(x) = %xz(x) for all xe f] Z,

where y,(x) is the characteristic function of the set H. If s is a
positive integer or 0, choose a y,€ >.2, Z so that >, (y.); = s; then
for the measure y,.(g)dm,(9)
1 if Yx—y,)=0
S R .
Ysmp(®) = Mp(® — y,) = Le.2(x); = s
0 otherwise
Evidently for all s

[, 1.0 dmafe)| = 1,

so if fe H?(T*) we can consider fx(y,dmj,) where = denotes the usual
convolution of a measure on 7T° with a function which is in H?(T"),
hence in L'(T*). We have the following inequalities:

(2) L+ (ydmp) ], = HprS(;Iys(g)dmp(g)l =[Sl

If we calculate the Fourier transform of f*(y.dmy)

— N T B
S(y,dmp) (@) = f(@)(ydmpy)(x) = P(f) (@) .

Since fx(y,dm,) and P,(f) have the same Fourier transform they are
the same element of H?(T*), and so from equation (2)

PNl = [[f+(wdmp)ll, = [ £l

and this completes the proof.

DEeFINITION 1.7. If fe H?(T*), then the s homogeneous component
of f is Py(f).

If f= P,(f) for some s, we say f is homogeneous of degree s.
This definition is justified by the fact that if f is a homogeneous
trigonometric polynomial of degree s on T“, then we have

(3) fvg) = Nf(g) for all geT*
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whenever )\ is a complex number of unit modulus and on the left we
write A to mean (A, A, «-+).

Suppose that f is a homogeneous function and that fe H'(TY),
where j is a positive integer or w. If j is finite, then f is necessarily
a trigonometric polynomial and the following lemma and theorem are
obvious. However if j = w, f isn’t necessarily a trigonometric poly-
nomial, and the following lemma and theorem require proof.

LeEmMA 1.8. Suppose fe H(T*) and that f is homogeneous of
degree s. Then equation (3) is satisfied for almost all ge T* and
almost all \.

Proof. If f is a trigonometric polynomial there is nothing to
prove. Otherwise by using an approximate identity we can find a
sequence {f,}m-, of homogeneous polynomials all of degree s such that

imf, = f

n—oo

in the norm of H'(T®). There exists a subsequence of {f,}r, say
{f.;}7-: such that

lim £,,(9) = £(9) a-e.

where a.e. means for almost all ge T with respect to Haar measure
on T°. T¢ x T is the product of the measure spaces T° and T, and
so T* x T is a measure space with the product measure.

Let

W = {(g, M) e T x T such that f(ng) = Mf(g)} .

Then W is measurable and we wish to show that the measure of W
is 1. Now consider any fixed v e T; we have

lim £,,(9) = /(0)
lim £,,(rg) = f(x9)
except for a null set of g. But for each j
fa;(M9) = NFay(9)
Frg) = lim £,,vg) = lim V7, (0) = N(@)
except for a null set of g. So m(W) = 1, which finishes the proof.

The next theorem is an application of a theorem about A(p) sets.
We digress for a moment to define A(p) set.



332 SAMUEL E. EBENSTEIN

DEFINITION 1.9. Let G be a compact abelian group with dual
group I'. If p > 1and Ec I" we say E is a A(p) set if LL(G) = L%(G).

DerINITION 1.10. If A is a subset of " and # is a positive integer
we define A" = {xele=a, +a + «-- + a,, wherea, e 4,1 < i < n}.

THEOREM 1.11. Suppose G is a compact abelian grouwp with torsion-
free dual group I'. If E s an independent set in I', then E° is a
A(p) set for all p < = and all positive integers s.

Proof. See [3, p.28, Theorem 4].

THEOREM 1.12. Suppose fe H'(T®) and that f is a homogeneous
Junction of degree s where s 18 a positive integer or 0. Then fe H*(T?)
for 1< p < oo,

Proof. Let EF = {z;})2,. Then FE is independent as a set in 3, Z
and so E° is a A(p) set for all p < o, by Theorem 1.11. But since
fe HY(T*) and f is homogeneous of degree s, f is an E*-function. By
applying Theorem 1.11 we obtain that fe H*(T*) for all p < «, and
this completes the proof.

COROLLARY 1.13. Suppose fe H'(T*) and that f is a finite sum
of homogeneous functions; then fe H?(T) for 1 < p < .

Proof. By assumption f is a finite sum of homogeneous functions
S0 we may write

F=35P) .

Since fe HY(T*) each P,(f)e H'(T*) for 0 < s < k. By Theorem 1.12
each p,(f)e H?(T*) for 1 < p < <o, so f is a finite sum of functions in
H?(T*) hence fe H*(T*).

Theorem 1.12 is really a theorem about H'(T*) rather than L'(T¢).
In that context Theorem 1.12 is false. In fact Theorem 1.12 is false
even for L'(T? and hence for L(T°).

If j is a positive integer or «, we define homogeneity for arbitrary
functions in L'(T7) as follows: If fe L'(T7), we say f is homogeneous
of degree s if

Fl@) =0 if xeiZ and Xz; # s .

To show that Theorem 1.12 can’t be extended to L'(T%), we shall
construct for every p» > 1 and for every positive integer N, a homo-
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geneous polynomial f of degree 0 on 7? such that

=1
Ifll= N .

For given p > 1, find a trigonometric polynomial b defined on T such
that

lIb]l, =1
loll, = N

where b(z,)) has Fourier series
bz) = ) 0.t .
Define the polynomial f by
Sz %) = Z,O aRi2F .

We wish to compute the norm of f in L'(T?% and in L*(T%):

171l = | 17 @ 2 [ (e dmy(z,

-1,

t
= S 5! a(%,)*
T | k=0

t

a,(z,2;")"
k=0

dm,(z,)dm,(z,)

dmye)dm(z) = | [1blldmz) = | 1dm@) = 1.

The crucial equality in equation (4) is justified by the translation
invariance of dm,(z,). By a similar computation we have

[ fll = llbll, = N
and this provides the desired counterexample.

2. A convergence theorem for H?(T“), By the M. Riesz theorem
on conjugate functions [8], if 1 < p < « and fe H?(T), then

f=lm>az, a =f0s)

n—soo §=0

in the norm of H?(T). In our terminology this can be written

f=1im 3 P(F) -
The next theorem gives an analogous result for H?(T%). The proof
uses a theorem about ordered groups so we digress for a moment to
define the relevant terms.
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Suppose I'" is a discrete abelian group and P is a subset of I
with the following properties:

1. If v,e P and v,€ P then v, + 7,¢€ P.

If —P denotes the set whose elements are the inverses of the
elements of P then we have

2. PNn(—P)={0}

3. PU(—=P)=T.
Under these conditions P induces an order in I' as follows: For v,
and v, elements of I', say v, =7, if 7, — v,e€ P. It is easy to check
that this is a linear order. A given group may have many different
orders corresponding to different choices of P with the three properties

above.

DEFINITION 2.1. Suppose G is a compact abelian group whose dual
group I" is ordered. Let f be a trigonometric polynomial on G with
Fourier series

flg) ~ 72, a:(g, 7)
Define @(f) by
21)0) ~ a0, ) -

We shall need the following generalization of the M. Riesz theorem
on conjugate functions. It is due to Bochner [1].

THEOREM 2.2. Suppose 1 < p < . Then there exists a constant
A,, independent of G or the particular order in I' such that if f is
a trigonometric polynomial on G, then

2Nl = Apll flls -

THEOREM 2.3. Let 1 < p < co. Then if fe H*(T*)

lim 3} P(f) = f

in the morm of H?(T®).
Proof. Fix p. Define Y, by
Y.(f) = S P i Fe HAT?) .
Clearly trigonometric polynomials are dense in H?(T*) and

lim Y.(f) = f

n—o
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whenever f is a trigonometric polynomial. It remains to show that
the family {Y,};-, is uniformly bounded on trigonometric polynomials,
i.e.

I Ya(Nl = Kl F 1l

f a trigonometrie polynomial where K is a positive constant independent
of n and f. Then by a standard argument in functional analysis, the
proof is complete. I shall show that the norm of Y, is majorized by A,,
where A, is the constant of Theorem 2.2.

Our first task is to induce an order in >, Z so that we can apply
Theorem 2.2. First choose a family {d;}, of real numbers which
satisfies the following properties:

1. d,= -1, -1<d,< —n/(n + 1) for ¢ = 1.

2. The set {d;} is independent in the group sense as a subset of
the reals.

We define a homomorphism from 3.2, Z into the reals by

ﬁ:i‘,——dﬁ

7 is clearly a homomorphism; since the d, are linearly independent,
it has a trivial kernel, i.e. if 7#(x) = 0 then « = 0. Define

P:{x:xegZand n(w)gO}.

Then P satisfies the necessary properties to induce an order in >\, Z.
If f(g) is an arbitrary trigonometric polynomial on T define a trigo-
nometric polynomial fi(g) as follows:

fi(g) = z"(9)f(9) -
Let f(9) = Za.(g,x) . Then
filg) = 27™(9)f(g) = Za(9, —nz)(g, ®) = Za.(9, x — nz)
and

(f) = Z) 0abz(g, r— nz) .

T{z—nz)) =

If 7(x — nz,) = 0, then
0 < 7(x — nz) = 7(x) + n(—nz) = 7®) — nr(z) = @) + n

and n(x) = —n. But 7(x) = 2dxx;, and by using property 1 of {d;} it
is clear that n(x) = —» if and only if Xz, < n. So ¢(f) = Za.(g, x — nz,).
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Then it is easy to compute that Yz, < n

20(F) = 3, P = V() -
By Theorem 2.2 we have that
12 = A, 1Al -

So we have

HY.(Nl = 1210, = [2fill, = A, [ fill»
= Aszl—anp = Ap“f”p ’

so the norm of Y, is less than or equal to A, and the proof is complete.

3. The complementation problem. The next theorem shows
that H?(T”) is uncomplemented as a subspace of LP(T%) if p = 2.
This is in contrast to H?(T") which is complemented in L?(T™) except
when p = 1 or p = . Although other examples of uncomplemented
subspaces of an L? space are known, H?(T*) has the advantage of
being defined in a concrete way.

DerFINITION 3.1. Let G be a compact abelian group. If fe LY(G)
let f,, denote the g,-translate of f where

fgo(g) :f(go + g) .

LEMMA 3.2. Let G be a compact abelian group with dual group
I'. Suppose 1 < p<< oo and that T is a bounded projection from
L*(G) onto L%(G). Then a linear operator @ can be defined by

Q) = | [Tl dm)  FeL@),
where the integral is the Bochner integral.
@ is the natural projection from L*(G) onto L%(G), i.e., if fe L*(G)
then Q(f) is defined by its Fourier transform as follows:

f@) zeE
0 otherwise

G(f)@) = {

Proof. The proof for the case G=T,I'=Z, E=Z",p=11is
given [4, page 154]. The proof in the general case is analogous.

THEOREM 3.3. Suppose p #+ 2, then H"(T*) is uncomplemented as
subspace of L*(T*).
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Proof. If p =1 or p = o, there is really nothing to prove.
There is a theorem in [4, pp. 154-155] which proves that HY(T) is
uncomplemented in LY(T), and that H=(T) is uncomplemented in L=(T).
Then since H*(T) and L' (T) can be isometrically embedded into H:(T<)
and L(T®) respectively for ¢ = 1, oo, the theorem is proved for p = 1
or p = co. In any case the argument which follows is valid for p = 1,
and with slight modifications for p = o,

Let S be the natural projection from L*(T“) into H?(T*) which
is defined on trigonometric polynomials by

S: L*(T*) — H*(T")
5= S0
where
Flw) ifzecA
0 otherwise)

S(H@) =

We wish to show that S can’t be extended to a bounded operator
defined on all of L*(T“). To do this it is sufficient to find trigono-
metric polynomials £, on T such that

(5) Wfall, =1
(6) IS(F)ll, = 1 + &) where &>0.

By [8, p. 295, Ex. 2] we can find a trigonometric polynomial / defined
on T so that

Me) = 3 a@t |kl =1
and if
ho(z) = ; 0,2t
then we have

el =1+ ¢

where ¢ is some positive number which depends upon p. Consider
the trigonometric polynomial » defined on T* by

zy, 2) = h(e)h(zy) = (k;_ asz)(ki a,cz;f) )

=—n

Define ». by

(2 2) = ho(2)hy(2) = (kz: akzkxkz:; W;c) .
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Then it is easy to compute that

Irll, =112l =1
lrells = ([Aedlo)* = A + &)«

We define trigonometric polynomials on T¢ by
fi=1L(h)  fo= L(r)
where I, and I, were defined in equation (1). It is easy to check that
S(f) = L(ky)  S(f) = L(ry)

and since I, and I, are isometries we have

Wil = l1LW 1, = [[k]l, = 1

ISl = L) N, = Bl =1 + €
el = ([ ()i, = [lrll, = 1

1S lle = [ Lr)ll, = [lrell, = 1+ &)

By a similar argument we can construct trigonometric polynomials
fo, fo, +++ and hence f, for any n and f, will satisfy equations (5) and
(6). This shows that the natural projection from L?(T*) into H?(T*)
isn’t bounded. To finish the proof we must show there is no bounded
projection of any kind from L?(T*) into H?(T*) which is the identity
when restricted to H?(T).

Suppose there exists S a linear transformation from L*»(T®) into
H?*(T*) which is the identity when restricted to H?(T“). Define a
linear operator @ by

Q) = | IS¢ am)

where the integral is the Bochner integral. Then @ is a bounded
linear operator from L7(T®) into H?(T*) and by Lemma 3.2 we have
that @ = S, where S is the natural projection from L?(T*) into H?(T*).
But we know that S isn’t a bounded projection and this provides the
contradiction which finishes the proof.

We wish to thank Professor Henry Helson for his aid and encour-
agement in writing our thesis. We would also like to thank Professor
Alessandro Figa-Talamanaca for many helpful discussions.
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ON THE COMPLETION OF LOCALLY SOLID VECTOR
LATTICES

D. H. FREMLIN

Let E be a Riesz space (= vector lattice), with a locally
solid Hausdorff linear space topology. Then its completion
also has a Riesz space structure. In this paper it is shown
how a pair of important properties which may be possessed
by E are inherited by its completion.

In general this article will rest on the foundations of [4] and [5].
A linear space topology on a Riesz space E is locally solid if 0 has
a neighbourhood basis consisting of solid sets. In this case, the lattice
operations are uniformly continuous; consequently (assuming that the
topology is Hausdorff) they can be extended to the linear topological
space completion E of E, and E will also be a locally solid topological
Riesz space ([5, p. 235; 4, p. 108]). E is now a Riesz subspace of E,
i.e. a linear subspace which is also a sublattice.

My object is to show how two important and common properties
are preserved by the process of completion. Unfortunately, although
these properties have been studied by various authors (see e.g. [3]),
no satisfactory terminology has been devised. I hope that my use of
the words “Fatou” (§1) and “Lebesgue” (§5), suggested by the famous
convergence theorems, will prove acceptable.

1. Fatou topologies. Let E be a Riesz space and ¥ a topology
on E. I will call £ Fatou if (i) it is a linear space topology (ii) 0
has a base consisting of sets U which are solid and such that if
@CASUand A | ¢ in E (i.e. if A is nonempty, directed upwards,
and has a for its least upper bound), then z e U.

This property is exceedingly common. Consider, for example,
C(X) for any compact space X; the basic neighbourhoods of 0 are of
the form {x:[|«|l. < ¢}, and these all have the property described
above. Similarly, in all the L? spaces, for 0 < p < <, the usual
topologies are Fatou.

The most striking thing about Fatou topologies is Nakano’s
theorem (see [2]). For its full strength this requires a further concept.
Let us call a linear space topology on a Riesz space E a Levi topology
if every topologically bounded set A< E which is directed upwards
has an upper bound in E. (For example, all the spaces adduced above
have Levi topologies. Also, the weak topology associated with a locally
convex Hausdorff Levi topology will always be Levi). Then: A Levi
Fatou Hausdorff topology on a Dedekind complete Riesz space is com-

341
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plete. For a proof of this theorem, see [4], Proposition IV. 1.5. ([4]
uses the phrases “locally order complete” and “boundedly complete”
for Fatou and Levi topologies respectively in Dedekind complete
spaces).

2. Extensions of Riesz spaces; the spaces C.(X). Let E be a
Riesz space. 1 shall call a Riesz subspace F' of E orderdense if, for
every x =0 in E,

z=sup{y:yeF,0=y=12}.

An important consequence of this is that if A is a nonempty subset
of F and © = sup A4 in F, that is, if & is the least member of F
which is an upper bound of A, then z = sup A in E. It follows that
if F is orderdense in E, and G is orderdense in F, then G is order-
dense in E.

Let X be a compact extremally disconnected Hausdorff topological
space. Let C.(X) be the set of all those continuous functions x from
X to the extended real line [— o, o] such that {t: —o < 2(t) < oo}
is dense in X. Because every continuous real-valued function defined
on a dense open subset of X has a unique extension to a member of
C..(X) (|6, Lemma V. 2.1]), C.(X) has a natural Riesz space structure
under which it is Dedekind complete ([6, Theorem V. 2.2]). The point
is that every Archimedean Riesz space can be embedded as an order-
dense Riesz subspace of some C.(X) ([6, Theorems IV. 11.1 and V.
4.2]).

[6] gives several properties of the space C..(X), but not the one
we shall need; so I set it out here.

ProPOSITION 1. Let X and C.(X) be as above. Let ASC. (X)*t
be a nonempty set such that for every x >0 in C.(X) there is an
ne N such that

ne #+= supy N\ ne .
yed
Then A 1is bounded above in C.(X).

Proof. Define w: X — [0, ] by

w(t) = sup yH) vieX.
yeA
Then w is lower semi-continuous. Define v: X — [0, <] by

v(t) = inf {sulr} w(w) : U a nhd of t}
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for every te X. Then v is continuous ([6, Theorem V.1.1]). My aim
is to prove that ve C.(X), i.e. that » is finite on a dense set.
Suppose that G X is open and not empty. As X is compact
and Hausdorff, there is a continuous function # on X such that z > 0
but 2(t) = 0vte X\G. Now xeC.(X), so there is an n € N such that

ne # supy N\ ne,

yed
that is, there is a 2 > 0 in C,(X) such that
YAnr I ner —2VycA.

Of course z < nx, o 2 is finite everywhere and 2(t) = 0V te X\G. Let
H = {t: 2(t) > 0}; then H is not empty and H=G.
But if te H, y(t) < nx(t) — 2(t) Vye A, so w(t) £ ne(t) — 2(f); and
as nx — 2z is continuous, v(f) < nx(t) — 2(t) < o Vite H.
Consequently, {¢: v(f) < =} meets G. As @ is arbitrary, ve C.(X)
and is the required upper bound for A.

3. THEOREM 1. Let E be an Archimedean Riesz space with a
Hausdorff Fatou topology. Let E be its linear topological space com-
pletion with its natural Riesz space structure. Then (i) E is an
orderdense Riesz subspace of E (ii) the topology on E is Fatou.

Proof. My method is to find a complete Riesz space extending
E which has the required properties.

(a) Let X be a compact extremally disconnected Hausdorff topol-
ogical space such that E can be embedded as an orderdense Riesz
subspace of C.(X) (§2 above). Let <& be the set of all neighbour-
hoods U of 0 in E satisfying the Fatou property in §1, i.e. such that
U is solid and if g c A= U and A | 2 in E then ze U. Then &
is a base of neighbourhoods of 0. For each Uc <#, set

U={wweC.(X),VeecE,|z|<|w =zeU}.
Then U is a solid subset of C.(X). Note that Un E = U.

(b) Suppose that U and V belong to <# and that U+ UES V.
Then U + U< V. For suppose that w,, w,e U and that x e E is such
that |z| < |w, + w,|. Set v, = |w,]| A |z] and v, = |z] — v, £ |w.|.
Then A; = {y:yec B, 0=y} v,fori=1,2,80A, + A4, [ v+v=
|z} in E. But A, + A,S U+ USV, so |zleV and zeV. As z is
arbitrary, w, + w,€ V; as w, and w, are arbitrary, U + U< V.

(c¢) It follows that if we set
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H=N U aU,
Ue <z ae?
then H is a solid linear subspace of C.(X), including E, and {U N H:
Ue <%} is a neighbourhood basis at 0 for a linear space topology ¥
on H. As every Un H is solid, £ is locally solid; as U N E = U for
every Ue <%, ¥ induces the original topology on K. Also, T is
Hausdorft, for if we H and w == 0, there is an xz ¢ E such that 0 <
¢ < |wl; now if Ue &7 is such that x¢ U, we U.

(d) If Ue#, 2 cA=U,and A | win C.(X), then we U. For
suppose that x € F and that || < |w|. Then

fy" +wiye A} 1wt + w = |w| = x|,
S0
{lal A" +w):yedl 1 laf.
Now set
B={zzeE 3ycA 0=z 2| AW +w)}.

Then B 1, and as E is orderdense in C.(X), B | |z|. But if zeB
there is a y € A such that

r=yt w2yt +y =yl

so, as ye U, ze U. Because Uec <&, nc U. As « is arbitrary, we U.

(e) Consequently the sets U n H all satisfy the Fatou condition,
and ¥ is Fatou. (Here we have used the fact that H is orderdense
in C.(X), so that if A 1 w in H, then A | w in C.(X)).

(f) It also follows that ¥ is Levi. For suppose that AS H is
directed upwards, is not empty, and is bounded. Then of course
B = {y":ye A} is directed upwards, and it is bounded because ¥ is
locally solid. Now suppose that # > 0 in C(X). Let Ue <7 be such
that ve¢ U. Let n > 0 be such that A= x#U. Now

{n~'y A\ x:ye B}

is a subset of U, directed upwards; so its supremum belongs to U
and cannot be x. Thus sup,.;y /A ne is not nx, and B satisfies the
condition of Proposition 1; so B, and therefore A, is bounded above
in C.(X). Let z,=sup A in C.(X); this exists as C,(X) is Dedekind
complete. If Ve .Z, there is an m > 0 such that m— A< V, so by
(d) again m~'z,c V i.e. z,emV. As V is arbitrary, z,< H, and is the
required upper bound for A in H.
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(g) Thus ¥ satisfies the conditions of Nakano’s theorem, and H
is complete. So E may be regarded as the closure of E in H. Because
E is orderdense in H, it is orderdense in E. Finally, it is easy to
see that the topology on E induced by T is Fatou, because T itself
is Fatou and £ is orderdense in H.

REMARK. Of course the condition “Archimedean” in the hypotheses
of the theorem is redundant, because any Riesz space with a Hausdorff
locally solid linear space topology must be Archimedean. The same
applies to Theorem 2 below.

4. Counter-example. Suppose that F = C ([0, 1]), the space of
real-valued continuous functions on the unit interval. Give E the
topology induced by || || where

lell = (sldem v e B,

1. being Lebesgue measure. Then || |, is a Riesz norm so the topology
is locally solid. But it is not Fatou and E is not orderdense in its
completion L'(z).

5. Lebesgue topologies. I should now like to proceed to a
stronger condition, also fulfilled by many examples. Because it is of
great interest in many contexts, I give as general a definition as I
can. Let F be any partially ordered set. A topology ¥ on E is
Lebesgue if, whenever A is a non-empty subset of K and either A | 2
or A | x in E, then x belongs to the closure A of A. We shall be
interested, of course, in linear space topologies on Riesz spaces; in
this case, ¥ is Lebesgue iff 0 ¢ A whenever » — A | 0.

Now the ordinary topologies on the L* spaces, for 0 < p < oo,
are Lebesgue; so is the norm topology on ¢, (NN). We note that the
exceptions are the L~ and C(X) spaces. However, the weak topology
T (L>, L") is Lebesgue; in fact it is the case that the Mackey topology
T(L>, L") is Lebesgue. Of course, if T is Lebesgue and ® is weaker
than ¥, then ® is Lebesgue.

Lebesgue topologies have many remarkable properties. I give one
of the simplest.

LEmMMA 1. A Lebesgue locally solid limear space topology on a
Riesz space s Fatou.

Proof. Let U be any neighbourhood of 0; let V be a closed
neighbourhood of 0 included in U; let W be a solid neighbourhood of
0 included in V. The point is that W is solid ([4, Proposition IV.
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4.8]). But now W< U and W satisfies the Fatou condition because
the topology is Lebesgue.

6. THEOREM 2. Let E be an Archimedean Riesz space with a
LebesgueAlocally solid Hausdorff linear space topology. Then the com-
pletion E of E also has a Lebesgue topology.

Proof. We know by Lemma 1 and Theorem 1 that E is order-
dense in E. Suppose, if possible, that A 1 0in E, A is not empty,
but that 0¢ A. Let U be a solid neighbourhood of 0 in £ such that
A does not meet U. Let V be a solid neighbourhood of 0 in E such
that V+ V+ V< U. Fix z,€ A4 and find a y, € E such that 2, — y, ¢ V;
without loss of generality, I may suppose that y, = 0. Now

Yo N (@ —w)52eAt T oA,
so if
B={2zeKk 3vcl,0=2=19y A (&, — )"},
B 1 & Ay in E. Similarly,
C={wweE 0=w=(— )T #%— )",

and so B+ C | ¥, in E. As the topology on E is Lebesgue, there
exist ze B and w € C such that

Y —w—2zeV.
But as V is solid, we V, so y,— 2V + V, and
Ty—2=Yy— 2+ @ —Y)eV+V+VEU.

However, there is an x€ A such that 0 <z < (x, — #)*, and there is
an 2, € A such that o, <2 A x, <2, — 2. But U is solid, so z,¢ U;
which is the contradiction we require.

7. Conclusion. I think that Theorem 1 is more surprising than
Theorem 2. Both Fatou and Lebesgue topologies are frequently mys-
terious; but when we require a topology to be both locally solid and
Lebesgue we are imposing such a powerful condition that we expect
agreeable results to follow quickly. The Fatou property is harder to
tackle. Its actual applications in Theorem 1, while certainly essential
(see §4), are buried too deep in the argument to be readily disentangled;
so it’s not clear just what it is about Fatou topologies that makes the
theorem true.

Theorem 1 is reminiscent of the result in [1] that if E is any Riesz
space, then the canonical image of E in E** or (Ey)y is orderdense.
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In fact this can be deduced from Theorem 1, though (as far as 1
know) only by an extremely involved route. But there may be some
hope that the techniques of [1] could be adapted to give a simpler
proof of Theorem 1.

Theorem 2 is more straightforward, and can be proved independ-
ently of Theorem 1 without much difficulty. If in Theorem 2 we
know that E is locally convex, there is a proof direct from the result
in [1] quoted above. But the hypothesis of local convexity doesn’t
seem to help in Theorem 1.

Theorem 2 recalls the construction of the ordinary function spaces.
If the spaces L', L* etc. are thought of as completions of the space
S of equivalence classes of simple functions under the appropriate
norms, their properties can be deduced from the fact that each of
these norms induces a Lebesgue locally solid topology on S.
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ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR
ELEMENTS OF A VON NEUMANN ALGEBRA

HERBERT HALPERN

A closed two-sided ideal .“ in a von Neumann algebra
7 is defined to be a central ideal if 3, A;P; is in .7 for
every set {P;} of orthogonal projections in the center .2~ of &7
and every bounded subset {A4;} of .”. Central ideals are
characterized in terms of the existence of continuous fields
and their form is completely determined.

If _“ is a central ideal of .7 and Ac.%, then A,¢ &
is said to be in the essential central spectrum of A if 4,— 4
is not invertible in & modulo the smallest closed ideal con-
taining .# and { for every maximal ideal { of 2", It is shown
that the essential central spectrum is a nonvoid, strongly
closed subset of 2" and that it satisfies many of the relations
of the essential spectrum of operators on Hilbert space. Let
7~ be the space of all bounded 2" -module homomorphisms
of . into 2. The essential central numerical range of Ae
7 with respect to . is defined to be ZZ5(A)={s(A)|de
b1 £1,60) =P, ¢(F)=(0)}. Here P_ is the or-
thogonal complement of the largest central projection in %
The essential central numerical range is shown to be a weakly
closed, bounded, 2 -convex subset of 2. It possesses many
of the properties of the essential numerical range but in a
form more suited to the fact that A is in .7 rather than a
bounded operator. It is shown that if .97 is properly infinite
and _“ is the ideal of finite elements (resp. the strong radical) of
7, then .77~ (A) is the intersection of 2" with the weak (resp.
uniform) closure of the convex hull of {UAU-!| U unitary in

SZ)

In a final section, we give some applications of these facts. We
extend a result of J. G. Stampfli [19] to show that the range of a
derivation on a von Neumann algebra is never uniformly dense. We
also prove a theorem on self-adjoint commutators using a calculation
of M. David [5].

2. Central ideals. Let .9 be a von Neumann algebra with
center 2. For any subset <& of .o~ let (<Z’) denote the set of all
projections of <. Throughout this paper all ideals will be assumed
to be closed two-sided ideals. An ideal _# in .o~ is said to be a
central ideal or a % -ideal if given a norm bounded set {4;|ic I} of
elements of _” and a corresponding set {P;|7¢ I} of mutually orthogo-
nal projections in 2, then the sum 3, A;P;, which exists in the strong
topology, is also in . % (Similar definitions were used by I. Kaplansky

349



350 H. HALPERN

[22,81] and M. Goldman [13;§4] in the theory of AW *-modules;
however, here there is no canonical inner product.) Any ideal _# in
% is contained in a smallest central ideal {_#) given by (_#) =
{3 {A:P;|te I}|{A;]ie I} is a bounded subset of .7 and {P;|te I} is a
mutually orthogonal subset of (27) of sum 1} (J19], remarks preceding
corollary to (ab) implies (al)). If .7 a central ideal in .o and if A
is an element of .7 then it is clear that there is an element P in
(27) such that APe..¥ and AQg¢.” for every @ in (%) with
0< @Q=1-— P. The following definition is now possible.

DEFINITION 2.1. Let .57 be a von Neumann algebra and let _# be
a central ideal of .«/. Then P, will denote the orthogonal comple-
ment of the largest central projection in .~ We notice that QP ¢
. for a central projection @ implies QP . = 0.

We now describe central ideals with regard to finite element

PrOPOSITION 2.2. Let &7 be a semi-finite von Neumann algebra
with center %, let .7 be a central ideal of 7, and let 7P be the
weak closure of % where Pe(%). Then _# contains every finite
projection of 7 majorized by P.

Proof. Let F be a finite projection of .o majorized by P. Let
@ be an element of (2°) such that FQe.” and FR¢.” for
every R in (2°) with 0 < R <1 — @ (preliminary remarks). We
note that @ =1 — @ < P. We obtain a contradiction by assuming
that Q" = 0. Since the weak closure of ..# is .o P and since linear
combinations of projections are dense in ._#, there is a projection FE
in .7 with EQ" # 0. There is an R in (2°Q’) such that FR < FR
and F(Q — R) < E(Q" — R). Either ER = 0or E(Q — R) #+ 0. Now
if ER + 0, there is nonzero S in (2 R) and projections E,, «-+, E, in
% such that ES=E, ~E, ~ -+ ~ K, and FS — >, E; < E,. This
means that F'S is in % This is contrary to the choice of @, so we
must assume that E(Q" — R) = 0. But this also implies that F(Q — R)
is in .4 So we must conclude that @ = 0. Hence, we have shown
that every finite projection majorized by P is in A

COROLLARY 2.3. An tideal in a finite von Neumann algebra is
a central ideal if and only if it is weakly closed.

Proof. If the ideal _# in the finite von Neumann algebra .o~
is weakly closed, then there is a central projection P in .97 such that
= .%P [9, 1, 8, Theorem 2, Corollary 2]. Obviously the ideal
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7 P is a central ideal of .o

Conversely, let .# be a central ideal of .. Let P be the central
projection of .o~ such that the weak closure of ¥ is .&P. Then
.“ contains every finite projection majorized by P; in particular, it
contains P itself. So .7 = .o/P and .# is weakly closed.

We now describe central ideals for an arbitrary von Neumann
algebra .57 with center 2. Let P be a projection in & and let F
be a properly infinite projection in .~ majorized by P. (By conven-
tion we assume that 0 is a properly infinite projection in a finite
algebra 2.) Let (_%(E)) be the set of all projections in .o given
by (Z(E)) = {Fe ()| F < Pand QE < QF for some Q € (2£7) implies
QE = 0}. Let _%(E) be the ideal generated by (_7(F)).

We shall use the following lemma of F. B. Wright [32; §2].

LEMMA. Suppose 7 s a set of projections on a von Neuwmann
algebra 7 that satisfies the following properties:

(1) of Ee(w),Fe” and E< F, then Ec.Z; and

(2) if E and F are in &P, then the least upper bound lub {E, F'}
of E and F is in 7.
Then the set of projections of the ideal generated by 7 is exactly .

THEOREM 2.4. Let .7 be a von Neumann algebra with center %
In order for the ideal 7 in .7 to be a central ideal, it is a necessary
and sufficient condition that there exist a projection P in 2 and a
properly infinite projection K majorized by P with .7 = _%(F).

REMARK. The sufficiency is an adaptation of the proof we gave
for a special case in an earlier paper [18, Proposition 2.1].

Proof. Let E be a properly infinite projection majorized by the
central projection P. We show that 7% (F) = .7 is a central ideal.
Let P, and P, be orthogonal central projections of sum 1 such that
&7 P, is a finite algebra and .o P, is a properly infinite. It is suffi-
cient to show that .7 P, is a central ideal in &P, (: = 1, 2). How-
ever, we have that .7 P, is generated by (7 P,) = {Fe(AP)|F < PP,
EQP; < FQ for some Q in (2 P;) implies EP,Q = 0}. Now setting
E, = EP;,, we obtain a properly infinite projection in .&P; so that
S P, = .7 pp, (E;). Hence, there is no loss of generality in assuming
that .7 is either finite or properly infinite.

Let .o~ be finite. Then E =0 and (_%(0)) = {Fe(4)|F < P}.
Hence . = o P and so _# is a central ideal.

Now assume that .o~ is properly infinite. There is no loss of
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generality in the assumption that P =1. We show that .7 satisfies
properties (1) and (2) of the lemma of F. B. Wright. By the defini-
tion of (_#) is clear that it satisfies property (1). Now let E, and
E, be in (_#). Since lub{E, E,} — E,<E, [21, Theorem 5.4], we have
that lub{F,, E,} — E, isin (_¥) by (1). So there is no loss of gener-
ality in the assumption that E, and E, are orthogonal. There
is Qe (%) such that QE, < QE, and (1 — QE, < (1 — Q)E,. Since
QE, + E)e(#) and (1 — Q)(E, + E,) €(_#) implies that E, + E, ¢
(.#), there is no loss of generality in the assumption that E, < E,.
There is a Q@ € (") such that QF, is finite and (1 — Q)E, is properly
infinite. Hence, we may assume that either FE, is finite or properly
infinite. If E, is finite, then FE, is finite since K, < E, and so K, + E,
is finite. [9, III, 2]. If Q is a central projection with QE<Q(E,+ E,),
then QF is finite and so QE = 0. So we are left with the situation
that E, < E,, E.E, = 0, and E, is properly infinite. Because E, is
properly infinite, there are projections F,, F, satisfying the relations:
F,.~F,~E, FF,=0, and F, + F, = E,. [9; I, 8, Corollary 2].
We have that E, + E, ~ E, + F, < F, + F, = E,. By property (1) of
the lemma, we conclude that E, 4 E,e(.#). Hence (7)) satisfies
properties (1) and (2) of the lemma and this means that the set of
projections of the ideal _# generated by (_#) is precisely (_7). Now
we show _# is a central ideal. Let {4;]i€I} be a bounded set in
& and let {Q;|7e I} be an orthogonal subset of (27) of sum 1. For
every € > 0 and every 7€l there is a projection F;in (_#) such that
NA; — AF;]| <e. Then >, FiQ; = F isin (_¥). Indeed, if EQ < FQ
for some @ in (%°), then E(Q.Q) < F(Q.Q) = F;(Q.,Q) for every tel.
Thus (EQ)Q; = 0 for every i€ I and EQ = >, (EQ)Q; = 0. This means
that F'e(.#). However, we have that

137 4:Q; — X AQ)F|| = lub |4, — AFif|S¢.

Since S A;Q,)F is in _# and since .# is uniformly closed, we have
that 3, A;Q;e .~ This proves that .7 is a central ideal.

We now show that every central ideal .7 is of the form . 7Z(F).
Given a nonzero Pec (%) it is sufficient to prove that there is a pro-
perly infinite projection £ in .7 a nonzero @ in (27), and an Re (%)
with R < Q < P such that _Z(ER)Q = .“Q. Indeed, suppose we
have verified this statement. Let {P;|¢€l} be a maximal set of
mutually orthogonal nonzero central projections such that for each
P, there is a properly infinite projection E;, and a @, € (%) majorized
by P; such that % (EQ)P; = .# P;. By the maximality of {P}, we
conclude that 3, P, = 1. Setting F = > E;Q; (resp. Q@ = >, Q;) we
obtain a properly infinite (resp. central) projection E majorized by @
such that . %(F) = _~ In fact, since .%(F) and _# are generated by
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their respective projections, it is sufficient to show that (_%(E)) = (.#),
But we may verify immediately that (%(E))P; = (-%,(E:Q:)), and so
we have that Fe (4(E)) if and only if FP,; e (4%,(EQ)) = (7 P;) for
every P; since _%(FE) is a central ideal by the first part of this theorem.
However, the ideal .7 is also a central ideal and thus Fe (_%(F)) if
and only if Fe(.#). So it is sufficient to verify the required state-
ment. We do this in the next paragraph.

Let P be a nonzero element in (£7). Since we are looking for a
nonzero central projection @ majorized by P, we may assume at the
outset that P = 1 and that either .o~ is finite or .o~ is properly in-
finite. If .o is finite there is a Q in (2°) with .7 = .&7Q (corollary
2.3). Then we verify immediately that .7 = .#(0). Hence, we may
assume that .o is properly infinite. Suppose that there is a pro-
jection P+ 1 in (2°) such that AP = A for every A in _%4 Then
we have that _%4(0)(1 — P) =0=._7(1 — P). Sowe may assume that
.~ is weakly dense in .oz Now suppose that P, % 1. Then the
nonzero central projection @ =1 — P, is in .~ This means .7 Q =
7@ = #(0). Hence, we may pass to the case that P, = 1. By
making a further reduction if necessary, we may assume that 1 is
the sum of an infinite set {E;|7 € I} of orthogonal, equivalent, o-finite
projections [9, III, 1, Lemma 1]. Let $7(I) be the family of all subsets
s of I such that there is a nonzero projection P, in 2~ with

2 {EiliesjQe S

for every nonzero Q€ (" P,). The family .$°(I) is nonvoid since I €
& (I) with P, = 1. There is an s, € .%”(I) such that Card s, < Card s
for every se.&”(I). We may assume that P, = 1. Let > {E;[tes}=
E; we notice that E is a properly infinite projection of central support
1. We show that A (F)= . (E) is equal to .~ First we prove
that () c (. (E)). Let Fe(.#). If EP < FP for some Pe (%),
then by choice of s, we have that EP = 0. So Fe (7 (&)) by defini-
tion and hence () (#(F)). To show the converse relation
(S (E) () we consider two cases: (i) Cards, is finite, and
(ii) Cards, is infinite. For case (i) we have that FE is a o-finite
projection of central support 1. Then we have that (7 (E)) is
exactly the set of finite projections of .o” [9; III, 8, Corollary 5].
But by our preliminary reduction .. is weakly dense in .o and
therefore contains all finite projections of .o~ (Proposition 2.2). So
((E))c (7). Now we consider case (ii). Let Fe(_7(E)). Since
.7 is a central ideal, there is a Pe(%’) such that PFe.” and
QF ¢ 7 for every nonzero @ in (2°(1 — P)). We obtain a contradic-
tion by assuming 1 — P % 0. Because ..” contains all finite projec-
tions (Proposition 2.2), we have that F( — P) is properly infinite
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with central support 1 — P. We may find a nonzero projection @ in
(2°(1 — P)) such that F'Q is the sum of a set {F’;|7 € s} of orthogonal,
equivalent, properly infinite o-finite projections [9; III, 1, Lemma 7].
We have that F, ~ E;Q for everyi€sand je€s,. [9; I, 8 Corollary
5]. Since >\ {F;lies} = FQ<EQ = >, {E;Q|i€ sy}, and since Card s, is
infinite, we have that Card s < Card s, [9; III, 1, Lemma 6]. If Card s, =
Card s, we would have a contradiction in that £FQ < FQ and EQ == 0.
Thus Card s == Card s, But if ¢’ is a subset of .$”(I) with Card s'=
Cards, then >\ {E;|ies}Q ~ FQ for every @ in (2Q) and so
S {E;|tes'}Q ¢ .~ for every nonzero @ in (2°@). This contradicts
the choice of s,, Hence, 1 — P =0 and Fe(.#). So in case (ii) we
have (7 (E)) c (.#). Therefore, we have completed the crucial step,
and so there is an Ee (%) and a Qe (%) with ¥ = _%(K).

Now let E be a properly infinite projection majorized by the central
projection P in the von Neumann algebra .. Let Q be the central
projection of .& such that .o@Q is equal to the weak closure of
S(B) = A Then it is clear that 7 (EQ) = . We say a representa-
tion _%(FE) for a central ideal .# is in canonical form if .o~ P is the
weak closure of . 7% (F).

PROPOSITION 2.5. Let Z(E) and _A(F') be two central ideals of
a von Neuwmann algebra .7 that are represented im canonical form.
Then A(E) = _Z4(F) if and only of P=Q and E ~ F.

Proof. If P= @ and E ~ F, then it is clear that .4 (E) = . 7Z(F).

Now let A(E) = Z(F) = .4 Since .o P = weak closure .7 =
7@, we have that P = @. Now let R be the largest central projec-
tion majorized by P such that RE ~ RF. Suppose R' = P — R + 0.
There is a central projection R” majorized by R’ such that R"E <
R'F and (R" — RF < (R’ — R")E. If R”" # 0, then SR"F < SR"E
for some central projection S implies that SR”F = 0. Otherwise, we
would have that SR”E ~ SR”F and so R would not be the largest
central projection with RE ~ RF. This means that R"Fe¢.# Hence
R'E = 0 and so . R" = .o R”. This means that FR” = 0 and con-
sequently that ER” ~ FR”. This is a contradiction. A similar con-
tradiction arises if R’ — R” + 0. So we must have that R = P, i.e.,
E~F.

REMARK 2.6. In the sequel we assume all representations of
central ideals are in canonical form.

COROLLARY 2.7. Let .o~ be a von Neumann algebra and let #
be a central ideal of &7 given by F = H%(F) in canonical form.



Please insert next to p. 854, Vol. 43, No. 2

ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR ELEMENTS 354a

Then in order that P, =1, a necessary and sufficient condition is
that P be the central support of E.

Proof. If the central support of K is Q, then from the definition
of 7(E) = _7 it is clear that P — Q€ .4 This means that P, # 1
if P— Q= 0. Conversely, if 1 — P, 0, then (1 — P,)E = 0. But
(1 — P_) = P and thus E cannot have central support P.

Let .o~ be a von Neumann algebra with center 2. Let Z be
the spectrum of 2. Let C.(Z) be the set of order-continuous func-
tions of Z into the set of cardinal numbers. J. Tomiyama [30]
showed that there is a dimension function D of .o/ into C.(Z) such
that D(E) < D(F) if and only if E< F. W. Wils [31] described the
range of D in C,(Z) as being a certain subset 4 of functions in C,(Z).
Although it is not important in the sequel, one may see that the set
of projections of a central ideal . 7%(F) satisfies a certain dimension
relation relative to P and E. We therefore feel justified in introducing
a name for the following relation.

DEFINITION 2.8. Let . be a central ideal in a von Neumann
algebra o0 Let P be a central projection and let E be a properly
infinite projection majorized by P with . = _Z(E). A projection F'
in .07 is said to have dimension greater than that of _# if F has
central support P and if F > EP_, (in symbols, dim F > dim 7).

The following proposition characterizes the projections whose di-
mension is greater than the dimension of .~

ProOPOSITION 2.9. Let .7 be a von Neumann algebra and let 7
be a central ideal of .o Then a projection F of .o has dimension
greater than that of 7 if and only if F has central support P and
FQe 7 for some central projection @ implies FQ = 0.

Proof. Let 2 be the center of % Let Fe (%) and let Pe (%)
so that _7.(F) represents .7 in canonical form. First let Fe (o)
with central support P, such that QF e.” for some Q€ (%2") implies
QF = 0. There is an Re(2) such that RE < RF and such that
R'E < RF for Re(Z1 — R)) implies B =0. Then FP(1— R)c
S(E) by definition and so FP(1 — KE) =0. Thus we obtain that
FPR=FP. So EP, = EPP, < FP<F, ie. dim F > dim _#

Conversely, let dim F > dim.” Then by definition we have that
F has central support P.. Let Qe(%") and let QF c.” We have
that EP, < F implies that EQP.<c.” (lemma of F. B. Wright).
Since EQP, < EQP ., we have that FQP_. = 0 and thus QPP ¢ A
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By definition of P, we find that QPP =0. Also .Z(1 — P) = (0)
and so QF = QPF + Q(1 — P)F = 0.

Now we can give some examples.
ExAMPLE 2.10. In a factor algebra, every ideal is a central ideal.

ExAMPLE 2.11. In a semi-finite algebra .57 the ideal . generated
by all finite projections of .o is a central ideal. If .o is finite,
then 7 = .o if & is properly infinite, then .7 = _#(F), where E
is a properly infinite projection of central support 1 for which there
is a set {P;} of mutually orthogonal central projections of sum 1 such
that EP; is o-finite for every P; [8; III, 1, Lemma T7].

ExampLE 2.12. If .o is a properly infinite von Neumann algebra,
then the strong radical _# (i.e. the intersection of all maximal ideals)
is a central ideal with _# = A (D).

3. The essential central spectrum. Let .9~ be a von Neumann
algebra with center 2. If .7 is an ideal in &7 let .97 (_#) denote
the algebra .97 reduced modulo _# and let A(_#) denote the image
of an element A under the canonical homomorphism of .o~ into .7 (7).
The algebra .7 (.”) is a C*-algebra under the norm [[A(7)]| =
glb{{|]A + B|||Be.#}. Ifisan element in the spectrum Z of 2, let
[C] denote the smallest ideal in .o containing . For simplicity we let
<7 ([€]) and A([C]) be denoted by the symbols .97 ({) and A((), respec-
tively. Then J. Glimm [12; Lemma 10] has shown that for fixed A ¢
57 the map { — || A)|| is continuous on the spectrum Z. For every A
in . and {in Z, the norm ||A({)|| is equal to || A(Q)||=glb {||] AP|| | P<c
(%) and P () = 1}. Here P denotes the Gelfand transform of P. If
% and _# are ideals in .%; then the algebraic sum _Z + . % is also an
ideal of .9 In the sequel we denote the sum.” + [{] of an ideal _#
and the special ideal [(] formed from { € Z by .7 ({). For an element 4
in &7 we denote the spectrum of A(_7({)) in .97 (_~ ({)) by Sp A(_~Z (0)).

The next lemma is used repeatedly.

LEMMA 3.1. Let .&7 be a von Neumann algebra, let 2 be the
center of &7, let Pe (%), let Z be the spectrum of 2, and let 7 be
a central ideal of 7. If A is an element of &7 such that f,(Q) =
HA(AZ Q) || vanishes for every { in the support of P given by supp P =
{LeZ| P L) = 1}, then the element AP is in %

Proof. For every { in supp P and ¢ > 0 thereis a B; in _# such
that ||(A — B;)({)|| <e. Hence there is a P; in (2°) with P/{) =1
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such that [|(A — B,)P;|| < e. Using the fact that supp P is compact,
we may find a set P, ---, P, of orthogonal projections in 2 of sum
P and a corresponding set B,, ---, B, in .# such that

I|AP — > B;P;|| = lub [[(A — B)P;|]| <e.
Since ._# is closed, the element AP is in .~

We characterize those ideals .7 for which { — || A(_7({))]| is con-
tinuous on Z for every A in .o

THEOREM 3.2. Let .o be a von Neumann algebra, let Z be the
center of .7 and let Z be the spectrum of 2. Let % be an ideal
of .7 In order that f,(Q) = [|A(Z (D)]| be a continuous function on
Z for every A in .7 a mecessary and sufficient condition is that 7
be a central ideal of V.

Proof. The sufficiency follows by a proof that is virtually the
same as the one we gave in the corollary of (a5) implies (al) of [19].

Conversely, let f, be continuous on Z for every A in . We
show that .o~ is a central ideal. If {A;]2e I} is a bounded subset
of .# and if {P;|jiel} is an orthogonal set in (%°) of sum 1, then
we prove that A=>) A;P; is in . Indeed, the set U;{{ e Z|P{)=1}
is a dense set of Z on which f,({) vanishes since f,(0) = ||A( 7 Q)| =
0 whenever P?({) = 1. By the continuity of f,, we see that f, vanishes
on Z. Hence, the element A is in .¥ by Lemma 3.1.

REMARK 3.3. If _# is the strong radical of a properly infinite
von Neumann algebra, then _#({) = _# + [{] is the unique maximal
ideal which contains { [24 and 15, Proposition 2.3].

Now we prove the main result of this section. It is convenient
to separate the following lemma.

LEMMA 3.4. Let 2 be a commutative von Neumann algebra and
let X,, +++, X, be closed sets which cover the spectrum Z of 2. Then
there are orthogonal projections R, «-+, R, in (Z7) of sum 1 such that
{eZIRMO =1} X, for 1 <7 < n.

Proof. Let {P;|ieI} be a maximal set of nonzero mutually or-
thogonal projections such that for each ¢eI there is an i(j) with
1 =<4j) =n sothat Y; = {{eZ|P)N{) =1} X;;- We obtain a con-
tradictionif P=1— 3, P, 0. Indeed, theset Y = {{e Z|P*{) = 1}
is nonvoid and is covered by the closed sets YN X,, ---, YN X,. By
the Baire category theorem one of the set YN X, has a nonvoid
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interior in Y. This means that there is nonzero projection @ in 2~
such that {{e Z|Q"({) = 1} YN X,. This contradicts the maximality
of {P;}. We must have that 3, P, = 1. The remainder of the proof
consists in adding the projections P,. Let I; = {tel|Y;cC X;} for
1=<j<nandlet R;= > {Pliel,— U{LI0=k=j—1}}for1=<j=mn.
Here I, = @. Then it is clear that R, R,, »-+, R, satisfy the require-
ments of the lemma.

THEOREM 3.5. Let .57 be a von Neumann algebra with center =,
let 7 be a central ideal of .57, and let A be an element of 7. Let
X, be a closed subset of the complex plane C such that the intersection
S©) of X, with the spectrum (resp. left-spectrum, right-spectrum, the
intersection of the left-spectrum and the right-spectrum) of A(” (0))
is nonvoid for every { im the spectrum Z of 2. Then there is amn
element A, in the center of &7 such that A{Q) € S(C) for every C in Z.

Proof. We first prove that there exists A, in 2" such that Ay ()
is in the intersection S({) of X, with the spectrum Sp A(_7({)) of
A( 7)) for every { in Z. Since Sp A(.#({)) is contained in Sp A4,
there is no loss of generality in assuming X, < Sp (4). We prove the
theorem by an approximation argument that involves decomposing
the space Z.

For every compact set X in the complex plane, let X(Z) = {{e
Z| XN S # @}. We show that X(Z) is closed in C. Let {{;} be a
net in X(Z) converging to {. Let a;eS()N X; by passing to a
subnet, we may assume that {a;} converges to ac XN X,. Arguing
by contradiction we show that aeSp A(L7(Q). If a¢Sp A7),
then there is a Be.o” with

I(Bla — 4) = (7Ol =
i@ — 4)B - (A (@) =0.

By Theorem 3.2, we see that there is a {, and «; such that
[(Bla; — A) — (7 E)) ] <1

and ||((a; — 4)B — 1)(_”({,))]| < 1. This means that «; ¢ Sp A(_7(£,))
and this is contrary to assumption. So a e X(Z) and X(Z) is closed.
We now begin the approximation argument by decomposing Z
into subsets on which we shall approximate A,. Suppose we have,
for every m less than or equal to the natural number %, constructed
sets of integers I,, = {1, 2, +--, p,} such that for every sin I, x -+ X
I, = I(m) there is a compact subset X(s) of C of diameter < 2 ™ and
a P(s) in (2") which satisfies the following properties:
(1) For sel(m), U{X(s;7)|jel, ..} = X(s) whenever 1 < m < n and
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U{X(G) 15 eI)} = X, ;

(2) Supp P(s) = {{e Z|P(s)"() = 1} < X(s)(Z) for every scI(m) (1 <
m = n); and

(8) for seI(m), {P(s;j)|je ...} is a set of orthogonal projections of
sum P(s) whenever 1 < m < n and {P(j)|j € I(1)} is a set of orthogonal
projections of sum 1.

We shall construct a set I,,,=1{1, <+, p...}, compact sets X(s)(se
Imn+1) =1 % «++ x I,,,) of diameter < 2™ in the complex plane,
and projections P(s)(seI(n + 1)) in 2 which satisfy (1), (2), (3).
Indeed, let {Y;|jeI,.} be compact sets of diameter < 2" which
cover X,. Let X(s,7) = X(s)NY; for sel(n) and jel,,,. Then
{X(s)|seI(m),m =1,2 -.. n + 1} satisfies property (1). Now let s
be fixed in I(n); we have that U {X(s; 5)(Z)|jeI,..} = X(s)(Z). Since
supp P(s) is contained in X(s)(Z), the sets X(s; 7)(Z) Nsupp P(s)(j € I,,)
form a closed cover of supp P(s). By the Lemma 3.4, there are or-
thogonal central projections P(s;j) (j€1,.,) of sum P(s) such that

supp P(s; j) < X(s; 3)(Z)

for every jel,.,. Thus P(s)(s€I(n + 1)) satisfies (2) and (3).

We continue by induction to construct I(n), compact sets X(s)
(s € I(n)) of diameter < 27", and central projections P(s) (s € I(n)) satis-
fying (1), (2), and (3) for every n = 1,2, ---. We notice that if X(s)
is void then P(s) = 0.

We now construct the approximating elements. Let n=1,2, --.
be fixed. If seI(n), let a(s) e X(s) if X(s) is non-void, and a(s) = 0
if X(s) is void. Let A, = > {a(s)P(s)|se I(n)}. Then A, is an element
in the center of .o

We show that {4,} is a Cauchy sequence. Indeed, we have that

|4, — Apil = Tub {[| (4, — A, )P(9) ] [se I(n + 1)}

since > {P(s)|seI(n + 1)} = >, {P(s)|se I(n)} = --- = 1. However, if
sel(n + 1) is of the form s = (s’;j) with s’eI(n) and jeI,.,, then

(A, = A ) P) ]| = [[(a(s') — a(s)P(s) ]| = 27"
since a(s) € X(s’) whenever P(s) = 0. Hence, we obtain that
HAn - An+1|| é 2™

for every m = 1,2, -+« and so {4,} is a Cauchy sequence in 2.

We show that the limit A4, of {A,} satisfies the requirements of
the Theorem 3.5. Let { be an arbitrary point in Z. Given ¢ > 0 we
show that there is @e S({) such that |AN{) — a| < e. Since S(©) is
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closed and since ¢ > 0 is arbitrary, this will mean that A$() e S©).
Let m be a natural number with 27™* < e. Then | A}() — Ap ()| <
14, — A,|| < 27%. There is an se I(m) such that P(s)*({) = 1 since
2. {P(s)|seI(m)} = 1. By property (2), we have that { is in X(s)(Z).
So there is an element & in X(s) such that e S({). However we have
that AM() = a(s) € X(s), and so |a(s) — | < 2°™ since the diameter
of X(s) is less than 2™™. Now we obtain that [A{{) — a]| <&, and
by the preceding remarks that A7 () € S(€). This completes the proof
for the case of X, N Sp A(7 (L)) = @.

We may prove the existence of an element A4, in 2 such that
(4, — A)( A () is not left (resp. right, left nor right) invertible
in &7 (7)) and A}{)e X, by the same proof we just gave for
an invertible element by using the additional fact that, for any ele-
ment B in a Banach algebra <# with identity, the set of all complex
a such that « — B is not left (resp. right, left nor right) invertible
is a non-void compact set ([26; 1.5.4 and 1.4.6]; also cf. [11; Theo-
rem 3.1]).

The following definition is now meaningful.

DEFINITION 3.6. Let .o be a von Neumann algebra, let 2 be the
center of .o and let Z be the spectrum of 2. Then the essential
central spectrum 2 — Sp-A of an element A in % with respect
to the central ideal .7 is the set of all 4, in 2 such that A e
Sp A(L”(Q)) for every (e Z. The left-essential (resp. right-essential)
central spectral 2 — Sp°. A (resp. 2 — Spr.A) of A with respect to
.7 is defined in a similar manner. The intersection 2 — Spb A =
(27 — 8SpA)N (2 — Spr.A) is called the two-sided essential central
spectrum of A with respect to A

REMARK 3.7. All sets defined in Definition 3.6 are non-void (Theo-
rem 3.5).

REMARK 3.8. For every A, €% — Sp. 4, we have that A,(1 —
P,) =0. Since (2" — Sp>4)U (2 — Sp,A)C 2 — Sp_-A, the projec-
tion 1 — P_. annihilates the other essential central spectrums.

We note that these definitions correspond to the usual ones if .07
is the algebra of all bounded operators on a Hilbert space and .7 is
the ideal of compact operators.

PROPOSITION 3.9. Let &7 be a von Neumann algebra. Then the
essential (resp. left-, right-essential) central spectrum of an element
A in &7 with respect to a central ideal 7 1s closed in the strong
operator topology.
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Proof. Let {4} be a net in the essential central spectrum of A
with respect to .# which converges strongly to A4, in the center 2~
of .7, There is a net {P,} of mutually orthogonal central projections
of sum 1 such that for each P, there is a sequence {A;.,} in U;{4}
with lim 4;,,P,=A4,P, (uniformly) [28; Corollary 13.1]. Since A%, () €
Sp A(_# ({)) for every { in the spectrum Z of 2" and since Sp A(_# ({))
is closed, we have that A7) e Sp A(_# ({)) for every { in the dense
subset X = U,{{eZ|Pp{) =1} of Z [7]. Let {{;} be a net in X
which converges to { in Z. If A() ¢ Sp A(” (), then there is a B
in .o with

[(B(4y — 4) — IOl = [(4 — AB - 1)) =0.
This means that there is a {; with
[(B(4, — 4) — (7 E)I]I<1 and |[[(4 — AB - 1)(7E)II<1

and thus that A7) is not in Sp A(_#({;)). Hence, we must have
that A$(Q) is in Sp A(_# ({)) for every ( in the closure Z of X. This
proves that 2 — Sp_. A is strongly closed.

The statements concerning the left- and right-essential central
spectra are proved in an analogous fashion.

For future reference we note some simple facts in the following
proposition.

ProposITION 3.10. Let .o be a von Neumann algebra with center
% on the Hilbert space H, let 7 be a central ideal in .57, let P,
and P, be orthogonal projections of sum 1 in 2, and let A be an ele-
ment of . Let .7 be the von Neumann algebra .7 P; with center
2 = Z P; on the Hilbert space P,H, let _7 be the central ideal 7 P;
m %, and let A; be the element AP; in .7 for 1 =1,2. Then
Z —Sp,A={B + B,|B;e 2, —8p . A;,i=1, 2}

REMARK. A similar statement holds for the left- and right-
essential central spectrums.

Proof. This follows from the fact that the spectrum of 27; is
{{P;|Le Z, P)C) = 1}, where Z is the spectrum of %, and thus that
[CP] in o7 P; is equal [{]P..

We now restrict our attention to self-adjoint elements. We note
that the essential central spectrum of a self-adjoint element consists
of self-adjoint elements.

ProrosiTION 3.11. Let .o~ be a von Neumann algebra, let 2 be
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the center of &7, and let A be a self-adjoint element of &7 Then
there are elements C, and C; in the essential central spectrum 2 —
Sp A of A with respect to the central ideal .7 such that C, < C = C,
for every C in % — Sp_ A.

Proof. The set 2 — Sp_ A is a monotonely increasing net in
2. Indeed, if C and C’ are in 2 — Sp_- A, then there is a Pe(%2")
such that lub{C, C"} = PC + (1 — P)C’. Since PC + (1 — P)C’ is in
% — Sp, A (by 3.10), the set 2~ — Sp_ A is monotonely increasing.
Then the least upper bound C, of 2~ — Sp_. A is the strong limit of
elements in 2" — Sp_- 4 and so C, is in the essential central spectrum
of A with respect to . (Proposition 3.8).

In an analogous manner, we may show that 2" — Sp_ A is mono-
tonely decreasing and thus we may find a greatest lower bound C,
for 2" — Sp_ A in & — Sp_ A.

PROPOSITION 8.12. Let .o~ be a von Neumann algebra with center
Z, let .7 be a central ideal of o7 and let A be a self-adjoint element
of 7. Let C, and C,; be the least upper bound and the greatest lower
bound of the essential central spectrum of A with respect to .7 respec-
tively. Then C)() = lub Sp A(7 (L)) and CNC) = glb Sp A(_7 (C)) for
every L in the spectrum Z of #%.

Proof. Since C7({)eSp A(”({)) for every (e Z, we have that
CHL) < a; = lub Sp A(_# ({)), for every { e Z. Conversely, we obtain
a contradiction if we assume that a; — C5(£) = 2¢ > 0 for some (¢ Z.
Indeed, let E be the spectral projection of A — C, corresponding to
the interval [e, + ). Because (A — C,)(1 — E) <e(1 — E), we have
that E(.7({)) -+ 0. Hence, there is a Pec(%") such that P*{) =1
and E(_7 (") # 0 for all ' in supp P = {{’e Z| PM{’) = 1} (Theorem
3.2). Since eE<(A—C,)E, we have that Sp (A—C (7)) N[e, + =)=~
@ for all {’ e supp P. Reducing to the algebra .o/ P with center 2 P,
we see that S({') = Sp (4 — CHP{(~Z P)({{")) N [e, + ) is non-void for
every {’ in the spectrum X of % P. Because .# P is a central ideal
in &P, we may find a B in % such that (BP)*({’) e S({') for every
{’e€ X (Theorem 3.5). If D is an arbitrary element in 2" —Sp_. (4—C,),
then PB+ (1 — PD = B isin 2 — Sp_- (A — C,) (Proposition 3.10),
and consequently, the element B’ = B’ + C, is in 2 — Sp, A. But
we have that B’P+ C,(1 — P) is in 2 — Sp_ A (Proposition 3.10)
and that B"P + C,(1 — P) = C, + ¢P. This contradicts the definition
of C,. Thus we must have that C,() = lubSp A(_#({)) for every
LeZ.

A similar proof holds for C..
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The following proposition shows that if A, is in the essential
central spectrum of A with respect to % then A4, — A is small on a
large subspace with respect to _~4

PROPOSITION 3.13. Let .o~ be a von Newmann algebra, let _7 be
a central ideal of &7 let A be a self-adjoint element of .7 let A, be
an element of the essential central spectrum of A with respect to .7
and let €>0. If F is the spectral projection of A, — A corresponding
to the interval [—¢, ], then FPe . # for some central projection P
implies Pe. .7 (i.e. P<1— P,).

Proof. Let P be a central projection with PFe._% We show
Pe.” We may assume that P # 0. Let { be a point in the spectrum
of the center of .o~ such that P*({) = 1. We have that

(4, — A} Q) = (4 — AL — F)(F(Q))-

If 1 — F)(”Q) 0, then (4, — A)(~({) is invertible in .7 (_7 ({)).
Since this is not possible, we have that 1(_#({)) = 0. This means
that Pe _# (). Since { with the property P*() = 1 is arbitrary in
the last relation, we have that Pe._.” by Lemma 3.1.

We now characterize the essential central spectrum of a self-
adjoint element in terms of the canonical form of a central ideal (cf.
Remark 2.6ff. and Definition 2.8).

ProrosiTioN 3.14. Let .7 be a von Neumann algebra with no finite
type I direct summand, let _# be a central ideal of .7 and let A be
a self-adjoint element in 7. An element A, is in the essential central
spectrum of A with respect to 7 if and only if there is an orthogonal
sequence {E,} of projections in .7 of dimension greater than dim 7
such that AE. (7)) = E,A(_7) and |[(A, — A)E,(A)|| = 0™ for every
n=12 -+ and A, = A,P._.

Proof. Let A, be in the essential central spectrum of A with
respect to .~ There is no loss of generality in the assumption that
P, =1 and that 4,=0. [9; IIl, 5, Problem 7]. Let F, be the
spectral projection of A corresponding to the interval [—=n™", n™'] for
=12 ++--; then we have that {F,} is a monotonely decreasing
sequence of projections such that dim F', > dim..# (Propositions 3.13
and 2.9).

Let ..” be represented in the form .# = _%(K) (2.4-2.6). Now
let {P;} be a maximal set of mutually orthogonal central projections
such that for each ¢ there is a natural number j(7) with (F, — F,.)P; €
. whenever k = j(i). This means that AF;,P;c..# since
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AF; Pi(7) || = [|AFP(A) || = k™

for arbitrary k& = j(¢). Hence, setting F = >, F;;,P; and P =, P,
we obtain a projection F of central support P such that AFe._# and
EP < F (Proposition 2.9). Since .97 has no finite type I direct sum-
mands, we may find a sequence {G,} of orthogonal projections of
sum F'P such that the central support of G, is P and such that EP <
G.,. Indeed, there is a central projection R majorized by P such that
FR is properly infinite and F(P — R) is finite. In the first instance
FR is the sum of a sequence of mutually orthogonal projections each
equivalent to F'R [9; III, 8, Corollary 2]. In the second instance, we
have that E(P — R) = 0. Indeed, E is a properly infinite projection
and E(P — R) is finite since E(P — R) < F(P — R). Now F(P — R)
may be written as the sum of a sequence of orthogonal projections
of central support P — R [9; III, 1, Theorem 1, Corollary 3].

Now, for every nonzero central projection @ majorized by P’ =
1 — P and for every n =1, 2, ---, there is a nonzero central projec-
tion Q' with @ =< @ and a natural number m = #» such that (F, —
F,.)Q has central support @ and EQ < (F, — F,,)®@ (Proposition
2.9). By induction we may find sets {G,;|i€I,} (1 < n < ) of pro-
jections with the following properties:
(1) if @,; denotes the central support of G,; then EQ,; < G,.Q.:
(Gel,;n=12 +-);
(2) {Q.:liel,} is a mutually orthogonal set of sum P’;
(8) for each 7¢I, there is a natural number s = s(i) = n with G,; =
(F, — F.1,))Q.:; and
(4) ifeel,,jel,, and Q,;Q,; # 0 then s(3) < s(j) whenever m < n.
Here I, is a countable indexing set with I, NI, %= @ for m +# =u.
Indeed, at the (n + 1) — st stage of the induction we work in algebras
of the form .&7Q;, «+- Q.;,(i;€ I;) and then sum the appropriate pieces
together by summing over those pieces corresponding to the same
s(i). Setting G = 3,{G,;|1€l,}, we obtain sequence of mutually
orthogonal projections of central support P’ such that EP' < G, P,
AG) = GJA, and ||AG) || < n™* forevery n =1,2, ---. Setting E, =
G, + G for n=1,2, -+, we obtain a sequence {E,} of mutually
orthogonal projections of central support 1 such that

E < E,, AE,(.7) = E,A(.%), and |AE,(.7)| <n™

for every =.

Conversely, let {E,} be a sequence of (not necessarily orthogonal)
projections which satisfy the conditions of the proposition for the central
element A,. Suppose there is a B in .o~ with B(4, — A)(.~7 () =
1+0 for some { in the spectrum of the center. Then we have
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that
|E(F )l = [|B(4, — AE (7 Q)| =n||Bll,

for every n» = 1, 2, -+ - implies || E,(_7 ({)) || = 0 for all sufficiently large
n. However, this means that ||E,(.7({")]| = 0 for all {’ in a neigh-
borhood of { since ' — || E,. (.7 ({"))]| is a continuous function of the
spectrum of the center into {0, 1} (Theorem 3.2). So there is a pro-
jection P in the center with P*({) = 1 such that E,Pc.” (Lemma
3.1). But this contradicts the hypothesis that dim E, > dim .# (Pro-
position 2.9). Consequently, the element A, is in the essential spec-
trum of A with respect to A4

COROLLARY 38.15. Let .&7 be a wvorn Neumann algebra with no
finite type I direct summands and let # be a central ideal of .7
Then the essential central spectrum with respect to 7 of a self-adjoint
element A contains A, if and only if there is a sequence {E,} of
mutually orthogonal projections of dimension greater than dim .7
such that ||(A, — A)E,|| = n™* forevery n=1,2 ««« and A, = A,P...

Proof. There is no loss of generality in the assumption that 4,=0
since every element in the essential central spectrum of A is self-
adjoint. Then there are orthogonal projections {F,} such that dim F, >
dim .7 AF,(.7) = F,A(.¥) and ||AF,.(.“)|| < (2n)™ for every = =
1,2, .-- (Proposition 3.14). For every =m there is a B,e.” with
|AF, — B,F,|| < (2n)™'. There is a projection G, € .7 such that G, <
F,and ||B,F,1—G)||=<@n)". LetE,=F,— G, IfQisa central
projection with QFE, € _%, then QF,c€.” and QP , = 0 and so dim E, >
dim ..# (Proposition 2.9.). But we have that

IAE, || = (A — B)E,[| + [[B.E.|| = n™" .

Thus {E,} is the required sequence.
The converse is derived from Proposition 3.14 since ||B(.7)|| <
|| B|| for every Be .

COROLLARY 3.16. Let &7 be a wvon Neumann algebra with no
finite type I direct summand and let .7 be a central ideal in 7 If
the left-essential (resp. right-essential) central spectrum of an element
A in 7 contains A,, then there is a sequence {E,} of orthogonal pro-
jections in 7 such that dim E, > dim .” and ||(4, — A)E,|| < »n™
(resp. ||(Ay — A)*E, || = n™') for every n=1,2, «+-.

Proof. Since the essential central spectrum of (4, — A)*(4, — A)
contains 0, the Corollary 3.15 ecan be applied.
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REMARK 3.17. If &7 is a finite type I algebra, .7 is a central
ideal, Ae.o and A, in the essential central spectrum of A with
respect to .7 then D. Deckard and C. Pearcy [6] showed that there
is an abelian projection E of central support P_. in .o with (4,—A)E=
0.

4. The essential central range. Let .o be a von Neumann
algebra with center 2. Then .9~ may be considered as a module
over 2. Let .o~ be the 2 -module of all bounded module homomor-
phisms of .o~ into 2" and let .7+ be the set of all elements of &7~
which map .&" into 2 *. For a central ideal .7 of .o let E, ()=
{pe. 7 "|¢(#7) = (0) and ¢(P,) = P.}. Here P, is the orthogonal
complement of the largest central projection in .% We notice that
E, () is the set of all states (i.e. elements ¢ of .o7~* with ¢(1) = 1}
of &7~ which vanish on .# whenever P. = 1, or equivalently, if
7 = _%(E) (Remark 2.6), whenever the central support of E is equal
to P (Corollary 2.7). In particular, the set E,(.”) is equal to the
set of all states which vanish on .# whenever _# is the ideal gen-
erated by the set of all finite projections or _# is the strong radical
of a properly infinite von Neumann algebra (Examples 2.11 and 2.12).
It is clear that E,(.#) is compact in the topology of pointwise con-
vergence on . where is 2 taken with the weak topology, i.e., in
the 0, (.57~, &7)-topology of .o7~. If {¢;|¢ € I}is any subset of E,(_7}
and {P;|te I} is a set of orthogonal central projections of sum 1, then
#(4) = >, P;¢;(A) defines an element ¢ in E,(.”). Furthermore, we
see that E,(_7) is central-convex in the sense that C¢, + 1 — C)¢, is
in E,(.#) for every ¢, and ¢, in E, () and Cin 2 with 0 < C < 1.

DEFINITION 4.1. Let .7 be a von Neumann algebra, let .7 be
a central ideal of 7 and let A be an element of &7, The set 27 (A)=
{6(A)|p € E (7))} will be called the essential central range of A with
respect to % We notice that 97.(A) is a central-convex, weakly com-
pact (and consequently uniformly closed) subset of the sphere in the
center of .7 of radius || A|| about the origin.

PROPOSITION 4.2. Let .7 be a von Neumann algebra, let #Z be
a central ideal of .57 and let A be an element of 7 Then for every
{ im the spectrum of the center of .7, the set 25 (A)(() = {B{)|Be
5 (A)} is a compact set of complex numbers.

Proof. Since .27 (A)(£) is bounded, it is sufficient to show that
2 AA)C) is closed. If a is the limit of a sequence {¢,(4)"({)} where
é,€ E,(7) for every n = 1,2, ..+, we show that € 22.(4)({). There
is no loss of generality in assuming that a = 0. We may assume
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that |6,(A)*Q)| < n™* for every n=1,2,---. There is a sequence
{P,} of central projections with |/¢,(4)P,|| = n™', and P,({) =1 for
everyn=1,2 +--. LetQ, =glb{P,---P,jn=12, +--}and let Q,=
P(1—-P), Q.= PP1~—P,),-+-; then{Q;|2 =0,1,2, -.+}is a sequence
of orthogonal central projections of sum P,. The homomorphism

Vo =1 — P)g, + Qs + 2 {Qis:]e = 1,2, ---}
is an element of E,(_#) and so
4y = limyr(4) = (1 — P)g(4) + 2 {Qub(A) i = 1, 2, -}

is in 9% (A4). Since 1 — P)*) =0 and Q) =0 for all ¢ =1,
either Q) =1 or > {1 =zn}*) =1 for all n=1,2,---. 1In
either case A2 ({) = O since || >, {Q:|2=0,n,n+1, ---}4,]| = n~". This
means that 0¢ 275(A4)(0).

We need the following lemma. Its proof is a simple reworking
of [19; proof of corollary to (a5) implies (al)].

Lemma 4.3. Let .7 be a von Neumann algebra, let 7 be a
central ideal of .7, and let E be a projection in . There is posi-
tive module homomorphism of the module .o into its center which
vanishes on 7 and satisfies the relation ¢(1) = ¢(E) =1 — Q where
Q s the largest central projection of & such that EQe A

THEOREM 4.4. Let o7 be a von Newmann algebra. The essential
central range of a self-adjoint element A of .o with respect to a
central ideal _# 1s the smallest central-convex subset of &7 which
contains the essential central spectrum of A with respect to A

Proof. Let 2 be the center of .o/ let { be in the spectrum of
%, and let ¢ be an element of E,(.#). Let 4; be the bounded linear
functional on .o~ defined by ¢.(B) = ¢(B)*() for all Be.ot If
B, -, B, are in .% and C, ---C, are in {, then

¢c(z BiCi) = Z C'Z\(C)¢C(Bi) =0.

This proves that ¢, vanishes on a dense subset of [{] and so vanishes
on [{]. Hence ¢, vanishes on .7 ({). Now let C,=glb 2 — Sp_ A
and C, =lub 2 — Sp-A. We have that C}(Q) = A(”(Q) = C2©)
in .o7(_#({)). (Proposition 3.12). This means that

$(C)"(C) = C(Q) = ¢(DMNQ) = C(Q) = 4(C)"(Q)

for all { with P3() = 1. Consequently, we have that C, = C,P, <
#(A) =C,P,=C, So we may find a C in & with 0 < C <1 such
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that CC, + 1 — C)C, = $(A). Hence, the smallest central convex set
containing 2" — Sp_A contains 22-(4).

Conversely, to show the opposite relation we simply must show
that C, and C, are in .%5.(4). We work with C,. Given ¢ > 0, there
is a projection FE in .o such that E commutes with A, [|(C, — A)FE|| <
¢, and if EP is in ¥ for a central projection P then P is in .7
(Proposition 3.13). There is a ¢ in E,(.”) such that ¢(E) = P..
(Lemma 4.3). From the Cauchy-Schwarz inequality for elements of
A~*, we obtain

16(4) — C.l = |[8(A = C)I| =
l6((A — CHE) || + l[s((A — C)X — E)) |
e+ [lA-Clll¢1 — E) = ¢

Because .%77.(A) is uniformly closed and because & > 0 is arbitrary,
we have that C,e .97 (A). By a similar argument C, e .27 (4).

COROLLARY 4.5. Let .o be a von Neumann algebra. The essen-
tial central range of an element A in &7 with respect to a central
ideal 7 s equal to a set {A,} iof and only if AP, = A, and A — A€
A

Proof. TFirst let the essential central range .97(A) of A be
equal to A,. Then ¢(A) = A, for every ¢€ E,(_”). Hence ¢(A+ A*)=
A, + A7 for every e E,(#). This means that the essential central
spectrum of A + A* — (4, + A¥) with respect to the ideal .7 is equal
to {0} (Theorem 4.4). Hence A + A* — (4, + AJ)e.# (Proposition
3.12 and Lemma 8.1). Similarly we find that (A — 4%) — (4, — A¥) e A
Consequently, we have that 4 — A,e A

The converse is obvious.

The following remarks lead to a characterization of the essential
central range. This reduces to the known characterization of the
essential numerical range of the algebra of all bounded operators on
a separable Hilbert space [11; 5.1]. Let .o be a von Neumann algebra
on the Hilbert space H and let 2 be the center of .o. Let E be
an abelian projection with central support P in the commutant 2’ of
2 Jef. 9; 1, §7]. For every Ae .o, there is a unique 7.(4) in 2P
with EAE = t,(A)E. Then A — t;(4) defines an element in .o~
with 7;(1) = P. For every projection P in 2 let V() = {tz¢€
7~ | E is an abelian projection in 2’ of central support P}; for every
Ac o7 let Wp(A) = uniform closure {¢(4)l¢ € Vo(.7)}.

We now need a version of the Toeplitz-Hausdorff Theorem.

LEMMA 4.6. Let .o be a von Neumann algebra. Then, for
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every Ac 7 and central projection P, the set {¢(A)|pe Vp(.¥)} is
central-convex.

Proof. There is no loss of generality in the assumption that
P=1. Let E and E, be maximal abelian projections (i.e. abelian
projections with central support 1) in the commutant 2"’ of the center
% of o7 and let Ce 2 with 0 < C £ 1. Setting F = lub{E, E.},
we obtain a projection F such that the reduced algebra 27, is the
product of homogeneous algebras of type I, where n < 2. Indeed, we
have that lub{E, E,} — E, < E, and so lub{E, E,} — E, is abelian.
So there is no loss of generality in the assumption that .o = 2 is
homogeneous of degree 2 since the degee 1 case requires no further
proof. Now we may write ¢(B) = C7t;(B) + (1 — C)75(B) as ¢(B) =
A, (B) + Ayp,(B) where F, F, are orthogonal maximal abelian projec-
tions of sum 1 and A,, A, are elements in 2+ with A4, + 4, = 1 [14;
§4]. So we may assume that E, and E, are orthogonal of sum 1. Let
T; =74 (1 =1,2). Since it is sufficient to find a maximal abelian pro-
jection E with 7,(A—7,(A))=Cr,(A—7.(4)), we may assume that 7,(4)=
0. Now there is a sequence {P,} of orthogonal projections in 2" such
that z,(4)P, is invertible in 2 P, and 7 (4)1 — 3. P,) = 0. Because
the sum of abelian projections with orthogonal central supports is
again abelian, there is no loss of generality in the assumption that
7.(A) = 1.

The rest of this lemma is the classical Toeplitz-Hausdorff theorem.
Let U be a partial isometry of .o~ with U*U = E, and UU* = E,
and let A = E,+ AU+ A, U*, where A, A, 2. There is a unitary
operator Vin 2" with VA, — Af| = A, — Af. Let T = V*A, + VA,.
There is a De 2 with —1 £ D <1 such that

D'+ DA — D)Y*T =C
[6]. Now, by direct calculation, we find that
E = DE, + VD1 — DU + V*D(1 — D)'*U* + (1 — D)E,

is a projection in &7 of central support 1 that vanishes on the range
of (1 — C¥»'"*E, — VCE,. So E must be a maximal abelian projeection.
Finally, by another calculation, we obtain that FAE = CE.

Let .o be a von Neumann algebra with center 2. Let .o~ be
considered as a 2 -module and let .o~ _ be the % -module of all o-weakly
continuous module homomorphisms of % into 2. Let % =."~"N .97
be the set of all normal (i.e. positive o-weakly continuous) module
homomorphisms of .57 into 2~

Now we can extend Lemma 4.6.
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LEMMA 4.7. Let .o be a von Newmann algebra, let P be a central
projection of .7, and let Ac . 7; then

We(4) = {$(4) [¢ e ., ¢(1) = P}

Proof. First let ¢e .97 with ¢(1) = P. We show that ¢(4) ¢
Wpr(A). There is a monotonely decreasing sequence {A,} of positive
elements in the center %" of . and a sequence {F,} of orthogonal
abelian projections in the commutant 2’ of 2 with central supports
{P,} respectively such that lim 4,=0 (uniformly), >, A, = P (strongly),
E,..< E,, supp P} =supp A, (n=1,2,-.-+), and ¢(B) = >.A4,7, (B)
(strongly) for all Be . ([16; Theorem 2] and [14; §4]). There is a
mutually orthogonal set {Q;} in (2°) of sum P such that

lim, > {A4,Q:;|1 =< n < m} = PQ;

uniformly (cf. [14, Theorem 4.1]). For each @Q; we may therefore find
an m; with || B;Q;|| < ¢, where B; = 3 {A4,.|n = m;} and where ¢ > 0
is a preassigned constant. Now there are abelian projections F,(1 <
k< m; =m) of central support PQ; such that E.,Q; < F,. Since
supp P; = supp A, we have that ¢, = 3 {47 |1 =k =<m—1}+ Bz,
is equal to > {4, Qv |1 =k =m — 1} + B, . Since > {4,Q:]1 =
k< m — 1} + B;Q; = PQ,, there is an abelian projection G; in 2" of
central support PQ; such that 7,,(4) = ¢,(4) (Lemma 4.6). Notice
that

1(¢:(A) — (AN Q|| = | Bitr, (A [+ 1| 2 { A7, (A) [ = m}Qs || = 2| A]] .
Now >, G; = G is an abelian projection of central support P and
[6(4) — za(A) || = lubl[{(4) — 74,(A)Q:|] = 2e[A] .

So ¢(A) e Wp(A) since ¢ > 0 is arbitrary and W,(4) is closed.
The converse relation is obvious since 7, is a normal module
homomorphism.

PROPOSITION 4.8. Let .&7 be a von Neumann algebra. Then the
essential central range of an element A in % with respect to the
central ideal .7 is equal to N{Wy(A + B)|Be..#}. Here P= P._.

Proof. Let ¢c E (7). Let Q be the central projection in .o~
such that .o7Q is a discrete algebra and .o (1 — @) is a continuous
algebra. There is a net {4,} (resp. {¢.}) of elements of (.7 Q)L (resp.
(7 (1 — Q)I) with ¢,(Q) = P-Q (resp. ¢.(1 — Q) = P-(1 — @) such
that lim ¢,(BQ) = ¢(BQ) (resp. lim ¢,(B1—Q)) = ¢(B(1—Q))) uniformly
for every Be . This follows from Theorem 5.4 (resp. Theorem 5.1)
of [17]. Then setting 6,.(B) = ¢,(BQ) + 6. (B(1 — Q)), we obtain a



ESSENTIAL CENTRAL SPECTRUM AND RANGE FOR ELEMENTS 369

net {¢,,} in &7 with ¢,,1) = P, for all m, » and lim ¢,,.(B) = ¢(B)
(uniformly) for all Be .o, Let Be.” and let ¢ > 0; then there is
a ¢n, With [[6,,(B))]| =¢ and [[¢,.(4) — ¢(4)[| = ¢ since ¢(B) = 0.
Since ¢ > 0 is arbitrary and since W,(A + B) is closed, we have that
¢(A)e Wp(A + B) by Lemma 4.7. Since Be.” is arbitrary ¢(A)e
N{WsA + B)|Be..”}. So (A cnN{WsA-+ B)|Be 7}

We now prove that the opposite inclusion relation is true. First
let A be self-adjoint. We show that 0 N {W(4 + B)|B = B*c . .”}
implies that 0e 225 (4). Let 2 be the center of .o~ and let C, =
Iub % — Sp,A. Suppose there is an a >0 and a nonzero pro-
jection @ In 2 with @ £ P and C,Q £ —2a@. We have that
(C, — A(7(C) = 0 for every { in the spectrum of 2~ (Proposition
3.12). If f. (resp. —f_) is the function that is identity on the real
interval [0, <) (resp. (—<=,0]) and 0 on the complement, we have
that f_(C, — A) is a self-adjoint element in .7 (Lemma 3.1). How-
ever, by hypothesis there is an abelian projection F in 2’ of central
support P with ||zx(f_(C, — A) — A)|| £ a. On the other hand, we
have that

Qrs(f(C, — 4) — A) = Qr(f:(C, — A) — C) = 2aQ .

This is a contradiction. Hence, we find that C,P=0. Since 1—-Pec . 7
we have that C,(1—-P) = 0 and so C, = 0 (cf. Remark 3.8). Similarly,
we obtain C,=glb 2" —Sp.(4) £0 and finally that 0¢ % (A) (Theo-
rem 4.4).

Now let A be an arbitrary element of .o~ with 0e N {W,{4 +
B)|Be.¥}. Let & ={|B| = (B*B)'*|Be 2 (A)}. We note that .&¥
is a monotonely decreasing net in 2. Indeed, let B and C be in
27 (A). There is a central projection @ with Q|B|+ (1 — @) |C| =
glb{|B|, |C|}. But the set .2 (A) is central-convex and so .7 (4)
contains D = QB + (1 — @C. Thus, we have that |D| = Q|B]| +
1 —@Q)|C|is in &% Thus .&° has a greatest lower bound B, in 27".
We show B, = 0 by arguing by contradiction. Suppose there is a
point £ in the spectrum Z of 2~ with B} () > 0. Then we may assume
that B} = glb {C*() |C e .<#} since By(() = glb {C*()|C € .5} holds on
a dense open set of Z [7]. Thereis a Ce .2%-(A) such that [C*({)| =
B}{) (Proposition 4.2). Then we may find a unitary U in %~ such
that UC = |C|. We have that 0e N{W(UA + B)|Be . ”} since
UWx(A + U*B)) = W.(UA + B) and that B, = glb{|B||Be 27(UA)}
since . (UA) = U 2¢(A). Furthermore, we have that |C|e 27 (UA).
Hence, there is no loss in generality in assuming that thereisa Ce
97 (A) with CMN{) = B{{). Nowlet A, = (4 + A")/2 and 4, = (A —
A*)/2i. We show that 0e N{Ws(4;+ B)|B=B*e 7} 1 =35 < 2).
In fact, given ¢ > 0 and B = B*c . %, there is an abelian projection £
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with central support P in the commutant of 2" such that ||z;(A+ B)||<
e. Hence, we have that

[[7e(A + A* + 2B)|| = ||z5(A + B) + (A + B)*|| < 2¢ .

Similarly, we may find an abelian projection F of central support P
such that ||7,(A— A* + 2iB)||<2¢. Now by the preceding paragraph
we conclude that 0e 975 (4,;) (1 =<7 <2). Let ¢ be an element of .o&7~*
with ¢(1) = P, ¢(.#) = 0, and ¢(4,) = 0. However, every element of
the form ag(A) + 1 —a)C 0 =a =1)is in 2. (A) and so there is
at least one & with 0 < a < 1 such that

lag(A)"C) + 1 — )CM Q| < CMNE) = B(©) -

Indeed ¢(4)"({) is pure imaginary. This contradicts the choice of B,.
Hence, we must have that 0e 975(A).

PRrROPOSITION 4.9. Let .7 be a von Neumann algebra; then A, is
wn the essential central range of Ae .7 with respect to the central
wdeal 7 if AP, = A, and if, given € > 0, there is a projection E
with dim F > dim _# such that ||E(4, — A)E|| <e. Conversely, if
Aec .7 15 self-adjoint and if A, s in the essential central range of
A with respect to _7 then there is a projection E in &7 with dim E >
dim 7 such that ||E(A, — A)E]| < e.

Proof. The first statement follows from Lemma 4.3 and Propo-
sition 2.9 since the essential central range .5 (4) of A with respect
to .“ is uniformly closed.

Now let A be self-adjoint and let A,¢ .55,.(A4). There is no loss
of generality in assuming at the outset that 4, = 0 and that P, = 1.
Let . have the canonical form .# = _%(F) (Remark 2.6). Let
e >0 be given. Let C,=glb 2 —Sp_A4 and let C, = lub 2 —8p_A4A
where 2 is the center of .o Since 0¢ .9, (A), we have that C, <
0 < C, (Theorem 4.4).

Now let R be the largest central projection such that .o/ R is of
type I and _# R = 0. Consequently, if G is a finite type I projection
majorized by 1 — R, then Ge .” (1 — R) (Proposition 2.2). By Proposi-
tion 3.10 we may assume that either R=1or 1 — R = 1.

First suppose theat B = 1. We may assume that .7 is equal the
commutant of its center [9; I, 8, Theorem 1]. Then there are abelian
projections E, and E, of central support 1 in .o such that

[[72,(4) — Cil| + |lz5(4) — Cull S ¢

(Theorem 4.4 and Proposition 4.8). Thereisa Cin 2 with0=C=1
such that CC, + (1 — C)C, = 0, and there is an abelian projection E
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of central support 1 in .o~ such that 7,(4) = Cry,(4) + L — C)74,(4)
(Lemma 4.6). Thus, we obtain

IEAE|| = |ICll1izs(A) — Gl + [I1 — Cll [[75,(4) — Cull = ¢ .

So we may assume that 1 — R = 1. Because the closure of every
open subset of the spectrum Z of 2~ is open, we may find a sequence
{P,i»=0,1,2 .-} of mutually orthogonal central projections of sum 1
such that

C,P,< —n'P, <0< n'P,<C,P,

for n =1,2,--+, and C;, C, P, = 0. We shall find projections E, of
central support P, such that FP, < E, and ||E,AE,|| < 4c. Then we
shall have that £ = 3 E, has central support 1, F < E, and || FAFE|| =
lub, || E,AE,P,|| = 4¢ (cf. [9, III, §1]). Now, we have that . 7, =
P, = %, (EP,) is a representation of the central ideal .7 of
%7 P, in canonical form. Since C,C, P, = 0, there is a P, in (2" P,) with
PiC, + (P, — P)C, =0 (Lemma 3.4). Thus, we see that 0e 2P, —
Sp_-,(AP,) (Proposition 3.10) and so we may find the projection E,
(Proposition 3.13). By reducing to an algebra .o~ P,, we may assume
that €, £ —a <0< a £ C, (Proposition 3.10).

It is sufficient to show that every nonzero Qe (2°) majorizes a
nonzero Re (2°) such that there is a Ge (%) of central support R
with FR < G and ||GAG|| < 4e. Then the usual maximality argument
for the projections R may be employed to find the projection E,. By
making yet another reduction to a direct summand of .7, we may
assume, without loss of generality, that there are natural numbers
m, n, and p such that

fmp™ + Cill =p7 =¢ and |[np™ - C,l[=e¢.

We now find = (resp. m) orthogonal projections F; of dimension
greater than dim . such that ||(C, — A)F;||=<¢ (resp. |[(C, — A)F};|| =
€). We normally would apply Proposition 3.14, however it is necessary
for the combined set of m 4 n projections to be orthogonal and so
the following additional argument is required. Let A, and A, be ele-
ments of .7+ such that A, — A4, = 4 and A.4, = 0. TFor every (e
Z, we have that —C7(€) = [[4:,(-7 (0) || and CL(C) = [|A.(~ ()] (Pro-
position 8.12). Let G, and G, be the domain projections of 4, and A,,
respectively. For definiteness, let G = G,. If @ is a central projec-
tion with GQe .7 then @Q = 0; otherwise, there is a (e Z with
G(# () = GR(FA(0) = 0 and consequently with ||4,(.7 ()] = 0.
This implies that dim G > dim .~ So there is a projection G’ with
F~G =£G. We now restrict .o~ to the subspace of the Hilbert
space determined by G to obtain the von Neumann algebra .o =
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GG (cf. [9; I, §2]). The set GG = _7 is easily seen to be a
central ideal of .%7 since the center of &% is 2°G = %% [9; III, 5,
Problem 7]. We have that A,e.»7}. Since the spectrum of 27, is
the set X = {{G|C e Z}, we have that the smallest ideal [(G] of .o~
which contains {G is G[{]G. We may now easily show that

1A(A% + [EGD 1| = inf{||A + B + C||[Be .7, Ce [CG]}

is equal to ||A.(.#Z ()| for every {e Z. This means that C,G =
lub 2% — 8p_-, A, (Proposition 8.12). Therefore, we may find a set
F,F, --- F, of mutually orthogonal projections in .57 of dimension
greater than dim .7 such that

AF(A) = FA(%) and [[(C.G — A)F( A =

for every 7 =1, 2, +--, m (Proposition 3.14). Indeed, the algebra .o7
has no finite type I direct summands. Thus, we may find orthogonal
projections F, F,, --+, F,, majorized in .o by G = G, such that

F~Q@<F,AF () = F;A(”), and |[(C, — AF(7)||<Ze

for every ¢ =1,2, ---, m. Likewise, we may find orthogonal projee-
tions F,., ++-, F,., majorized by G, such that F < F;, AF () =
F,A(7), and ||(C, — A)F(#7)||<¢c forevery i =m + 1, ---, m + n.
Since G, and G, are orthogonal, the projections F,, ---, F,,, are
mutually orthogonal. There are partial isometries U;;(1 <4, < m+n)
of .o~ which satisfy the following properties:
(1) U;U, = 0,U,; (6 = Kronecker delta);
(2) U; = Up; and
(3) U is a projection with F ~ U, < F;, for all 4,7, k, .
The element E' = (m + n)™* >, U;; is a projection in .o with E'~F,
i.e. dim E’ > dim.” Here, indeed, a calculation using (m + n) x
(m + n) complex matrices suffices. Furthermore, using the fact that
AF(.7) = F;A(.”) for every 7, we have that
| E"AE ()|
= [|E"(4 — (C, 22 {Usli = m} + C, 25 {Usli > mh)) E'(7)||
+ I E(S{C.Uli < mh + SHCUsli > m)E(F) ||
= [lm + n)7 355 G {Uk(A — C)Ujlb = m}
+ 2H{UA — C) Uk > mh(A)]|
+ l[(m + )G, + nC)E(F) | < 2 .
Now there is a Be.” with ||E'AE — E'BE’|| < 3:. In the ideal
.7, we may find a spectral projection E” for E'B*BE’' majorized by

E’ so that ||BE'Q1 — E")||<e. If QE — E")e . 7 for some Qe (%),
then QFE €. and consequently @ = 0. This means that
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dim (E'— E") > dim _#
(Proposition 2.9). Setting E = E’ — E”, we obtain the relation
|EAE| < [|[E(A — B)E|| + ||[EBE|| < 4¢ .

REMARK 4.10. If .o~ is the algebra of all bounded operators on
a separable Hilbert space H and .# is the ideal of completely con-
tinuous operators, then Fillmore, Stampfli, and Williams [11, Theorem
5.1, Corollary] have obtained Proposition 4.8 without the added restric-
tion that A is self-adjoint. The theorem of Fillmore, et al., depends
on properties of Hilbert-Schmidt operators on separable H; however,
it is likely that the restriction can also be removed here.

Let .o be a von Neumann algebra. Let U(.o) be the group of
unitary operators of .o~ and let & be the set of positive real-valued
functions f of finite support such that > {f(U)| Ue U(.s7)} = 1. For
each fe& and 4 in & let f-A = {f(U)U*AU|Uec U()} and
let 2¢"(A) be the uniform closure of {f-A|fe&}. If Be.Zs&'(A),
then .%7"(B) < .2¢"(A). Then the intersection .2 (4) of 2 "(A) with
the center is a nonvoid closed convex subset of the center ([8]; cf. also
[9; III, §5]). Furthermore the set .27"(4) (resp. .7 (A4)) is central-
convex in the sense that CC, + (1 — C)C, is in (A) (resp. .2 (A))
for every C, and C, in .27"(4) (resp. .5 (4)) and C in the center
with 0 < C <1 [19; proof, Lemma 6].

The following forms the basis for our analysis of 5 "(A4).

ProPOSITION 4.11. Let .o be a von Neuman algebra and let A be
an element in 7. Let { be a point in the spectrum of the center of
. Then the set .2 (A)() = {B ") |Be .2 (A)} is a compact subset of
the complex plane.

Proof. Because .7"(A)(C) is bounded, it is sufficient to show that
227 (A)(€) contains an arbitrary limit point . Due to the fact that
(A — o)) = % (A)(Q) — «a, there is no loss in generality in proving
that 0 e .277(4)() whenever 0 is a limit point of .27 (4)((). We proceed
to do this. For every n =1,2, --+, there is a function f, in the
subset & of real-valued functions on the unitary operators of .%~ and
a central projection P, of .o with P}{) =1 and ||(f,-4)P,|| <27
Let {Q;} be the sequence of orthogonal projections defined by @, =
P, — PP,Q,= PP, — PPP, ---, and let Be 2%7(A). Thenlet C, =
B — P) + 2 {(fi- A1 =it =n} + (forr DQ, (n=1,2,---). Here
Q, =P, -+ P, is the orthogonal complement of (1 — P) + >, {Q;|1 =
1= mn}. We notice that C, € %#7(A) for every = since .2¢7(A) is central-
convex. However, the sequence {C,} is Cauchy since ||C, — C,.,|| <
max {[[(fori AQurilly [ (farer A) Qs [} 277", This means that {C,} con-
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verges to an element C in .2¢¥’(4). We have that
ICO I = lim ||C,(0) ]| = lim [[((fas:» DR || = limsup 2™ =0

and thus C is in the ideal [{]. This means that .2#”(C) C [{]. How-
ever, we have that .277(C) < 27"'(4) because Ce .2¢'(4). This means
that 227 (4) N [{] # @, or equivalently, that 0e .2 (4)(Q).

THEOREM 4.12. Let .o~ be a properly infinite von Neumann
algebra, let 7 be the strong radical of .7, and let A be an element
of 7. Then the set 27 (A) is equal to the set 5% (A) = {¢(4)|¢ is a
state of o7~ with ¢(_F) = (0)}.

REMARK 4.13. Here notice E,(_#) is the set of all states of
&7~ which vanish on _Z

Proof. First let A be self-adjoint. We show that every element
C in the essential central spectrum of A with respect to _# is in
2#(A). There is no loss of generality in assuming for this that
C = 0. Then for every ¢ > 0, there is a projection E in .&7 such that

|AE||<¢ and E~1

(Example 2.12 and Corollary 3.15).

There are orthogonal projections E’ and E” of sum E such that
E' ~ E" ~ E [9; III, 8, Corollary 2]. By replacing E by E’, we may
assume that [|AE||<¢ and E~1— E ~1. Then the element

27(E — (1 — E)A(E~ (1 — E)) + A) = EAE + (1 — E)A(l — E)

is in %¥7(A). Now let E,, ---, E, be orthogonal projections of sum E
with E, ~ +«+« ~ E, ~ FE, and let U, ---, U, be unitary operators in
% so that the domain support of (1 — E)U; equals E;. For every
unit vector z in the Hilbert space, we have

| 22{n"" Ui (EAE + (1 — E)A(l — E))U|l = @ = n}||
|2 n U EAEUz|| + || S »7'Ur'(1 — E)A(L — E)U||
< n(ne) + | SnE U1 — E)A(L — E)U:Ew||
=e¢+nA]l.

This proves that .2¢'(4) contains an element of norm less than or
equal to ¢ + n7'||A]]. Because ¢ >0 and % are arbitrary, the set
¥ (A) contains 0. This means that the essential central spectrum
of A with respect to _# is contained in .577(4). Hence, the least
upper bound C, and the greatest lower bound C, of the essential
central spectrum are in .97°(4). Since .97,(A4) is the smallest central-
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convex set containing C, and C, (Theorem 4.4) and since 277 (A4) is
central convex, we have that .27 .(4) € .27 (4).

Now let A be an arbitrary element of .o~ and let ¢e K (_2).
We may assume that ¢(4) = 0. We show that 0 is in 2 (4)() =
{BMC)|Be .2r (A)} for every  in the spectrum of the center. Since
27 (A)(C) is compact (Proposition 4.11), there is a C in .22 (4) with
[CMO) | = glb {la||ae 27 (A)()}. There is no loss of generality in
assuming C*{) = 0. We obtain a contradiction by assuming C"({) >
0. Indeed, we have that ¢(4A+ A*)=¢(A)+¢(A)*=0. By the preceding
paragraph we conclude that 0e 277 (27'(4 + A*)) and so there is a
sequence {f,} in the subset & of functions on the unitary operators
of .o with limf,-(27(4 + A*) = 0. We may also assume that
{fur((20)(A — A*))} converges to a self-adjoint element B in the
center [9; III, §5, Problem 2]. Hence, the element B is in .27 (4).
However, we must have that B"({) = 0. Indeed, if B"{) # 0, then
the distance to the origin of the line segment L in the complex plane
with end-points C*({) and ¢B"({) is less than C*({). However, this
contradicts the definition of C since L c.% (A)({). So we must have
that C*({) = 0, and hence 0.5 (A)({). The proof is now completed
by a compactness argument. Let ¢ > 0 be given. For every { in
the spectrum of the center, there a C, in 277 (4) and a central projec-
tion P, with P({) = 1 such that ||C.P,|| <e. Due to the compact-
ness of the spectrum of the center, we may find C, ---, C, in 2% (A4)
and orthogonal central projections P, ---, P, of sum1 such that

1>V C:Pll=¢.

However, .277°(A) is central-convex and so >, C;P;c .2 (A). Since ¢ >0
is arbitrary and since .277(.) is closed, we have that 0ec . 27(4).
This completes the first part of the proof.

Conversely, let Ce .97 (4). There is no loss of generality in
assuming C = 0. We find ¢ in E,(_#) with ¢(4) = 0: Let ¢, be a
state of .o~ that vanishes on _# (Lemma 4.3). Let {f,} be a
sequence of functions in & such that limf,-A = 0. Let ¢, be the
state of E,(_#) given by 4,(B) = ¢(f,-B) for every B in . Due
to the compactness of the state space of .~ in the o,(.%™, &)
topology, there is a subnet {$n,} of {3,} and a state ¢ of .o~ such
that {4, (B)} converges weakly to ¢(B) for every B in .o Clearly,
the state ¢ vanishes on _# However, for every & and y in the
Hilbert space, we have that

[(3(A)z, ¥) | = lim;|(8,,(A)x, v)| = lim sup || 6| |[ ;- All [[z]] [ly]l = 0.
This proves that ¢(4) = 0, and so 0e 2 (4).

COROLLARY 4.14. Let .o be a properly infinite von Neumann
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algebra and let A be an element of .57 Then the convex subset 27 (A)
of the center is weakly compact.

Proof. For any central ideal .7, the set .27 -(A4) is weakly compact
(Introduction, §4).

Let A be an element in the von Neumann algebra %% Define
& (A) to be the intersection of the weak closure of .277(A) with the
center of .o% Using the tools we developed here, we can extend the
theorem of J. Conway [4] from the case of properly infinite factors
to pro perly infinite algebras with arbitrary centers. For this exten-
sion the following lemma is needed.

LEMMA 4.15. Let &7 be a von Neumann algebra on the Hilbert
space H. Let f be a 0,( 7, & )-continuous hermitian functional
on 7~ (i.e. f(¢) is real for every ¢ im &7~ which takes hermitian
elements of &7 into hermitian elements of the cemter). Then there
s an x€ H and a self-adjoint Ae .7 such that f(¢) = (p(A)x, x) for
every ¢e .7,

Proof. There are x,, «++, 2, ¥y, *+*, ¥, in Hand A, ---, A, in .7
such that f(¢) = >, (6(4,)x;, y;) for all ¢ in .7~ [17; §2, Introduction].
For each ¢ there are z;; (1 <j < 4) such that

Wajyy = Weyy + Wy, + 7;(wzea - w

%44

where w,_,.(B) = (Bx;, ¥;) and w, = w,,. on the center of .27 [9; ], 4,
Theorem 6 and III, 1, Theorem 4, Corollary]. Then there is an « in
H with w, = >};;w,,; [9; III, 1, Theorem 4, Corollary]. For each ij,
there is a positive element C;; in the center with (BC;;x, x) = (Bz,;, 2:;)
for all B in the center (Radon-Nikodym theorem). Thus there is an
element B = 3 4:(Ciy — Ci, + i(Cy; — Cy)) in .o with f(g) = (4(B), @)
for every ¢ in .&7~. If ¢*(B) = ¢(B*)* for ¢€ .o, then

(3(B*)*w, ®) = f(3*) = f(9)” = (8(B)w, ¥)~

for every ¢ in .7~ implies that f(¢) = (¢(B*)z, ) = (¢(B)x, ) for every
¢ in &0 Hence, f(¢) = (¢(A)x, x) for every ¢ in .&7~. Here A =
27Y(B + B*).

THEOREM 4.16. Let .o~ be a properly infinite von Neumann
algebra, and let 7 be the ideal of finite elements of .o7; then & (A) =
% (A) for every A in S

Proof. One may prove the theorem using the same steps (with
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appropriate modifications) that Conway [4] employed in his proof for
factor algebras. We content ourselves with pointing out the appro-
priate steps. Let & be the set of all states of .o~ such that ¢(4) e
& (A) for all A in &~ For every Aec . and A,e ©(A), there is a
$€ & such that ¢(4) = 4,. This uses the o0,(%~, &)-topology in-
stead of the weak *-topology of the dual of .o~ [4; Lemma 5]. The
set Z(4) is equal to {0} for every Ae . [4; Lemma 6]. Hence,
the set & is a subset of E,(.#). But if A is self-adjoint and g¢
E,(.7), then ¢(A)e & (A) since the least upper bound and the greatest
lower bound of the essential central spectrum of A with respect to
. are in € (A) (argue as in [4; Lemma 4] based on Proposition 3.13)
and since & (A) is central-convex (use the fact that .2¢7(A) is central-
convex). If thereis ¢, in E,(_”) but not in the o, (.7, .o)-compact
convex set &, then there is a 0,(.27~, .%7)-continuous hermitian funec-
tional on &7~ which strongly separates ¢, from &. However, every
ow{(.57~, .o7)-continuous hermitian functional f of .o~ is of the form
f(9) = (¢(A)z, x) for some fixed self-adjoint A in & and some vector
2 in the Hilbert space. This contradicts the fact that ¢6,(A4) e & (4)
and so that ¢,(4) = ¢(A) for some ¢c%. Hence, & = E,(.#) and
% (A) = € (A).

COROLLARY 4.17. Let .7 be a o-finite properly infinite wvon
Neumann algebra; then .27 (A) = G (A) for every A in 7

Proof. The ideal generated by the finite elements of .o~ is the
strong radical of .&% The corollary then follows from Theorems 4.12
and 4.16.

5. Applications. Using the notions of essential central spec-
trum and essential numerical range, we can extend some theorems
on commutators and derivations to arbitrary properly infinite von
Neumann algebras. These theorems are known for the algebra of all
bounded linear operators on a Hilbert space, which is generally
assumed to be separable, but the techniques employed there also
suffice here.

A linear map ¢ of an algebra is said to be a derivation if 6(AB) =
AS(B) + 6(A)B for every A and B in the algebra. 8. Sakai [27]
proved that every derivation ¢ of a von Neumann algebra .o is inner
in the sense that there is an A in .o such that 6(B) = AB — BA for
every B in .%7. The next proposition is due to J. G. Stampfli [29]
for the algebra of bounded linear operators on a Hilbert space. His
technique suffices here.

PrOPOSITION [Stampfli] 5.1. The range of a derivation on a von
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Neumann algebra is not uniformly dense in the algebra.

Proof. Since every von Neumann algebra may be written as a
product of a finite and a properly infinite von Neumann algebra, it
is sufficient to consider these two cases separately. If the algebra is
finite, then the range of the derivation is contained in the set of ele-
ments whose canonical operator-valued trace vanishes. So the range
of a derivation cannot be dense. If the von Neumann algebra .o7
is properly infinite and the derivation 6 on .o is given by 4(B) =
AB — BA, then we construct an operator that is not in the closure of
the range of §. Let A4, be a central element such that (4 — 4,)(_#())
is neither left nor right invertible for all { in the spectrum of the
center. Here _# is the strong radical of .o (Theorem 3.5). Because
0(B) = (A — A)B — B(A — A,) for all Be .o, we may assume 4, = 0.
There are sequences {E,} and {F,} of mutually orthogonal projections
in .o~ such that E, ~1~F,, ||AE,||<n, and ||F,A| < n™ for
for every # =1, 2, --. (Example 2.12 and Corollary 3.16). Then there
is a partial isometry U in . with domain support E = > E; and
range support F' = > F; such that UE; = F;U. We show that « =
[|U— 6(B)|| = 1 for every Be .. Indeed, forevery n =1,2, -+, we
have that

1= |F,UE| || F.(U— dB)E,|| + [|[F.OBE,| = a+ 2n7||B] .

Hence the open ball of radius 1 about U does not meet the range
of 4.

In [18], we showed that an element A in a properly infinite von
Neumann algebra .o is a commutator in .o (i.e. there are elements
B and C with A = BC — CB) provided 0 € 2 (A). We can also prove
that 0e 2% (A) provided A = BC — CB and *(B*B — BB*) is a posi-
tive operator in &% Now an element A is said to be a self-adjoint
commutator if A = BC — CB with B = B*. H. Radjavi [25] charac-
terized those self-adjoint elements in the algebra B(H) of all bounded
linear operators on a separable Hilbert space H which are self-adjoint
commutators and J. Anderson [1] recently announced that he has
completely characterized self-adjoint commutators in B{(H). We prove
a proposition in this direction for properly infinite von Neumann
algebras using a matrix calculation of M. David [5].

PROPOSITION 5.2. Let .7 be a properly infinite von Neumann
algebra and let A be a self-adjoint element in .7 If 0 is in the
essential central spectrum of A with respect to the strong radical of
57, them A 1s a self-adjoint commutator in Y.
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Proof. There is a sequence {E,} of orthogonal projections with
E,~1 and ||AE,{{=<1/n! for all n=1,2 --- (Lemma 3.16 and
Example 2.12). Thus, [|E,AE,|| < min{1/m!, 1/n!}. Then the matrix
calculation of M. David [5; Theorem 3] is applicable.

Acknowledgement. The author would like to thank Professor
Carl Pearcy for bringing J. G. Stampfli’s result [29] to his attention
and for suggesting extending it to von Neumann algebras. He also
wishes to thank Professor Stampfli for a letter in which he outlined
his proof (cf. Introduction §5).

Added in Proof, August 24, 1972. We have obtained a better
version of Proposition 5.2 by showing that A is a self-adjoint com-
mutator whenever 0 is in the essential central range of A.
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SUPERADDITIVITY INTERVALS AND BOAS’ TEST

G. D. JOHNSON

A test is given for determining maximal intervals of
superadditivity for convexo-concave functions. The test is
then applied to several families of ogive-shaped functions.

1. Superadditive functions have been widely studied [8, 11] for
their own sake but have also found important applications in relia-
bility theory, e.g. [6]. However, tests for superadditivity were non
existent in the literature until Bruckner’s work [3] in 1962. A more
constructive (hence more readily applicable) test due to Boas was
given in 1964 in a paper by Beckenbach [2] on analytic inequalities,
an area where superadditivity is of use (see [2] for a derivation of
Whittaker’s inequality [12]). Boas’ test is here viewed in the light
of Bruckner’s result, strengthened, and applied to some families of
convexo-concave functions as suggested in [2].

2. Consider a continuous, real-valued funection, f, of a real
variable, x€ R. Then f is called “superadditive” on [B, b]C R if

f@) + fly) = f@+ )

for every x,y, ® + v in [B, b]. We normalize to the cases 3 =0, 6 >
0. In this event, superadditivity implies f(0) < 0. The following
sufficient condition for superadditivity is due to Boas [2]:

THEOREM (Boas’ Test). Assume f is nonnegative on [0, b] with
F(0) =0 and f has a continuous derivative on [0, b]. If there are
numbers a < b/2 and ¢ < a such that

(0) f is star-shaped' on [0, 2a],

(i) f 1s concave® and satisfies f(x/2) = f(x)/2 on [c, b],

(i) f(0) < f'(b),

(iil)) f'(®) — f'(b — x) has at most one zero in (0, a).

Then f is superadditive on [0, b].

A proof of the theorem can be made by considering separately
the cases:

L fis “star-shaped” on [0, A] means for every z€[0, A], and every a€[0, 1] it is
true that flax) < af(x). For feC!0, A] it is necessary and sufficient [4] that f/(z) =
f@)/x for all x€(0, Al.

2 The function f is called “convex” on [a, b] if for every =z, y €[a, b] it is true that
Sle+9)2) < (f(e)+f(y)/2; f is called “concave” if —f is convex.

381
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M 022500 y=aq

) zza,yzax+y=b

) es<a<y<bao+y=h
It was conjectured that this test could be applied to finding super-
additivity intervals of such ogive-shaped functions as exp (— 1/aw)
O<a=1; In(1l+ 2 and arctan z*(x > 1). But it is easy to show
that for some of these functions, Boas’ test does not apply: consider
In(l + 2%. A simple calculation shows that 1 < ¢ < 21”2 whereas
2a < 2 and hence a < ¢. It is our primary goal to modify Boas’ test
so that it can be used to determine intervals of superadditivity for a
larger class of functions. Along the way we shall be able to determine
conditions giving maximal intervals of superadditivity, and finally a
tabulation of intervals of superadditivity is given for some of the
functions previously mentioned.

3. We are interested in determining intervals, [0, b], of super-
additivity for a special class of functions, the “convexo-concave” func-
tions [1]: f is called convexo-concave on [0, B] if it is convex on [0,
c] and concave on [¢, B], 0 < ¢ < B. Already, f is superadditive on
[0, ¢] [4]; that is, b = ¢. Bruckner has characterized superadditivity
of such functions in the following way:

THEOREM [3]. The convexo-concave function, f, with f(0) <0, s
superadditive on [0, b] if and only if maxX <<, [F(®) + f(b — )] =< f(b).

The main difficulties in applying Bruckner’s test are first in
obtaining the quantity “b”, and second in taking the maximum on
the lefthand side. By requiring f € C'[0, 5] we can ameliorate the
second objection and turning to Boas’ test we obtain a candidate for
b: namely, let b be the smallest positive root of f(x) = 27 (x/2).

THEOREM. Let f e C'[0, b] be convexo-concave on [0, b] (0 < b < o)
with f(0) =0 and®

(i) f®) =270/2),

(ii) f'(0) < f7(b),

(iii-a) f'(®) = f'(b — x) no more than once on (0, b/2). Then [
is superadditive on [0, b].

Proof. Consider the function g(x) = f(x) + f(b — x) — f(b). Then
f(0) £ 0 implies ¢(0) < 0. By (i) and (i), g(#/2) =0 and ¢'(0) < 0,
respectively. Suppose g is positive on (0, b/2). Then it has a positive

3 It is important for generalizing to higher dimensions that condition (0) in Boas’
test has been deleted. See [6].
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maximum on (0, /2). Therefore ¢'(x) = f'() — f'(b — x) has at least
two zeros on (0, b/2), contrary to (iii-a). Finally, then, g(x) < 0 on
[0, b/2] and—by symmetry of g about x = b/2,

max [£(@) + /(b — 9] < /()
which, by Bruckner’s theorem, shows f superadditive on [0, b].

For the function f(z) =In (1 + 2% it is easy to check that (i),
(ii) are satisfied forb = 21V 2. Condition (iii-a) is also straight forward:
it is true by Descartes’ rule of signs.

Notice that for f(0) < 0, f is superadditive at least as long as it
is merely nondecreasing and nonpositive. This relatively arbitrary
state of affairs will be avoided by assuming f(0) = 0 in what follows.
For a further appreciation of (iii) we give a corollary to Bruckner’s
theorem.

COROLLARY. Suppose convexo-concave f, with f(0) =0, is continu-
ously differentiable. Then [ is superadditive on [0, b] if and only
if for every x, in [0, b] such that f'(x) = f'(b — x,), it is true that
J@) + f(b — z) < f(B).

Thus we see how the maximizing duties in Bruckner’s theorem
have been replaced by a zero-counting operation in the other two
theorems. The fourth condition in Boas’ test is less restrictive than
(ili-a) above since b is not less than 2a. But it is not hard to see
that (iii-a) can be replaced by

(iii-b) f’(x) = f'(b — x) no more than once on the smaller of the
two intervals (0, ¢), (c, b),

which is a less restrictive condition than even Boas’ fourth condition.
(Here “c” is the inflection point of f.)

Perhaps a computational note is in order here. If we refer
generically to conditions (iii), (iii-a), (iii-b) as “root conditions”, then
in applications the root condition can often be tested by Sturm’s
theorem [7]. For example, the functions In(1 + 2™ (n = 2, 83,4, -++)
have as derivatives rational functions with denominators not vanishing
for positive arguments. Verifying a root condition is then a matter
of counting the number of zeros of polynomials in a finite interval.
Sturm sequences can also be readily computed for rational functions
[10], and Sturm’s idea can be extended to counting real zeros of
even more general functions [5]. Finally, upon observing that f’ is
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unimodal®, an optimum strategy for localizing the inflection point ¢
(as used in (iii-b)) is well-known [9].

4, Now it is quite striking that the choice of b as the smallest
positive root, ¢, of 2f(x/2) = f(x) often turns out to be maximal.
Certainly ¢ is an upper bound on the interval of superadditivity.
Consider the quantity min {o, 7} where ¢, ¢ are the smallest positive,
odd zeros of 2f(x/2) — f(x), f'(0) — f'(x), respectively. Then we may
be assured of a maximal interval of superadditivity.

THEOREM. Suppose f € C'0,b] s superadditive on [0, b] where
= min {0, t} < co. Then [ is not superadditive on any larger in-
terval, [0, B], B > b.

The proof is immediate by failure of superadditivity near z = 0
(b = 7 case) and x = B/2(b = o case) where B = b + ¢, ¢ > 0 arbitrary.
In our example, 21/ 2 is the largest value of b so that In (1 + #? is
superadditive on [0, b]. With this optimality result, then, we turn
to computing intervals of superadditivity in the next section.

5. Tables of b are now given where b is the largest 7D approxi-
mation smaller or equal to b and [0, 5] is the maximum interval of
superadditivity for the function indicated.

2 arctan x4 In(1 + x%) exp (— A/x) A
1.1 5852351 3425001 1.586964 1.1
1.2 8532410 7280202 1.731234 1.2
1.3 1.051079 1.104767 1.875503 1.3
1.4 1.205188 1.452478 2.019773 1.4
1.5 1.328208 1.764139 2.164042 1.5
1.6 1.427957 2.039063 2.308312 1.6
1.7 1.509790 2.279467 2.452581 1.7
1.8 1.577572 2.488734 2.596851 1.8
1.9 1.634178 2.670539 2.741120 1.9
2 1.681792 2.828427 2.885390 2
3 1.906368 3.634241 4.328085 3
4 1.966894 3.868672 5.770780 4
5 1.987133 3.948700 7.213475 5
6 1.994715 3.978890 8.656170 6
7 1.997751 3.991011 10.09886 7
8 1.999019 3.996080 11.54156 8
9 1.999565 3.998260 12.98425 9

10 1.999804 3.999218 14.42695 10

4+ A function f(x) is “unimodal” if there is a £ so that f is either strictly increasing
for x < £ and strietly decreasing for z > &, or else strictly increasing for x < & and
strictly decreasing for = = ¢.
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Entries above or to the left of the stepped line were unattainable by
Boas’ original test.

For exp (— Mx) (v = 1) it is easy to verify (in this case, Boas’
test is sufficient) that the intervals of superadditivity [0, b(\)] are
determined by bd(\) = \/In 2.

In [2] it is suggested that maximum intervals of superadditivity
be computed not only for f = f, but also for the “average function
of /7, F=F,, and for the “inverse average function,” ¢ = ¢,, where

0 =0 s
lgxfx(t)dt 5> 0;
x Jo

I

F(x)

é:(2x) = fi(x) + 2fi(x) z=0.

For the case f;(2) = exp(— M/z) we can give the following maximum
intervals of superadditivity:

Function 5(2)—end point
9 2/1.116845
fi 2/.6931472
F; 2/.4243251

where Boas’ test was inapplicable to the ¢;-case.

REFERENCES

1. E. F. Beckenbach, Convexr functions, Bull. Amer. Math. Soc., 54 (1948), 439-460.
2. ——— Superadditivity imequalities, Pacific J. Math., 14, (1964), 421-438.

3. A. M. Bruckner, Tests for the superadditivity of fu'rwt'oons Proc. Amer. Math. Soc.,
13, (1962), 126-130.

4. A. M. Bruckner and E. Ostrow, Some function classes related to the class of convew
functions, Pacific J. Math., 12 (1962), 1203-1215.

5. N. G. Chebotarev, On the methods of Sturm and Fourier for transcendent functions,
Comptes Rendus (Doklady) de I’Académie des Sciences de 'URSS, 34 (1942), 2-4.

6. J. D. Esary, A. W. Marshall and F. Proschan, Some reliability applications of the
hazard transform, SIAM J. Applied Math., 18 (1970), 849-860.

7. F. R. Gantmacher, Theory of Matrices, vol. II, Chelsea Pub. Co., New York, N. Y.,
(1959).

8. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc.
Colloquium Publications, vol. XXXI, rev. ed., Amer. Math. Soc., Providence, R. I. (1957).
9. J. Kiefer, Sequential minimaz search for a maximum, Proc. Amer. Math. Soc., 4
(1953), 502-506.

10. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill Book Co., New
York, N.Y., (1965).

11. R. A. Rosenbaum, Subadditive Functions, Duke Math. J., 17 (1960), 227-247.

12. J. V. Whittaker, Problem 4712, Amer. Math. Monthly, 63 (1956), 669.

Received June 30, 1971.
UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER 8, B. C.
CANADA






PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 2, 1972

DERIVATION IN INFINITE PLANES

N. L. JorNsoON

The purpose of this article is to study ‘‘derivation’ in
arbitrary affine planes. It is shown that the derivation pro-
cess extends to arbitrary planes which possess a suitable set
of Baer subplanes.

1. Introduction. A basic problem of interest is developing
Ostrom’s finite net replacement theory in the infinite case. Some
expected premiums could be that the procedures are valid in infinite
planes which have no finite analogue. For example, the Moufang
planes, non-Pappian Desarguesian planes, and certain Bol planes may
permit net replacement (see §4).

The present article will be restricted to studying derivation in
infinite planes. Concerning infinite planes, Rosati [18] found a class
of infinite Hughes planes and Swift [21] remarked that derivation is
probably valid in infinite Pappian planes. This statement was essen-
tially confirmed by Pickert [17] who also gave an algebraic construction
of the Ostrom-Rosati planes (see Panella [15]).

Sabharwal [20] constructed a class of infinite André nearfield
planes and showed that derivation is valid in these planes and also
considered the analogous infinite “derivable chains” of Fryxell [6].

Barlotti and Bose [3] have studied the derivation of dual translation
planes of dimension 2 by means of linear representations in projective
spaces of projective planes (see [3], [4], [5]). The Bose-Barlotti deriva-
tion theory is valid in all dual translation planes of dimension 2 whose
associated spread of the corresponding translation plane is also a dual
spread. However, this condition is not valid in every infinite dual
translation plane of dimension 2 (see [7]).

This article will be devoted to derivation in arbitrary planes.
The treatment is in the spirit of Ostrom’s original construction (see
[13], section III, and [14]). Section 2 is devoted to showing that the
derivation process extends to arbitrary planes which possess a suitable
set of Baer (see (2.1)) subplanes. Section 3 is concerned with certain
conditions sufficient for a given subplane to be a Baer subplane and
develops some theory related to the derivation of tramslation planes
and their duals. Finally, applications of the theory to certain infinite
planes are considered in §4.

The author would like to express his appreciation to the referee
for many helpful suggestions as to the form of this paper.

2. The Construction. Ostrom ([13] section III, pp. 7,8,9)
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develops derivation in finite planes. The planes are of order ¢® and
the procedure involves the relabeling of certain subplanes of order ¢
(Baer subplanes) as lines. Ostrom’s arguments depend strongly on
finiteness. However, it will be shown that the essential assumption
is not of finiteness but is simply that the subplanes used in the
process are Baer subplanes.

DEFINITION 2.1. Let m be a projective plane. A proper subplane
w, of w is a Baer subplane of = if and only if every point of 7 is on a
line of 7, and every line of 7 is on a point of =,

REMARK 2.2. A Baer subplane is maximal.

Proof. Let m, be a Baer subplane of a projective plane 7 and let
P* be a point of 7 — w,. Any subplane 7z of 7 containing P* and 7,
contains the joins of P* with points of z,. Let [ be an arbitrary line
of 7 incident with P*. By assumption ! interseets =, and therefore
7 contains all lines of 7 incident with the point P*. Similarly, ¢
contains all lines of z incident with any point of ¢ — 7,. Let @ be
a point of . Every line of = incident with Q intersects z. If Q¢
then QP* is either a line of ¢ — x, or is the unique line of 7, incident
with P*. Since there is a line of 7, incident with @, it follows that
Qe 7 in the former case. In the latter case, if R is a point of QP*,
choose a quadrangle whose cross joins contain R. Thus, all points
of m are in 7.

DEFINITION 2.3. Let 7 be a projective plane. Let [, be a line
of . A derivation set 6 in I, is a set of points of [. such that if
P, Q are distinct points of 7 — [, such that PQ NI, ed then there is
a Baer subplane 7,,,; of = containing P, @,  such that § is a line of

Tp,g.se

We shall assume in the following that ¢ is a derivation set in
l. for a projective plane w and 7,,; is a Baer subplane containing
P,Q and 0 as a line where PQNl.€d. Also a point of 7po, — 6
will be called an affine point of 7, ;-

LEMMA 2.4. 7, ., 18 the unique proper subplane containing P and
Q which contains 6 as a line.

Proof. Let Y,,; be any subplane of 7 containing points P, @
which contains ¢ as a line. Let PQN1I. =0,€d. Let T = {Qd, N P5,
where 0,, 0,, 0, are distinct elements of d}. Let x, = {Qd; N P3; | Vd,,
0;€0 and not both d;, 6; equal to 4§} U{Qd; N T9,;|Vd;, 6;€é and not
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both §;, 6; equal to d,}.

Assume there is a point ReX,,;, — m,. Since P, Q, RcX,
either RPN I, and RQ NI, are distinct points in 6 or P, @, R are
collinear. In the latter case, R = P(RPNnl.) N T(RT N l,) and in the
former R = P(RPnl.)NQRQNIL,). Therefore, the point sets of
Xro.s and 7, are equal since clearly 7, & 2;, ;.

Similarly, let #, = {Mo;| M e n,¥6;€d}. If lis aline of X5 4, then
IN1l.cd and there are at least two distincet points L, Ue I — IN L) N
Tpose Thus, L, Uern, — 6 so that le7,.

.. Any two subplanes of # which contain points P and @ and
contain 0 as a line have the same point sets and the same line sets
and hence are identical.

LEMMA 2.5. Any two points of 7po: — 0 uniquely determine the
subplane. Thus, any two distinct Baer subplames 7wpqo, and Ty,
intersect in 0 or 6 U {M} for some affine point M.

Proof. Let M, S be any two distinct points of 7p, —d. If M and
S are ¢ PQ, 36;,,1=1,2,38,4, €65M = Po, N Qb,, S= Pj,N Q,. Clearly
P, QeTy,s; 50 that Tpe; = Ty.55 by (2.4).

The remaining situations where M or Se PQ are equally clear.

DEFINITION 2.6. If 7,0, N Tpps = 0 OF Tpes we shall say that
Tpos 18 parallel to 7y 7:(Tr0.5 || Trors)-

LEMMA 2.7. If Tpg,:||Trrs there is an element 6* of dothe set
of lines of Tpq,; tncident with 0% is equal to the set of lines of Ty s
ineident with 0*.

Proof. Assume Tpq; # prse Every affine point of w, ., is on
a unique line of 7, ,,. .. Every affine point of 7,,,; is on a line
common to both subplanes. If [, p are common lines, [N p is a
common point. Thus, I and » are concurrent on 6. Let the point
of concurrency be d, € 4.

Let M be an arbitrary point of 7, ,;. 3linel of 7y, which is
incident with 0, and M. Also 3 line p € 75, which is incident with M
and hence 6,. Therefore, the lines » and ! are identical.

Thus, the lines of 7, ., incident with 4, & a set of lines of 7,4,
incident with 0,.

The argument is symmetric, so (2.7) is proved.

LEMMA 2.8. Let 7y, be any Baer subplane and P a point ¢

a3 Then there is a Baer subplane 7wy 5; containing 6 as a lines
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3,5l Trr,0e

Proof. Assume without loss of generality that PR is the unique
line of 7y, incident with P and assume that 7 ¢ PR (see (2.5)).

Let S=(RTNL)PN(PRNIL.)T. Now consider 7y g,,.

Suppose 7p ;M Tprse Let M be a common affine point. Then
Mé;; 6;€06 are common lines. If M ¢ ST then, since ST and Mo, are
common lines, Md; N ST is a common affine point distinct from M for
some 0;e0. But, this is a contradiction by (2.5). .. MeST and
similarly M e PR, which is a contradiction if M is an affine point.

LEMMA 2.9. Let 7y, be a Baer subplane and suppose R is an
affine point € mwpos. Then 3 a unique Baer subplane parallel to wp 4,
and containing R.

Proof. By (2.8) there exists a subplane 75 ;|| g,

Suppose 7, is a Baer subplane with line é, containing R, and || 75,
Tpe,s and T, ., have a common concurrent set of lines. Let the point of
concurrency be d,€9. R9, is a line common to 7, Tz, ; and Tp e, SO the
point of concurrency for the common set of lines of 7, and 7,4, is
also 0,. We can assume without loss of generality that PQ N l. # d,
since 7p3,; = Tpe, for any affine point @ # P of 7@p,,. By (2.7),
@9, is a line of 7, 75,5 and 7p 4, S0 (PQ N I.)E N Q5, = D is an affine
Point = R of 7, and of 745 .. Ty = Tp,ps = Tars DY (2.5).

Thus, (2.9) is proved.

THEOREM 2.10. (Compare with Ostrom [13], Theorem 5.)
Let w be a projective plane. Let | =1, be a line of © and 0 a
dertvation set on l.. Form T as follows:

points T = affine points of «.
Lmes{type 1 = the affine Baer subplanes 7wp,,;
type 2 = affine restrictions of lines 1 of w231lNl. €0 .
type 1, Tp sl Trss Iff TpooN Trss =0

Il -classes{ . R
type 2, lj|p if Inpel,—o0.

Then T is an affine plane called the plane derived from w by o.

Proof. Let P and Q be distinct points of 7. If P and @ are
joined in © by (PQ).3 (P&).Nl.€0 then 3 1 Baer subplane 7,,, con-
taining P, Q. If (PQ).Nl¢o 3 1 line ! of 7 containing P, Q.

Therefore, two distinct points of T are uniquely joined.

Let [ be a line of @ such that INI,¢dand 7,4, a Baer subplane
of m. Clearly, | must intersect 7,,, in an affine point.
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Thus, for each point P of T and line & of T there is a umnique
line incident with P and parallel to &~
Thus, 7 is an affine plane.

COROLLARY 2.11. Let 1l be a line of @ containing distinct affine
points P and Q such that IN1l.€0. Letlpg=1NTpy:;— INIl.. Then
the points of I — IN L. and the sets lp, as lines form an affine Baer
subplane ©p, of T.

Proof. Let R and S be any distinct affine points of I. I,¢=
IN7ess— N1, contains B and S. Suppose I, , also contains R and S.
lyr =0lNTyrs — N1, so that 7, ,, contains B and S. But 7y,,=
Trss OY (2.5) so that I, = l,s. Thus, R and S are uniquely joined.

Let R be any point of 7., not incident with the line I;,. Since
Rel and Iy, =1lNwsp; — 1N, then R¢xg,;. Thus there is a
unique Baer subplane 7y, , containg R and parallel to 75 ,,. Choose
a point M of 7, , incident with [ (INl.€6 and Rel so I is a line
of 7, and distinct from R.

Hence, 75, = Ty, and IN7Te5, — LNl = 1,5 is a line of Ty
which is parallel to 5, and contains R. Suppose ly,; is a line of
o containing R and parallel to I, ,.

Now NL = RM = 1. m,,,, and 7,5, have a common line ! and
a common affine point E. Moreover, 7y,;,, and 7.3, contain no affine
points of ! in common with 7y, ;.

Suppose 7y,;,; is not parallel to 7y, ,. Then let X be a common
affine point. By assumption, X ¢l. Thus, ! and Wo,v0,€0 are lines
common to 7y,;; and 7g, ;. It follows that S and T are points of
Ty,.; (see (2.4)) so that wny ,, = 7., which is a contradiction.

Thus, both 7y, and 75, are parallel to zy,,, and contain R so
that 7y, ;,; = Ty, 5, and hence ly,, = I, 5. Thus, 7,4 is an affine subplane
of 7.

Thus, lrollls,r P, Q, S, T points of [ if and only if 7p 4] Ts 750
Furthermore, given a Baer subplane 7,,y,; not containing a point of I,
there is a Baer subplane 7, with  as a line such that 7z v ;|| Ty ¥.se

Now extend 7 to a projective plane 7*. The points on I. (line
at infinity of 7*) corresponding to the set of all Baer subplanes 7, g ;.
are precisely the points of 75 ,.

As a point set T, is [ — 1N I, where [ is a line of 7. Therefore,
every line of 7* intersects 77, and every point of 7* is incident
with a line of 7}, (that is, a line of 7}, extended to T*. Also note
that I, is a subline of 7, ,,; for P, @Qel where 7w, ,; is thought of
as a line of @. So the latter statement merely states that every
affine point of 7 is contained in a Baer subplane 7, ,,; of 7.)

Thus, 7§, is a Baer subplane of T*.
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COROLLARY 2.12. Let 7 be a projective plane and 6 a derivation
set wn l.. Let T be the affine plane derived from m by 6. Then there
is a derivation set 6 in 1. of the projective extension T* such that
the plane derived from T* by 0 is the affine restriction of © by I..

Proof. The Baer subplanes T3, of T* all have the same set of
points 6 on I, (see proof of (2.11)). The affine restrictions of Tj,
are affine lines of 7. Clearly, § is a derivation set in I...

It is trivial to verify that Baer subplanes are carried into Baer
subplanes by collineations.

The following theorem is Ostrom’s Theorem 7 and its Corollary
[13]. His proofs to these results do not use finiteness in any way.

THEOREM 2.13. (Ostrom [13]). Let w be a projective plane and
0 a derivation set on l,. A collineation ¢ of w300 =0 induces a
collineation G of TG fiwes the set 6 (the corresponding derivation
set of 1.). If ¢ is a tramslation of w, & is a translation of 7.

DEFINITION 2.14. Let 7 be a projective plane and let ! be a line
of . We shall say that 7 is a semi-translation plane with respect
to ! if and only if = admits a group Z of elations with axis [, each
of whose point orbits along with the set of elation centers for I form
a Baer subplane of z.

7 is a strict semi-translation (sst) plane with respect to [ if &
is the full elation group with axis [ and nonstrict (nsst) otherwise.

THEOREM 2.15. (See Ostrom [13].) Let = be a projective plane
and 1. a line of m and 6 a derivation set in I, and let T denote the affine
plane derived from @ by 6. If 1 is a line of ™ whose affine restriction
is not a line of T and 7w admits a group of translations & (elations
with axis l,) transitive on the points of 1, then T is a semi-translation
plane, i.e., T (projective extension) is a semi-translation plane with

respect to ..

Proof. By (2.13), since &0 = 0, & is a group of translations of
7. If 1 is a line of = and the restriction of ! is not a line of 7 then
Il —-1Nnl, is an affine Baer subplane of 7 (see (2.11)).

Thus we have extended Section III of [13] to arbitrary planes
admitting derivations sets. We now consider planes possessing Baer
subplanes.

We note that Ostrom’s sufficient condition for derivation given
in Theorem 9 [13] does not directly apply in the infinite case since
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the indicated affine subplanes are not necessarily Baer subplanes.

3. Baer Subplanes. It is well known and can be easily estab-
lished by a counting argument that a finite projective plane of order
n has Baer subplanes of order m only if » is a square and the order
of the subplane is m = 1Vn.

For infinite planes no such characterization of Baer subplanes is
known. We wish to develop some conditions which are sufficient for
a given subplane to be a Baer subplane. For this will use some
concepts of André [2] and Bose and Bruck [5].

DEFINITION. Let V be a vector space. A congruence of V is a
set {V.}ec, where V, is a subspace of V Yaex and

(1) UV.=Vand 2) V.V, =V for all @ # gex.
ael

THEOREM 3.2. (André [2]). An affine plane 7w is a tramslation
plane if and only if there is a congruence {V,.., of a wvector space
V such that the points of © are the elements of V, the lines of © are
cosets of elements of {Vi)ees and the parallel classes are the sets
{Vo.+ b, a fixed er, be V]

THEOREM 3.3. (Lineburg [11]). Let a be a collineation of a
projective plane with axis | and center P. Let @ be a point = P and
Qel. Then every projective subplane containing P, 1, Q, Qu is left
nvariant by a.

LEMMA 3.4. Let © be an affine translation plane and @, any
affine subplane of w. Then there is a congruence {Valee, for # =V,
a subgroup W of V, and subgroups W, of V, for a€N* & \ such that
{W.l s a congruence for W which defines .

Proof. Let P, Q be points of 7,. There is a translation o of =
such that Po = @. By (3.3), #, is invariant under o.

Clearly, there is a subgroup .77, of the translation group .~ of
7« which is sharply transitive on the points of 7, and leaves 7, invariant.

Let .77 (P) denote the subgroup of .~ with fixed center Pel,
so that & = Urer . 7 (P). T4 = Ura.d (PYN .7, Let T (P)N
T2 = T2 (P). Thus, lines of © are {J (P)}p.,., and translates of
these groups. {7 (P)}p.,, and {77,(P)}»... are congruences of = and
T, respectively, with the required properties. Note that W, is not
necessarily a vector subspace of V, for ae\* & .

Before utilizing (3.4) we mention the following result which
depends only on the existence of a particular type of ternary ring.
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THEOREM 3.5. Let Q = (Q, +, +) be a ternary ring with ternary
Sfunction T. Let F = (F, +, ) be a sub-ternary ring of Q such that
every element of Q cam be uniquely written in the form toa + B for
some teQ — F;a, e F. For all a, m,be Q let T(a, m, b) = tf(a, m,
b) + g(a, m, b); f, 9 functions from Q@ X Q X Q into F. Let f and ¢
satisfy properties (1) and (2):

(1) If m and b are fixed and m ¢ F there exists an element
acF such that f(a, m, b) = 0.

(2) If ag F s fixed then {(f(a, m,b), g(a, m, b))} =F X F as m, b
vary over F.

Then the subplane ©¥ coordinatized by F' of the plane w° coordina-
tized by Q is an affine Baer subplane.

Proof. Let I be a line of 7% If I is {(z, y)|x = ¢ for ce @} the
line [ either contains points of 7¥ or (in any case) is || to {(z, ¥) |2 =
a; € F} so the projective extension of 7¢ contains a point of the
projective extension of 7*.

If 1is {(x,y) |y = T(z, m, b); m,bc Q} and meF then INI, is a
point of the projective extension of #”. If m¢ F then by (1) 3 ac
Fs fla,m, b =0. .. (a,g(a,m, b)c{(x,v) |y = T(x, m, b} N x".

If Pis a point of #” let P = (tx, + a, ty, + %.); @, ¥y: € F. The
lines of 77 are {(z,y) |z = a,ac F} and {(x,y) |y = T(z, @, B); @, B €
F}. If 2y, =0 then Pe{(x,y) |z = a} or {(z, ¥)|y = B} for some «,
geF. Thus assume 2,9, # 0. Consider T(tx, + x,, a, B) for some «,
BeF. By (2),3a, 3 f(te, +, a, B) =1y and gt x, + &, &, Bo) = Yse

COROLLARY 3.6. Let Q@ be an alternative field and F' the associated
quaterion skewfield. Then ©° is a Baer subplane.

Proof. (See Pickert [16], s. 172-3.) 1 te@Q>at = t&; «c F and
elements of Q are of the form ta + B;a, 8€ F where T denotes a
certain involuting automorphism.

T is linear, so T(a, m, b) = a(tm, + m,) + tb, + tb, (where m;, b, €
F,i=1,2) = tl@am,) + am, + tb, + b, = t(@m, + b)) + am, + b,. Choose
a = — bm;?, then (1) is satisfied. If @, B, a;€ F;1 = 1, 2, then T(ta, +
a,, a, B) = (ta, + a)a + g = (ta)a + (. + B) = t(aa,) + a,ax + B. (See
[16] Pickert, s. 172.) For o,y € F and a, # 0 Ia, B F 5 aa, = p and
Y= @+ B. .. (2) is also satisfied.

We point out that although the Moufang planes contain Baer
subplanes it is not clear whether derivation sets exist.

THEOREM 3.7. Let @ be a translation plane and 7w, a proper
subplane. Let {V,}, and {V,};. be congruences for = and x,, respectively
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where W, is a subgroup of V, and W is a subgroup of V for a e * &,
then if

(i) Q) WnNV,=0=W+ V, =V for each 6N, or (2) V and
W are finite dimensional over the same skewfield and there is am
element 6 en — \* such that WNV; =0 and W + V, = V, then every
line of the projective extension of 7w is incident with a point of the
projective extension of T,

(ii) Under the assumptions of (i) (1) or (2), 7y & Ueer—2(Va + b)
for any be V — W if and only if ©, us a Baer subplane.

Proof. First we observe that V,N W = W, or 0 depending on
whether ae\* or e — A%,

Suppose V,N W =0 and a¢r*. W = UpexWo & UoerrV, and
W, < V,. By assumption, 3 an element we W — {0}swe V, and a¢
2 . But we V; for some ger*. .. V,N V, =+ 0, which is a contradic-
tion since a # B.

S aen -, V. NnW=0.

Assume V,NW =0 and aecr*. W, &V,.NW and W, + W, =
W;a, BeN*, a = B.

If ce W— W, then ¢ = w, + w, for some w,€ W, and w,e W, —
{0}. If ceV, then wseV, which is a contradiction. Thus, W, =
V.NW if aen*.

For (i) 1),0,aen - N =V, + W=V, + W= V. For (i) (2),V=
V; + W is isomorphicto V, + W=V, + W = Vforall aex — r\*.

Iet V,+ b be any line of #. If V,N W =0, then ¢ e — \* and
Vo+-W=VsoV,+bNW=g. If V.N W==0, then V, + b for a € \*
is parallel to V, + w, we W and since (V,N W) + w is a lineof W =
T, (1) is proved.

If 7, = WZ Uues—nVa let b be a point of 7. If b€ Jues Ve then
b is on a line of W. So assume be V — eV Consider the set
of lines V, + b,aex on b. Each V, + b, « € x — \* intersects W uni-
quely by the previous argument.

If WEZee,(V, + 0)Aden*2 V, + b intersects W.

. 7, is an affine Baer subplane. Thus, (ii) is proved.

Let PG(3, F') denote the projective 3-space over a skewfield F.
Recall a spread (see Bose and Bruck [4]) .&¥ of PG(3, F') is a cover-
ing set of skew lines of PG(3, F).

Barlotti-Bose [3] have studied derivation in dual translation planes
of dimension 2 (over their kernels) which correspond to spreads .&¥
of PG(3, F') that have the property that any plane of PG(3, F') con-
tains a line of .&” (spreads which are dual spreads). In our terminology
this requirement translates to: Let V, be a 4-dimensional vector space
over F'and {V.}; a congruence for V,. Then any 3-dimensional subspace
W of V, contains a V, for some a €.
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REMARK 3.8. Let V, be a 4-dimensional vector space over a
skewfield F.. Let {V.}; be a congruence for V,. Then the Barlotti-
Bose assumption is equivalent to asserting that every 2-dimensional
subspace of V, which is not a V,, @ €\ corresponds to a Baer subplane.

Proof. Let X be an arbitrary 3-dimengional vector subspace of V,
Let Y, be any 2-dimensional subspace of . Assume X, is not a V,,a € \.
= (Uee2Va) N 2y = U (VN 2. Vo.NZ, is 1 or 0 dimensional.
Define A* as the subset of A such that V, N 2, is 1-dimensional. Clearly
{V.n 2} is a congruence for X,

Assume the subplane 7w, corresponding to {V.N X} is a Baer
subplane. Let be Y — 3,. Then be V, + » for some ¢ € \* and re ¥,
Since ¥, is 2-dimensional, the subspace generated by b and 3, (b, X,> =
Y. Since V, N 3, is 1-dimensional and b ¢ ¥, implies that V, < (b, X,).

Conversely, assume that every 3-space of V, contains V, for some
aen. Let m, be the subplane corresponding to {V,.N 2,},- as above.
Since (3.7) (i) (2) holds, we must show that (3.7) (ii) is satisfied. Let
ce 'V, — 2, By assumption, the subspace {— ¢, X;> generated by — ¢
and X, contains a V, for some dex. Clearly, 6 e\* for otherwise
V:nN2Y,=0. Thus, ¢ is on a line V; + ¢ of «,, for ce2,.

We note that Bruen and Fisher [7] have shown that not all
spreads of PG(3, F') have the Barlotti-Bose property.

The following theorem also proved by Barlotti and Bose [3] is
included. Note that the two arguments are completely distinct.

DEFINITION 3.9. We shall say that a translation plane is of
dimension 2 if the corresponding congruence is a 4-dimensional vector
space over a skewfield F. A dual translation plane shall be said to
be of dimension 2 if and only if its dual is of dimension 2.

THEOREM 3.10. Let w be any dual translation plane of dimension
2 such that the corresponding congruence has the property that any
3-space contains a 2-space of the congruence. Then 7w is derivable.

Proof. Let @ be a coordinatizing (left) quasifield for z. @ is a
right 2-dimensional vector space over F' where F is a skewfield con-
tained in the kernel of Q. We assert that {(a), (), acF} <1, of &
is a derivation set.

It is straightforward to verify that the following sets are sub-
planes: {(aa + b, a8 + ¢);a = 0,b, ¢ fixed elements of Qva, BcF}

(see, e.g., Ostrom [13], Theorem 9). By (2.10) it remains to show that
they are Baer subplanes.

It is easy to see that the image of a Baer subplane under a
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collineation of the plane is a Baer subplane. We may coordinatize 7
so that (x, ¥) — (x, y + ¢) for all ce Q are translations of 7. We need
only to consider the subplanes {(ax + b, aB)}.

Let the lines {(z, )|y = am + b}, {(x, y)| % = ¢}, {(x, ¥) |y = ¢} be
denoted simply by y =am + b, & = ¢ and y = ¢, respectively. We
may coordinatize the dual plane of = by the following: affine points
(m, — b) are lines y = #m + b and infinite points (co) and (m), me @
are lines l. and « = m, respectively, and conversely. (See, e.g.,
Fryxell [9].) That is,

(m,—b)e—y=am-+ b
(m)y—ax=m

(00) — Lo

The lines of {(aa + b, aB)} are l,, ¥y =xa+ af — ba and . =ad + b
for a = 0, b fixed €@ and for all a, g F.

The points of the associated dual subplane may be represented
by (<o), (ad + b), (e, b — aB) where juxtaposition denotes multiplication
in Q. Thus if *« denotes multiplication in dual @ then the points are
(=), (0*a + b), (o, axb — B*a). Note that (1, b) and (0, a) form a vector
basis for the set of affine points so that the affine subplane is a 2-
dimensional vector subspace and hence is an affine Baer subplane.
Since the dual of a Baer subplane is a Baer subplane, (3.10) is proved.

Bruen and Fisher [7] have shown that the condition of (3.9) is
valid in any regular or subregular spread of PG(3, F') and, of course,
the condition is valid if F is finite. In the finite case, Bruck and
Bose [4] have pointed out that subregular spreads correspond to the
translation planes constructed by a series of derivations in Desarguesian
planes. Note that (3.9) in particular implies that Pappian planes
coordinatized by fields K that are quadratic extensions of fields F are
derivable. Also, finite André planes of order ¢* and kern GF(g) may
be constructed from Desarguesian planes by a series of derivations.
This will be considered in the infinite case.

LEMMA 3.11. Let © be a Pappian plane. Let o be a nontrivial
automorphism of the coordinatizing field K2 K is a 2-dimensional
extension of a field F where the fized field of o is F. Then w, =
{(=, ) |y = a°m} is the set of points of an affine Baer subplane of x.

Proof. w is of dimension 2 and the spread corresponding to 7 is
regular (see [4] or [5]). Since 7, is not a line of 7 and is clearly a
2-dimensional vector space over F it follows from the previous remarks
and (3.8) that m, is a Baer subplane.

Thus, (3.11) is proved.
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Let L be a field and o an automorphism of L with fixed field
L,. If meK the norm of m is defined as J[..,mr. If the order
of o is finite, an André system with kern L, may be defined (see [2]
and also [8], p. 355). The lines of the corresponding André plane
are cosets (translates) of the sets {(z,y)|y = a*™m}, {(x, ¥) |2 = 0}
where o(m) e {p) such that if m, nc K and I].c,s mT = [l.epy m7 then

o(m) = o(n).

LEMMA 3.12. Let m be a Pappian plane coordinatized by a field
K which is a 2-dimensional extension of a field F. Let ¢ be a non~
trivial automorphism of order 2 with fixed field F. If me K and
Micco mt = m'** = g F then 0, = {(m) ew|m'* =z} is a derivation
set in 1. of m. The Baer subplanes are the sets {(x, y) |y = ¥*m for
m' = x} and their translates.

Proof. The sets {(x, ¥) |y = 2°m} and their cosets are Baer subplanes
by (3.11).

Let P and @ be affine points of z such that PQN1l.€0,. .. PQ
is a line y = am + b where m'** = 2;m,be K. P,Qecy =am + b if
and only if Pz, Qr,ey = xm where 7, is the translation represented
by (x, y) — (=, ¥y — b).

Note that (¢*~'m)**° = m'*® = x. Therefore, (¢, d) € y = x(c°'m) if
and only if (¢, d) ey = z°m.

We can assume without loss of generality that Qz, is (0, 0). Thus
Pz, (0,0)ey = am if and only if Pt,, (0,0)cy = 2°(d"°m) for some
de K.

So there is a Baer subplane containing any two points P and @
such that PQN1.€éd,.

LEMMA 3.13. (See Bruen and Fisher [7], Theorems 2 and 3.)
Let &7 be a regular spread in PG(3, F') where F is a field. Let & =
U:erS U % where the 7 ien are disjoint reguli. Let 5% denote
the opposite regulus of &4 forallien. Then & = Ui, FUK is a
spread which is a dual spread.

Proof. The argument is essentially the proof of Theorems 2 and
3 of {7]. We shall only sketch the proof.

& is a dual spread since it is regular. Hence if ¥ is a plane
of PGS, F'), 3 contains a line m of & and hence exactly one. If
me &% then 3 contains a line of .52 Therefore, assume m € ., 5%
Let me.%%. The lines of .&7 meeting m form a regulus (the opposite
regulus to %) .

Then, if p and q are lines € .94 — {m} it follows that (p N 2)-(g N
%) is a line of ..
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By Lemma 12.2 [4], it follows that {{(x, ¥)|y = am; m'*° = a}} is
a regulus and {{(z, ¥) |y = x°m; m**° = z}} its opposite regulus. Thus,
each derivation in this case is a matter of “switching” where a regulus
is replaced by the opposite regulus. (This is well known in the finite
case. See, e.g., [4].)

It appears that there are non-André planes of dim 2 that may
be constructed in this way (this is certainly true in the finite case—
see Ostrom [12]).

THEOREM 3.14. Any André plane of dimension 2 may be constructed
Jfrom a Pappian plane by a (possibly infinite) series of derivations.

COROLLARY 3.15. Any dual André plane of dimension 2 is derivable.

Proof.  (3.10), (3.12), (3.13), (3.14).

THEOREM 3.16. Let Q be any (right) quasifield which is a left
2-dim. vector space over a skewfield F' S Kernel @. Suppose also that
Q s a right 2-dim. vector space over F. Let @ be the translation
plane coordinatized by Q. Let w, = {(aa, aB), fized a+0e Q for all a,
peF}. x, is a subplane of T and 7, is a right 2-dim. vector subspace
of @ thought of as a (right) 4-dim. vector space over F. Suppose
there is a skewfield R = F such that Vae @ — {0} &, is a left and
right vector space of the same finite dimension over R. Then 7w 1is
derivable.

Proof. We clearly may extend Ostrom’s “homology type” replace-
ment theorem to include the infinite case. (See (8.12), [14].) There
is a congruence for 7 which consists of the lines of z© through the
origin. The partial congruence of lines with slopes in F or (o)
“switches” with the partial congruence of subplanes 7,. It remains
to show that we obtain a new congruence and hence a translation
plane T “derived” from =.

Since 7, is a left and right vector space of finite dimension % over
R & F and a right vector space of dim. 2 over F then the dimension
of 7, over R = right dim (z,/F')-dim F/R. Therefore, dim F/R = k/2.

. Dim{(z,y)|y = xm} is k and =, and y = xm, m¢ F' are inde-
pendent left k-dimensional subspaces over R. It follows that we
obtain a mew congruence over R.

Note that it was not required that =, be a Baer subplane for the
proof. But, since a new congruence is obtained it follows that =, is
a Baer subplane.

4. Applications.
Derivation of Desarguesian Planes.
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By §3, if 7 is a Pappian plane of dim 2 over a field K, then 7
is derivable.

Pickert [17] has given an algebraic construction of the Hall planes
which does not require finiteness. Following Albert’s [1] theory, the
following theorem is clear.

THEOREM. (See Pickert [17], Albert [11.) If 7 is a Pappion
plane of dimension 2 over a field K then the plane derived from w is
a Hall plane.

Also note that a spread (congruence) corresponding to 7 must be
regular since 7 is Pappian. Clearly then the Barlotti-Bose assumption
is valid here. Furthermore, a derivation chain may be constructed
on 7 by Barlotti-Bose (see [3] and also [9]).

However, if 7 is a Desarguesian, non-Pappian plane it is not clear
that a spread for z even contains a regulus. (There are finite spreads
which do not contain reguli but, of course, are dual spreads (see, e.g.,
Bruen [6]).)

The Derivation of the Quaterion Planes.
The quaterions @ can be considered as a right or left 2-dimensional
vector space over the complex & numbers. Since % is 2-dimensional

over the reals, (3.16) applies. Thus, the quaterion plane 7, is derivable.

. derive . . . .
Consider 7, ——— m,. Clearly 7, is a translation plane coordinatized

by a quasifield @, (note also that Ostrom’s Theorems 9, 10,11 [13]
clearly extend to the infinite case in this situation) which is a right
and left 2-dimensional vector space over the complex numbers.

That is, let {1, ¢} be a basis for Q/% so that elements of @ are
written in the form ta + B, a, B &. Let {1,71,7, k} be the standard
basis for @ over the reals.

Let = denote multiplication in @, then (@ + B)xt = tz, + 2, iff
Ziet =ta+ B) + 2, 80 2t =t + tB + %,

Let 2z, = a + bi, a, b real numbers, and ¢t =k so (a + b))k = ak +
b(— j) = ka — jb = k(a — ib). So 2t = tZ,(z, denotes the complex con-
jugate of z).

iz =tat+ B t+zmsoat+B=%,%=0a+ B =2z,

S+ prt=ta+ B) =ta+ tB =at + Bt. So axt =a-t. It
follows also that a+a = a-a for all e % and acQ.

Thus, @, is 2-dim/%, & is the kernel of @, and @, is also right
2-dim over &.

It is fairly easy to verify that multiplication = in m, may be
obtained as:

(ta + B)*(td + 7) = t{8 — ad )8 + (8 — ad ™)y — ad™* .
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From this equation the mult = can be defined in terms of the
basis {1, 7, 7, k}.

Some open questions here are:

(1) Is the full collineation group of =, the group inherited from
T,?

(2) Is 7, a previously known plane?

Let =, = {(ae, ap)}, @ = ta, + a,; a; € Z and a,a, = 0. Thenif pe
&, pa = ad for some 6 €% if and only if p = p. Thus, 7, is a right
and left vector subspace of dimension 4 over the reals but is not, in
general, a left subspace over the complex numbers.

The Derivation of André Planes

I. Nearfield planes. Sabharwal [20] has constructed a class of
infinite nearfield planes (which are André planes). Each nearfield is
of dimension 2 over its kernel where the kernel is a finite extension
by radicals of the rationals.

By theorem (3.15) the dual planes are derivable. Actually,
Sabharwal shows that a derivation chain can be based on these planes.
Moreover, he shows how to construct infinite analogues of the Hughes
planes and considers a derivation chain on such planes.

Sabharwal’s description is essentially given as follows: Let F =
Q(V p) where Q is the field of rationals and p is a positive nonsquare
in Q.

Define multiplication

zy if the norm x = x'*° = 0

Toy = . ‘
zy® if a7 <0

where ¢ is the automorphism vV — — 1V p.

II. Bol planes. Burn [8] has given an example of an infinite
Bol quasifield @ which is an André system. Both the plane 7 coordi-
natized by @ and its dual are derivable by (3.15) and (3.16). Moreover,
it appears that a derivation chain may be constructed on 7 (see [8],
pp- 356-357).

Semifield planes. Infinite weak nucleus semifields may be con-
structed analogous to the Hughes-Kleinfeld-Knuth finite semifields
(see [10]) which be derivable by (3.16).

Because of space, we shall postpone explication of the derived
planes of this section to a later paper. The discussion of “nets” has
been avoided in this treatment, although the set of Baer subplanes of
a derivable plane form lines of a net. In the finite case the union of
two disjoint nets on the same points form a net. However, in the
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infinite situation this has yet to be proved.
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THE DISAPPEARING CLOSED SET PROPERTY

V. M. KLASSEN

A topological space X is said to have the disappearing
closed set (DCS) property or to be a DCS space, if for every
proper closed subset C there is a family of open sets {U;}i=:
such that Ui, < U; and Niz: U; = @, and there is also a
sequence {h;} of homeomorphisms on X onto X such that
hi(C) < U;, for all i. Properties of DCS spaces are studied
as are connections between this and other related definitions.

I. Simple examples of sets with the DCS property are the
n-sphere, n > 0, and the open n-cell, n > 0. This definition was
formulated in an attempt to generalize the definition of invertible set
which has been extensively studied by Doyle, Hocking and others [1,
2, 3, 4, 6]. A space X is said to be invertible if for every proper
closed subset C of X there is a homeomorphism % on X onto X such
that #2(C) & X — C. Neither of these definitions implies the other.
For example, an open #%-cell is not invertible, and on the other hand,
the 0-sphere is invertible but does not satisfy the DCS property.
However, both definitions require that closed sets can be made “small”
or “thin.”

It is proved in [5] that compact n-manifolds have the DCS pro-
perty. It is the purpose of this paper to investigate some other
topological properties of DCS spaces.

II. THEOREM 1. Any disconnected DCS space X must have an
infinite number of components.

Proof. Suppose X has a finite number of components, A4;, j =
1, .--,n. Each A; is both open and closed. Consider the DCS pro-
perty applied to J?..A4; = B, a closed set. There are open sets
{U;}, and homeomorphisms {A;}z, such that #(B) & U;, U, S U,
and N, U; = @. Since there are at most a finite number of com-
ponents A; and since the U; form a decreasing sequence of open sets
whose intersection is empty, there must be an m such that for each
j=1, .-+ n,there are ;€ 4; such that z;¢ U,. But X — U, S h,(4),
since h,(B)E U, and X = A, UB, AANB= @. Thus z;¢eh,(A), =
1, ---, n. But this is a contradiction unless »n =1, since h,(A4,) is
connected, but intersects all components of X.

An example of a DCS space which is not connected is the product
space obtained by crossing the real numbers with the rationals.

One method of constructing DCS spaces is given by the following:

403
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THEOREM 2. If X and Y are DCS spaces, so is X x Y.

Proof. Let C be a proper closed subset of X x Y, and let P&
X, Q@ & Y be open sets in X and Y, respectively, such that P x Q &
X x Y—C. Let {Ulz, {h), and {Vi}z,, {k:}z. be the open sets and
homeomorphisms for X — P and Y — Q in X and Y, respectively. If
(@, y) € X X Y, define ¢:(x, y) = {hi(®), ki(y)}. Now (Wi}, = {(U; X Y) U
(X x Vylo, is a decreasing sequence of open sets in X x Y, with
empty intersection. Also, ¢,(C) & W;. Thus, X x Y has the DCS
property.

The relation between invertible spaces and spaces with the DCS
property can be seen more clearly in the following analysis.

If an invertible 7, space X has the property that the intersection
of all neighborhoods of any point is that point, and if any closed set
C in an open set U may be “moved” so as to miss any given xz¢ U,
without moving outside U, then X has the DCS property. (If U is
open, U — {x} is also.)

III. This suggests a relationship with another concept, also
studied by Doyle and Hocking. A space X is near-homogeneous if for
any x€ X and any open set U such that xze U, for every yeX
there is a homeomorphism on X onto X such that k(y)e U.

Once again, the 0-sphere is a space that does not satisfy the DCS
property, but is near-homogeneous. However, the following converse
is true:

THEOREM 3. FEwvery DCS space X is near-homogeneous.

Proof. Let xe X and U an open set containing x. Let ye X.
Consider C = X — U, a proper closed subset of X. Since X has the
DCS property, there is a sequence of homeomorphisms {A;)2, on X
onto X such that Nz, #(C) = @, a somewhat weaker statement than
the DCS property allows. There is some j such that y ¢ ;(C). But
then y e h;(U), so h;'(y)e U. Thus, X is near-homogeneous.

In the preceding proof, it is seen that near-homogeneity does not
require that closed sets get “thin,” but that they move around enough.
An equivalent form of the definition of near-homogeneity, related to
the DCS property, is of interest here.

THEOREM 4. Let H(X) be the family of all homeomorphisms on
X onto X. X 1is mnear-homogeneous iff, for every proper closed set
C - X, nhen(x> h(C) = Q.

Proof. If X is near-homogeneous, let C be a closed subset of X,
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andlet U= X — C. Let yeC. Then there is an # < H(X) such that
h(y) € U, by near-homogeneity and thus MN,cxx #(C) = @.
Conversely, let z, ye X, and let U be an open set such that x € U.
Let C= X — U. If y¢C, there is nothing to show, so suppose yeC.
Then there is an k€ H(X) such that k(y) ¢ C. Otherwise Nicxx A(C)
would not be empty. But this is the desired homeomorphism.

IV. Another definition relating to invertibility that has been
studied is that of local invertibility. A space X is said to be inver-
tible at a point x € X if for every open set U containing x there is
a homeomorphism % on X onto X such that /(X — U) < U. In [2]
it was proved that for such a space certain local properties become
global properties. For example, if X is invertible and locally compact
at x, then X is compact. The corresponding definition here is the
following. A space X has the DCS/x property for all closed sets
which miss 2. It is evident that a space X has the DCS property,
iff it has the DCS/x property for each zc X. Examples of spaces
with the DCS/x property include the closed m-cell, the n-leafed rose
and, in fact any space that is invertible at x in such a way that the
inverting homeomorphism may be taken to fix 2. A space that is
not invertible at any point but which does have the DCS/x property
is the “half-open” annuls [0, 1) x S,. It will have the DCS/x property
for every point of {0} x S..

Since the DCS/x definition cannot guarantee that any part of the
closed set will be carried close to x under any of the homeomorphisms,
theorems as sweeping as those of local invertibility cannot be obtained.
However, the following is true:

THEOREM 5. Let X be a space that has the DCS/x property at x
and suppose X s locally T;, 1 =0,1,2, in a neighborhood P of x.
Then X is T;.

Proof. Let y,ze X, y + z (perhaps one is x). Let {U;, and
{h;}z, be the open sets and homeomorphisms given by the DCS/x
property for the closed set X — P. There is a j such that y, z¢ U,.
Then y,z¢h(X — P), so ¥y, z€h;(P). But then h;(y) and &;(2) have
the separation property required and thus y and z do also.

Note that this kind of argument is an improvement on near-
homogeneity, since it makes it possible to bring two points (or any
finite number of points) into a neighborhood of = at once.
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ON THE ABSOLUTE MATRIX SUMMABILITY
OF FOURIER SERIES

B. KUTTNER AND B. N. SAHNEY

The paper investigates sufficient conditions under which
a summability method of a certain general type absolutely
sums the Fourier series of any function of bounded variation.
The main theorem includes a recent theorem of M. Izumi and
S. Izumi, who considered the problem for the special case of
Norlund summability.

The summability methods considered are those given by a series-
to-series transformation 4 = («w,,,). That is to say, given any series

(1) S a,

k=0

we describe (1) as summable A to s if
by = g U, 1l

is defined for all n, and if

(2) 3. b,

converges to s. We describe (1) as absolutely summable |A]| if (2)
converges absolutely. Under certain quite weak restrictions on A,
necessary and sufficient conditions under which the Fourier series of
any function of bounded variation should be absolutely summable |A]|
have been given by Tripathy [10, Lemma 2]; his result will be stated
later as Lemma 1. But the conditions obtained by Tripathy are of
such a nature that it is not usually easy in any given example to
determine whether they are satisfied or not. The object of the present
paper is to obtain sufficient conditions which, while less general, are
simpler than those of Tripathy. However, it does not seem possible
to obtain reasonably general sufficient condition in any very simple
form.

We will be concerned with the case in which A is absolutely
conservative, that is to say, it is such that, whenever (1) converges
absolutely, so does (2). It is known [4, 6] that in order that this
should hold it is necessary and sufficient that, for &k = 0,

oo

(3) S @l = O -

407
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We remark that, in order that A should be absolutely regular, that
is to say, that in order that, whenever (1) converges absolutely then
(2) converges absolutely to the same sum, it is necessary and sufficient
that (3) should hold and that, further, for all £ = 0,

(4) goa"’k =1.
2. We now state our main result.

THEOREM. Let A = («,,,) be an absolutely conservative series-to-
series transformation, with «,,, =0 for all n, k. Suppose that either

(a) For each fized n, there is a positive integer r(n) such that
Q... 18 mondecreasing for 1 <k < r(n), and nonincreasing for k =
r(n), or

(b) For each fixed n, there is a positive tnteger s(n), such that
,../k s nondecreasing for 1 <k < s(n), and monincreasing for k=
s(n). Suppose also in case (a) that, for K =1,

r{n) +K

(5) s L%, =00,

r22K (M) k=r(a)—K
and in case (b) that, for K = 1,

s{n)+K
(6) > LS =00,
s(m=2K s(n) k=s(n)—~K
Then the Fourter series of any function of bounded variation is abso-
lutely summable |A|.

REMARK. It is clear that (5) is equivalent to

r(n)+K o
(5) S~k =0
rm2eK k=r(m—K K
and it is sometimes more convenient to express (5) in this form. Since
there are 2K + 1 terms in the inner sum in (5), and since the middle
term is the greatest, a sufficient condition for (5) is that

- B )

However (7), while much simpler than (5) is less general, and, as will
be shown later, fails to be satisfied in some important cases. In a
similar way, (6) is equivalent to

s{n) +K

®) S =0

s(n) 22K k=sm—K [

also, a sufficient condition for (6) is that
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(8) s(%wc}sﬁ—(ﬁ;ﬁ) - O(%) ’

It is clear that either one of (a), (b) could be satisfied without
the other holding. If, however, they both hold, then (5) is a weaker
assumption than (6). Thus, in this case, the first form of the theorem

is preferable. To prove this assertion, we write 4,, ¢, for the inner
sums in (§), (6’) respectively, and shall first show that

(9) 0, < 29, .

To this end, we first note that s(n) < r(n). Consider first the case
in which »(n) — s(n) = K. Since «,,,/k is nonincreasing for k = s(n),
we have!, for £ =0,1, ..., K — 1,

amn, r(n) + K — 24) . an,rn) + K —2n — 1)

rn) + K — 2un rin) + K —2¢ —1
(10) < 2a(n, s(n) + K — 1) .
B sm) + K—n
Also,
a(n, r(n) — K) _ a(n, s(n)
rm)y — K~ s(n)
whence

s{n)+K o
k=s(n) k

where the dash indicates the term %k = s(n), is multiplied by 1/2. If
r(n) — s(n) = t(n) < K, then (10) still holds for ¢ < ¢(n) — 1. Hence

tin)—1 ok
1) g,<2 5 20Lsm+ K- a(n, r(n) + K — v)
( ) - /tz:l(‘) S(n) + K _ # + y=2t(n) T(n) + K —y

where the first sum on the right is taken as 0 if ¢(n) = 0. Since the
second sum on the right of (11) can be written

M q(n, s(n) + K — p)
=ty s(m) + K — ¢ ’

we again deduce (9).
It now follows from (9) that

s(n) 22K s(n)=2K

However, since s(n) < r(n), there may be values of n for which »(n) =
2K, but s(n) < 2K; these values will occur in the sum (5’), but not

! To avoid complicated suffixes, we write a(n, k) for as,r whenever n, k are replaced
by more complicated expressions
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in (6"). If we show that, in any case, the contribution of these terms
to the sum (5’) is bounded, the conclusion will now follow. If r(n) =
2K but s(n) < K, then, since «,,/k is nonincreasing for k = K we
deduce that

2K + 1a,,x

0.,
K

IA

If »(n) = 2K and K < s(n) < 2K, then «,,, is nondecreasing for &t <
2K. Hence, for all k=1

an,k < a,n,s('n) < anﬂK

E = sm) K

so that
(2K + 1)an,2K
e

Thus the sum of the terms in question does not exceed

0.

IA

@—Kktﬁi:o (an,K + an,zK) = 0(1) )

by (3).

3. We now state the lemma of Tripathy already mentioned.

LEMMA 1. Let A = («,,,) be a series-to-series transformation such
that

8

12) [ Qo] < oo

n=0

i

and such that, for every fized n,

sin kt
k

(13) Ly(t) = 3 s

converges boundedly in t. Then in order that the Fourier series of
any function of bounded variation should be absolutely summable |A|,
it is sufficient that

14) S 1L = 0
and necessary that the sum (14) should be essentially bounded.
It may be remarked that the result is not quite correctly stated

in [10], where it is asserted that the essential boundedness of (14)
is necessary and sufficient. But on examining the proof of sufficiency
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in [10], we find that it requires the boundedness, and not just the
essential boundedness, of (14). The point is not of great importance,
since if we assume that, for every fixed =,

Z_;lank— nk+1|<oo;

in other words, that b, is defined whenever (1) converges, it is easy
to prove that the essential boundedness of (14) is equivalent to its
boundedness. This result is not, however, required for our present
purposes.

In what follows, we will suppose throughout that 0 <t <z. We
will apply the hypothesis (5) or (6) with K = [x/t]; thus, in any equations
involving both K and ¢, it will be assumed that this relation holds.

We require two further lemmas.

LEMMA 2. Let A = («,,,) be an absolutely conservative series-to-
series tramsformation. If, for every fixed n, .k is ultimately
nonnegative nonincreasing (and thus, in particular, if the hypotheses
of the theorem are satisfied) then the hypotheses of Lemma 1 are
satisfied.

Equation (12) follows at once as a special case of (3). Thus,
taking n as fixed, we have only to verify that (13) converges boundedly.
Suppose that «,,,/k is nonnegative nonincreasing for k¥ = M. Then
we have, uniformly in k%, k, for K, M < k, < k,,

sin kt a(n, k) ]
(15) 5% @, S0k < —-—————(2 L)
2

But (8) implies that a(n, k) is bounded; hence the expression on the
right of (15) is O(1) uniformly in the range considered, and, for fixed
t, tends to 0 (uniformly in k,) as %k, — . Since M is a constant,

M—1

>l

k=1

sin kt

nyk

is bounded; also, if K = M,

K
> |
k=M

B <t 3 ) = 0)
k=M
(by the boundedness of «,,, and the definition of K). Hence the result.

LEMMA 3. Suppose that 6, = 0. Suppose that 0, is nondecreasing
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for 1 <k <s, and nonincreasing for k=s. Then, for any positive
integers a, b, and any t with 0 <t <,
s+K

=A 3> 0 »

k=max(1,s—K)

(16)

Zb] *
0.
k=a

where A is an absolute constant.

That portion (if any) of the sum on the left for which s — K <
k < s + K clearly satisfies the required inequality. Also, by partial
summation, that portion (if any) for which % > s + K does not, in
modulus, exceed

2 _§..= 2 0
T—e | " Tl - [(K+ iz "
<2 _57,.

|1 — e¥|i=s

That portion of the sum (if any) for which £ < s — K may be dealt
with in a similar way, and the conclusion follows.

This lemma is a slight generalisation of a lemma due to McFadden
[5] which has been much used in investigations on the Norlund
summability of Fourier series.

4, We now come to the proof of the theorem. It follows from
Lemmas 1 and 2 that it is enough to show that the hypotheses of
the theorem imply (14). Consider first those values of » (if any) for
which r(n) < 2K in case (a), and for which s(n) < 2K in case (b). In
case (b), we are given that «, ,/k is nonincreasing for £ = 2K; in case
(a), we are given that «,,, is nonincreasing for k = 2K; hence, a
fortiori, so is «,,/k. Thus, in either case, since the partial sums of
S, sin kt are O(1/t), we have

il sin kt ®por )
k%‘;K (29" 2 = 0< 2Kt ) = O @p,2x)

by definition of K. For those terms in the sum (13) for which k <
2K, we use |sin kt| < kt; and it follows that

La)] = Ot S i} + O@aun) -

Hence the contribution to the sum (14) of those values of » now
under consideration is

17 O{ttil s a,,,,,} + O{i aMK} = 0)

=1 n=0 n=0

by (8) and the definition of K.
We now investigate the remaining values of nm. Consider first
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case (b). For any fixed », we apply Lemma 3 with ¢, = «,,,/k, and
take the imaginary part of (16). It follows at once that

s(n)+K o
L) = 0f "5 farl;
k=s(m—K [
and (14) therefore follows from (6’) and (17).
Now consider case (a). Since a,,, is nonincreasing for k = r(n)
80 is a,,/k; thus the part of the sum (13) for which £ > r(n) — K
may be dealt with as in case (b). The part for which £ < K may
be dealt with by using |sin k¢| < kt, as in the proof of (17). Thus,
writing

r{n)—K 1 t
Rn(t) = I;K an,kSIHkk »

it remains only to show that

(18) 2 R, =0Q) .
rin)22K
Now,
R,.(t) = 1 - mgK A, [cos (k — i)t — coS (lc 4 l)t]
osin Ly ¢k 2 2
= —-—1—{— S cos (k + —1—>M,¢<a”’k)
2 sin %t =K 2 k7

«@ 4 1
+ K cos (K — ——)t
i cos& 5

_an,rn) — K+ 1) _ 1
P cos(r(n) K + 2>t}.
Since
Ak<an,k> = _ Qe 44(@,1) ,
k kE(E+ 1) E+1

it follows that

. 1 r{n)—K an, T(ﬂ)—K’ A (an,k) l
R.(t) = 0]X —Due [, |
® {t[EK WE+D & kel

A, x , amn,rn) — K+1
i K * rn) — K+1 ]}
= O{R.(¢) + R.() + RL.(H) + RO},

say. Now, since «,,, is nondecreasing in the relevant range
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R‘nz(t) _ —ir(n)*'K Ak(an,k)
" t ==x k+1

17955 a1 a,, n 1 a(n, rn) — K +1)
t =& kk-+1) t K t rm) — K+1
= R.(H) — R,(t) + R.() ,

so that
R,t) = O{R,() + R.(1)} .
Next,

By £ 25—t 5 an = 00)

Kk + 1) + 1)
by (3) and the definition of K. Finally, if »(n) = 2K,

a(n, r(n) — K + 1)}
tr(n)

r(n)22K

R.(t) =

o
- { Kr(n)k r;:mm “”’k}
abmy

an,k} ’
r(n) r= r(n)—K+1
so that

> R.@) =0,

r(n) 22K
by (5). The proof of the theorem is thus completed.

5. We now consider an application of our general theorem to
the special case of Norlund summability. We recall that, given a
sequence p = {p,}, Norlund summability (N, p) is defined as given by
the sequence-to-sequence transformation

(19 te = 5 35, Priti

where we write
P,=p,+ D+ 0.}
it is assumed that p is such that, for all n, P, = 0. If we write
ta=by+ b+ o bys,=a,+a + +--a,
we see that (19) can be expressed as the series-to-series transformation

b0=a0;



ON THE ABSOLUTE MATRIX SUMMABILITY OF FOURIER SERIES 415

bn=]§:(%§—:‘——%?>an =1,

where we adopt the convention that P_, = 0. Thus we have, with the
notation of our main theorem, «,,, = 0 for k > =, while, for1 <k <=n

P'n—-k _ Pn—k—-l
p, P,
— Pnpn—Jc _ Pﬂ—-kpn .
PnP‘n—l

Now consider the case in which {p,} is nonnegative nonincreasing.
We remark that, since P, = 0, we then have p, > 0. Further (since
P, = 0){P,} is nondecreasing; thus it follows from (20) that «,,, = 0.
Thus we may omit the modulus signs in (3); and it is now easy to
see that (4), and hence (3), holds. Thus, in the case now considered,
(N, p) is absolutely regular. Further, for fixed =, p,_, is nondecreasing
and P,_, nonincreasing as k increases from 1 to n. Since «, , = 0 for
k > n, it follows that condition (a) is satisfied, with »(n) = n. Also
equation (5) becomes

a'n.,k =
(20)

oo 1 n _
(21) n§K m k=§iK (PoPn—r — Payp,) = 0Q1) .

The inner sum in (21) does not exceed

Z Pnp'n,——K:PnPK)

k=n—K

and thus a sufficient condition for (21) to hold is that

(22) S =)

However, since the hypotheses on » imply that P,_, ~ P,, and that
P < P,y < 2Py, it is easily seen that (22) is equivalent to the slightly
simpler condition

(23) S =o(k).

Thus our theorem includes the following result;

THEOREM A. Suppose that {p,} s momnegative nonincreasing,
and that (23) holds. Then the Fourier series of any function of
bounded variation is absolutely summable |N, p|.

The assumption that {p,} is nonnegative nonincreasing is not,
without some further condition, sufficient for the conclusion, for it



416 B. KUTTNER AND B. N. SAHNEY

has been shown by Pati [8] that, when p, = 1/(n + 1), it is not
true that the Fourier series of any function of bounded variation is
absolutely summable |N, p|. This example also shows that, in our
main theorem, the assumptions that A is absolutely conservative and
that (a) holds would not alone suffice for the conclusion.

Theorem A is included in a recent, slightly more general, theorem
of M. Izumi and S. Izumi [3]. It includes earlier theorems of H. P.
Dikshit [2, Theorem 2] and T. Singh [9]; the result of Singh itself
generalises a theorem of Pati [7]. The theorems of Dikshit and of
Singh are respectively as follows.

THEOREM B. Suppose that p, > 0, and that p,.,/v. 1s non decreas-
wng, and less than or equal to 1 for all n. Suppose that (23) holds.
Then the Fourier series of any function of bounded wvariation is
absolutely summable |N, p|.

THEOREM C. Suppose that, for all n, p, = p,., > 0, and that

Dy — Dusi 1S NOWINCTeasing. Suppose also that

X Pn —_—
(24) Z‘o i O(Px) -

Then the fourier series of any function of bounded variation ts abso-
lutely summable | N, p|.

It is immediately evident that Theorem A includes Theorem B.
The result that Theorem A includes Theorem C follows from the
following lemma, which shows that, in Theorem C, we may replace
(24) by (23).

valent. In fact, either is equivalent to the assertion
(¢) There is a constant integer r > 1, and a constant » > 1 such
that, for all suffictently large n,

LEMMA 4. Suppose that p, > 0, p, = 0. Then (23), (24) are equi-

(25) P,, = \P, .

We first prove that (23) implies (c). Suppose, then, that (23) holds.
Thus there is a constant M such that, for all sufficiently large K,

= 1 M
= =
Z‘K nP, = Py
Since P, is nondecreasing, this gives
M rK 1 1 rK 1
2z > > =.
P, ,;K nP, = P,y n=kn
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But

rK 1
3= ——logr
n=K N

as K— o, and (c) therefore follows if r has been chosen so that
(26) logr > M.
If (24) holds, we have, for all sufficiently large K,

% P,

= .

Thus, replacing K by 7K,

rK

MP,, >
“ Z'n+1 Z

+1

and we again deduce (¢) if » has been chosen so that (26) holds.

417

We now consider the converse implications. Suppose, then, that

(25) holds for n = n,. Then, for v = n,

r{yv+1)—1
1 < T~ 1 ]
w=rv wP, — rvP,, VAP,

Hence, for K = n, and s = 1,

r8TlE—) rSK—1 1
3 1 1

27) =
wrmr nP, N n=rig nP,

By successive applications of (27), we deduce that for s = 0,

rSTlg—1 1 1 7E7v 1 1 TE-1 ] ( 1
<= < — =0 .
ZT;K nP, A° nZ‘K nP, — NPy nz=k n VPK>

Hence

wg“K n;n - O<?11; g}%) - 0<7};) ’

which gives (23). To prove (24), we have, for v = n,,

YT _ Py o P o P,
S mrl o T+l v tl

Hence, for s > 1,

r8ting—1 P rSmy—1 P
E n >N\ "

I R

so that, for 0 <s<¢—1,
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,s+1n0_1 P 1 rtno—-l P
n < n .
n=rSng N + 1 - )\:t_l_x n=rt“1n0 n + 1

(28)

Now take any K = n,. Choose t so that r'n, £ K < r**'n,. Then,
by (28),

£k P =l p =1 1 rlng—1 P
n kil + L
(29) “Z‘O n+ 1 n=0 9, -} 1 ‘gs AP n=rt—la; N + 1
K P,

’
n=ritng N + 1

where the second term on the right is omitted when ¢ = 0. The first
term on the right of (29) is a constant, and is thus certainly O(Px),
since Py = p, > 0. Also

Tt'no—-l rtno—-l
S P op S L~ ory;

n=rt—1ln; N —+ 1 n=rt—lng N + 1
K P K 1
n_< P = O(P
n:zrtnon-I—l - Kn§n0n+1 Fx)

(since K < r**'ny). Thus (24) follows.

The conditions (7), (8) have been mentioned as giving simple
sufficient conditions. But, while simpler than (5) or (6), they appear
to be insufficiently general to be of great use. Consider, for example,
the case of Cesaro summability (C, ). This is a Norlund method with

pn:<n+5—1>_
n

If 0 <0 <1, then the conditions of Theorem A are satisfied. Thus
that theorem includes the result that the Fourier series of any function
of bounded variation is absolutely summable |C, §|; this result was
long ago proved by Bosanquet [1]. Now, in this case, «,, = 0 for

k> m, while, for 1 <k < n,
(n—k—i—&—l)
k n—k
n

(n + 5)

n

Thus (a), (b) are both satisfied, with »(n) = s(n) = n. But either (7)
or (8) reduces to

an,k =

En—(bﬁj = 0(z)
n

and this is satisfied only if 6 = 1.
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6. As another application of our main theorem, we let {k(n)} be
an increasing sequence of nonnegative integers, with %(0) = 0, and
define
_ (1 (B(n) =k < k(n + 1);

0 otherwise.

(£ 99"

»

Thus absolute summability | A| of a given series reduces to the absolute
convergence of the series formed from it by bracketing together, for
every m, those terms whose suffixes k satisfy k(n) < k < k(n + 1). It
is clear that (a), (b) are both satisfied, with »(n) = s(n) = k(n) (except
when n = 0). In this case, the weaker conditions (7), (8) still give a
significant result. Either of these conditions is equivalent to

1 1
30 —=0(=).
(30) ku%‘éz{ k(n) O<K>
We note that (30) is satisfied, in particular, if
31) liminf X £ D 5y
= Te(n)

Thus our theorem includes the following result. Suppose that (31)
holds. Let us bracket together, in the way indicated, the terms of the
Fourier series of any function of bounded variation. Then the result-
ing series 1s absolutely convergent.
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ALGEBRAS OF NORMAL MATRICES

GEORGE MAXWELL

A classical theorem of matrix theory asserts that a com-
muting set of complex normal matrices can be simultaneously
unitarily diagonalised. In this paper, this result is gener-
alised, both for the field of complex numbers and for more
general fields. Namely, a commuting set of normal matrices
is replaced by a subalgebra composed entirely of normal
matrices. The structure of such subalgebras is determined
and results on simultaneous diagonalisation are deduced. In
the complex case, these subalgebras turn out to be commuta-
tive. However, even in the real case there are noncommuta-
tive examples.

1. Normal subalgebras. Let F be a field with an involution J,
V a finite dimensional vector space over F and ¢ a left hermitian
form on V such that

(1) é(x, ©) = 0 implies x = 0.

In particular, ¢ is nondegenerate so that every endomorphism 7 of V'
has a unique adjoint w. r. t. ¢, defined by the equation

(2) (T, y) = ¢(x, T*y) .
We call a subalgebra A of End,(V) normal if it satisfies

(@) TeA implies T*e A
(3)
(b) T*T = TT* for all TeA.
Our first aim is to determine the structure of such normal subalgebras.
The purpose of assuming (1) is to obtain the property

(4) T*T=0 implies T=0.

Indeed, if T*T = 0, we have ¢(Tx, Tx) = ¢(x, T*Tx) = 0 so that Tx = 0
for all xe V. From properties 3(a) and (4), a well known argument
[6] leads to the fact that A has no nil ideals. In our context, this
means that 4 must be semisimple. Furthermore, if B is a minimal
ideal of A, so is B*, and thus either B* = B or B*B = 0, but the
latter possibility is precluded by (4). It is therefore sufficient to de-
termine the structure of a simple normal subalgebra.

PRroOPOSITION 1. Suppose R is a ring with unit element 1 = 0 and
* 18 an tnvolution of a matrixz ring M,(R) with the property XX* =

421
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X*X for all Xe M,(R). Then either (i) n=1 or (i) n =2, R s
commutative and * 1s the imvolution

a b\* d —b
(5) - )
c d —c al .
Proof. Linearing the identity XX* = X*X, we obtain
XY*+ YX*=X*Y+ Y*X;
replacing Y by Y*, this can be written as
(6) [X, Y] = —[X, Y].

Let E;;(r) be the matrix with » in the (¢, j)th position and zeros else-
where. Suppose n = 3; if 1 # j, we can write E;;(r) = E;,(D)E,;(r) =
[E;(1), Ej(r)] for some k == 4, j. Therefore E;;(r)* = — E;(r) by (6);
but then E;;(r)* = E,;(r)*E;,(1)* = E,;(r)E;,1) = 0, an absurdity.

If n=2, we can write E,(r) = [E.(1), Ey(r)] so that E,(r)* =
— E,(r). Since E,(r) = E,(1)E,(r), we have E, (r)* = E,(r); the invo-
lution is thus given by (5). Furthermore, writing E, (rs) = E, (r)E,(s)
and applying *, we obtain FE,(rs) = E,(sr) so that »s = sr and R
must be commutative.

PRrROPOSITION 2. Suppose D is a division ring, finite dimensional
over its center Z and * 1is an involution of D such that dd* = d*d
for all de D. Then either D = Z or D is a quaternion algebra over
Z and * 1is the standard involution.

Proof. Let K be the subfield of Z left fixed by * and L some
algebraic closure of K. The extended involution d® @)* = d* Y «
on D @x L has the same property as *.

If K= 7, D@x L is isomorphic to M,(L) for some integer p. By
Proposition 1, »p < 2 so that D is either Z or a quaternion algebra
over Z (see, e.g., [1. p. 146]). If K=+ Z, we have ZQ, Z=Z D Z,
sothat DQ, L=DQ®,ZQRxZ2)Q, L=DR,LPDR.L = M,(L)D
M,(L) for some integer p. If * induces an involution on each of the
factors M,(L), we again have p < 2. However, if p = 2, we see from
(5) that * must leave central elements fixed, which is not true for
D @®x L. Therefore p =1, i.e. D= Z. If * interchanges the two
factors M,(L), then each is forced to be commutative so that once
again p = 1.

It remains to verify that in case D is a quaternion algebra over
Z and K = Z, * can only be the standard involution. If char (Z) ==
2, D has a basis {1, 7, 7, %} such that © = «, j° = 8 and i = —ji for
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some «, g€ Z. Since 2p8i = [ij, j] and 2aj5 = [4, %], (6) implies that
1* = —1,5* = —7 so that * must be the standard involution. If char
(Z) = 2, the relations are instead ©* =, =7+ 8 and i =Ji + 1
for some a, g€ Z. Since 7 = [i, 7] and 4j = [J, %] we have ¢* = 7 and
(i9)* = 17; but aj = ©(7j) so that aj* = (19)*i* = 4yt = aj + a i.e. j* =
7 + 1, showing that * is again the standard involution.

The preceding proofs could have been somewhat shortened by
appealing to a recent result of Amitsur [3], which says that a semi-
prime ring with an involution * satisfying a polynomial identity
(X, -+ X, X*, +++, X;5) =0 of degree d satisfies a “standard identity”
of degree 2d. In our case, the polynomial identity is X*X, — X, X/ =
0, of degree 2, so that the standard identity is of degree 4. Now a
well-known result of Kaplansky [7] implies that if the ring is also
primitive, it is at most 4-dimensional over its center. However, we
would still have to determine, as above, the possibilities for *, the
knowledge of which is important in the sequel.

ProposITION 3.
@) If J is mon-trivial, a simple normal subalgebra A is a finite
field extension of F; its tnvolution * extends J.
(b) If J s trivial, A can also be a quaternion division algebra over
a finite field extension of F, in which case * must be the standard
involution.

Proof. Suppose A is isomorphic to M, (D), where D is some finite
dimensional division algebra over F. By Proposition 1, either (i) » =
1 or (i) » =2, D is a field and * corresponds to the involution (5).
However, the latter violates (4) since, for example, E,(1)*E,(1) = 0;
therefore A is a division algebra. By Proposition 2, A is either a
field or a quaternion algebra over its center. Furthermore, in the
latter case * must be the standard involution, which is certainly
trivial on F, so that J itself had to be trivial.

Turning to the classical cases, let us suppose that F' is either
R or C and ¢ is the standard hermitian form on V = F™.

COROLLARY 1, In the complex case, a mormal subalgebra is iso-
morphic to a product of copies of C, each with the standard involu-
tion.

COROLLARY 2. In the real case, a normal subalgebra 1is isomor-
phic to a product of copies of R, C and H, the latter two occurring
with the standard involution.
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Proof. It is only necessary to explain why a factor consisting
of C with the trivial involution could not occur in the real case. This
is a consequence of a property stronger than (4):

(7) SVT#T, = 0 implies that all T, =0,

enjoyed by * but violated by such a factor. Indeed, if >, T*T, = 0,
we have ¢ Ti# T, ) = >, ¢(Tix, T:x) = 0 for all xe V; since all
summands are non-negative, we must have ¢(T;x, T;x) = 0 and hence
Ti - 0.

2. Simultaneous diagonalisation. Let A be a normal subalgebra
of End,(V) and consider V as a left A-module. One sees at once
from (2) that if W is a submodule of V, so is W*; in view of (1),
we have V= W W+. Induction now shows that V is the orthogonal
sum of simple submodules, which are isomorphic to simple factors of
A.

Using Corollaries 1 and 2 of Proposition 3, we can immediately
obtain diagonalisation results in the classical situations.

PROPOSITION 4. In the complex case, there exists an orthonormal
basis of V w.r.t. which the matrices of all elements of A are diagonal.

PROPOSITION 5. In the real case, there exists a partition dimV =
n, + 2n, + 4n, and an orthonormal basis of V w.r.t. which the matrices

of all elements of A comsist of n, diagonal elements, followed by n,
blocks of the form

a —pB
g o
and n, blocks of the form
a —B =7 —0
B a —0 v
(9) Y 0 a —g|
o -7 B «

Proof. If a simple A-submodule is isomorphic to C, it has a basis
of the form {x, 7-2}, which is orthogonal since ¢(, i-2) = ¢(i* -2, ) =
—o(-x, 2) = —¢(x, 1.2). We may suppose that ¢(x, ) = 1, but then
61, 1.2) = S, 1*7-x) = d(x, ) = 1, so that the basis is orthonormal.
The action of C on such a basis is given by blocks of the form (8).
Similarly, if an A-submodule is isomorphic to H, it has a basis of the
form {z, i-x, j-2, 77 -2}, which can once again be assumed orthonormal



ALGEBRAS OF NORMAL MATRICES 425
and yields blocks of the form (9).

Such diagonalisation results are usually stated for a commuting
set {T;} of normal endomorphisms rather than for a normal subalgebra.
To deduce them from our results, we first enlarge the set {T;} to
{T;, T#}, which is still commuting in view of the following well-
known result [9]:

PROPOSITION 6. In the real or complex case, if a normal endo-
morphism T commutes with an endomorphism S, it also commutes
with S*.

Secondly, we form the commutative subalgebra generated by
{T;, T}, which is clearly normal, and apply propositions 4 and 5.
In the non-classical situations, the results of §1 still enable us to
produce diagonalisation theorems, although these can of necessity be
more complicated. We shall confine ourselves to some remarks about
the case when F'= Q and ¢ is the standard hermitian form on V =

Q.

PROPOSITION 7. The possible factors of a normal subalgebra must
be of the following types:
(a) a totally real finite ewtension K/Q, with the trivial involution.
(b) an extension K/ —a)/Q, where K is as in (a) and « is totally
positive, with the involution V' —a— —V —a.
(¢) a quaternion algebra (—a, —pB) over K, where K is as in (a) and
a, B are totally positive, with the standard involution.

Proof. Let A be a simple factor. We go back to proposition 3.
If * induces the trivial involution on A, every T € A is hermitian and
therefore has totally real eigenvalues-hence A is of type (a). When
* is not trivial, the fixed subfield K of * is of type (a) by the same
argument. If K — R is some imbedding, then, regarding R as a K-
algebra, one proves as before that the involution (¢ @ N* = a* @ )
on the extended algebra A @x R enjoys property (7). Therefore the
images of & or @ and B8 must be positive in R.

The problem of determining which totally real extensions K/Q
can actually occur as factors of type (a), say, has been studied by
Bender [4] and seems quite difficult. For example, Q(1” d)/Q occurs
if and only if d is a sum of 2 squares in Q.

3. The infinite dimensional case. In this paragraph, we shall
prove that in some infinite dimensional situations normal subalgebras
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are necessarily commutative.

Firstly, suppose that H is a complex Hilbert space and B(H) is
the algebra of bounded operators on H. The analogue of Proposition
6 for elements of B(H) has been proved by Fuglede [5] and later
generalised by Putnam [10] to

ProrosiTION 8. If S and T are mormal operators and R is an
operator such that TR = RS, then T*R = RS*.

One can use this result to prove

PROPOSITION 9. A normal subalgebra A of B(H) such that A* is
dense in A (for example if 1€ A) must be commutative.

Proof. Suppose S, T€ A; since (ST*)S = S(T*S), Proposition 8
implies that (ST*)*S = S(T*S)* or T(S*S) = (S*S)T (this idea occurs
in Kaplansky [8]). Now replace S by S + R*, with Re A. After
subtraction, one concludes that T commutes with (RS)* + RS i.e.
with all the hermitian elements of A’ Since A’ is dense in A and
every element of A can be written in the form S + 47T where S and
T are hermitian elements of 4, we conclude that T commutes with

every element of A.

Secondly, we return to an arbitrary field F' and consider an arbi-
trary F-algebra Q with an involution *, satisfying (a. x)* = a’. 2*. Let
b(2) be the quotient of 2 @, 2 by the subspace generated by all ele-
ments of the form ab®c¢ — a® bc and ba ® ¢ — a R cb. The obvious
map Bq: 2 X 2— b(Q) is called the universal bitrace on 2. It may
happen that b(Q) is not isomorphic to K, for example if 2* = 0. Since
2 has an involution, it is actually more convenient to work with a
“twisted” version of the bitrace: <a, b) = B.(a*, b). This is a left
sesquilinear (w.r.t. J) map on £, universal w.r.t. the properties
{ab, ¢) = (b, a*c) and <ba, ¢) = (b, ca*). By analogy with [2], 2 may
be termed an H*-algebra if

(10) {a,ay = 0 implies a=0.

For such algebras, the analogue of Proposition 8 can be proved purely
formally from the identity
{c*a — be*, ¢*a — be*) — {ac — cb, ac — ¢b)

1)
= {aa* — a*a, cc*) — {bb* — b*Db, c*c) ,

a special case of which goes back to von Neumann [11]. For its proof,
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note first that {ab, cd) = (bd*, a*c) = {c*a, db*>. Then
{c*a — bc*, c*a — bc*)
= {c*a, c*a)y — {bc*, c*a) — {c*a, be*)> + {(bc*, bc*)
= {aa*, cc*) — {eb, ac) — {ac, ¢b) + {c*¢c, b*b) .

Similarly, <{ac — ¢b, ac — ¢by = {a*a, cc*)>—<ac, cby —{cb, ac) +<{c*e, bb*>.
Subtraction yields (11).

ProrosiTiON 10. If J is montrivial, a mormal subalgebra A of
an H*-algebra 2 such that A* = A must be commutative.

Proof. One can use the same argument used in the proof of
Proposition 9, with the following remark. Since J is nontrivial,
there exists 6 € F' such that 67 = 6; then every x€ A can be written
in the form x, + 0.x,, where z, = (0.2* — 67.2)/(0 — 0") and w, =
(x — «*)/(@ — 6’) are hermitian elements of A.

In conclusion, we add a remark regarding the property
12) aa* = a*a, bb* = b*b, ac = ¢b implies c*a = ab*

in arbitrary rings with involution. Two of its special cases are

13) aa* = a*a, ac = ca implies c¢*a = ac*
and
14) aa* = a*a,ac = 0 implies c*a = 0.

However, one can get an example in which both (13) and (14) hold
but (12) does not, by taking K = Q,a = 2 in

PROPOSITION 11. Let K be a field of characteristic #2, a a nonzero
element of K and * the involution

a b\* ( a —ac

¢ d)  \=ba d
of My(K). Then (i) (13) s true in My(K), (ii) (14) is true off « 1s
not a square and (iii) (12) s true 1§ a is not a sum of 2 squares.

We omit the full proof, but give the counterexample for (12):
suppose & = & + 7* and let

X = (1 B>’ v — (2 —7)’ 7 - (a —cw) .
Bl 1 v/ 0 B 0
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Then XX* = X*X, YY* = Y*Y, XZ =ZY but X*Z+ ZY*.
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MULTIPLIERS OF TYPE (p, p)

KELLY MCKENNON

It will be shown in this paper that the Banach algebra
of all continuous multipliers on L,(G) (G a locally compact
group, p€ [0, ©[) may be viewed as the set of all multipliers
on a natural Banach algebra with minimal approximate left
identity.

Let G be an arbitrary locally compact group, ) its left Haar
measure, and p a number in [1, «[. Write B, for the Banach algebra
of all bounded linear operators on L, and write I, for the subset of
B, consisting of those operators which commute with all left trans-
lation operators; elements of I, are called multipliers of type (p, ).
If A is a Banach algebra, then a bounded linear operator T on A such
that T(a-b) = T(a)-b for all a, be A is called a multiplier on A; write
ni(A) for the set of all such. By C, will be meant the set of all
continuous complex-valued functions on G which have compact support.
A function f in L, such that for each ¢ in L,, the function g=f(x) =
Sg(t)f(t“lx)dx(t) exists M-almost everywhere, g«f is in L,, and || g=f||, <
l|gll,-k where k is a positive number independent of g, is said to be
p-tempered; write L: for the set of all such. Evidently L! is closed
under convolution and C, is a subset of L. Thus, for each f in L!
and » in C,, there is precisely one operator W in B, such that
W(g) = g=f=h for all g in L,; write 2, for the norm closure in B, of
the linear span of all such W. The principal result of this paper is
that 20, is a Banach algebra with minimal approximate left identity
and that m(,) and M, are isomorphic isometric Banach algebras.

THEOREM 1. Let f be a function in L, and k a positive number
such that || g=fl, = || gll,+k for all g in Cy. Then f is in L.

Proof. First of all, suppose that & is a function in L, N L,. As
is well known, h=f is in L, and || 2=f|], < [|k|,*|| f|l,- Let {h,} be a
sequence in C, which converges to 2 in the L, and L, norms both.
It follows from the above that {&,«f} converges to h«f in L,. This

fact and the hypothesis for f imply

1 7fll, = Hm [[Ryxfll, = Hm ([ 2o [l = [ Rl Fo .

Let 2 be now an arbitrary function from L,. We may assume
that %2 vanishes off some o-finite set A. Let {4,} be an increasing
nest of \-finite and A-measurable subsets of G such that their union

429
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is A. Let for each ne N, h, be the product of » with the charac-
teristic function of A4,. Let 7, (j =0,1,2,3) be the minimal non-
negative functions on the complex field K such that z = 3}3_;i'7;(z)
for each z¢ K.

Fix j in {0,1, 2, 8}. For each x € G, define the measurable func-
tion w® in [0, «]¢ by letting w*(t) = m;[h(t)-f(t7'x)] for all te G. For
each x € G and nc N, define the measurable function w; in [0, «]¢
by letting wi(t) = 7;[h,(¢)-f(t7'x)] for all t€ G. Since the sequence
{wz} converges upwards to w® for each xe G, it follows from the
monotone convergence theorem that lim, | widx = | w*dn. Define the
function F'in [0, «]¢ by letting F(x) = S wd\ for all xe€ G. For each
n € N, define the function F, in [0, <]° by letting F,(x) = gwidx for
all xe€ G. Thus, {F,} converges upwards to F' at each point z € G.

For each ne N, h, is in L, N L,; it follows that x;[h,xf] is in
L,, and so equals F, almost everywhere. Hence, each F, is measur-
able whence F' is measurable. Further, by the monotone convergence
theorem and the inequality which concludes the initial paragraph of
this proof,

1 Fl, = Hm || F, |,
= lim ||z, [k, f] |, < Tm || Ry fll, < T [[ R[50k = ([ 2l

Recalling that F(x) = Sﬂj[h(t) -f(t7'x)]dt almost everywhere and j

was arbitrary, we see that hxf exists almost everywhere, is in L,
and || hxf|l, < || h]|,-4k. This proves that f is p-tempered.

The condition given in Theorem 1 for a function in L, to be in
L: is clearly necessary as well as sufficient. Another such condition
was proved in [4], Theorem 1.3:

THEOREM 2. Let f be a function in L, such that g«f is defined
and in L, for all g in L,. Then f is wn L.

For each fe L', there is precisely one operator W,e®, such that
(1) Wi(9) = g+f
for all ge L,. For feC,, we have as well (see [1] 20.13)

(2) APESENTY

It is easy to check that
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(3) Wf"h = Wi W,
for all f and A in L:.

THEOREM 3. The set U, ts a complete subalgebra of M, and it
possesses o minimal left approximate identity (i.e., a net {T.} such
that Tim, || T.|| £ 1 and lim || T,eT — T|| = 0 for all Te,).

Proof. A simple calculation shows that, when f is in L, then
W, is in M,. Evidently, M, is a Banach algebra; hence, 2, is a
subset of M,. That A, is a Banach space is an elementary conse-
quence of its definition. That 9, is a Banach algebra is a consequence
of the fact that L!xC, is closed under convolution.

For each compact neighborhood E of the identity of G, let f, be
a nonnegative function in C,, which vanishes outside £ and such that

fzdx = 1. Directing the family of compact neighborhoods of the

identity by letting E > F when E C F, we obtain a net {f;} which
is a minimal approximate identity for L,. If {%,} denotes the product
net of {fy} with itself, then {k,} is again a minimal approximate
identity for L, and the net { W"r} is in A,. Since 4 is unity and
continuous at the identity of G, we have by (2),

Tm (| W, || < Iim S Ao gy < 1.
7 ! 7

For fe L, and geC,, (3) and (2) imply
IiTE I Whro Wf*g - Wf*g” = 1?11— || (Wg*h;- - Wg)o Wf”

< T (W0, — W, 11 W, 1| = (T {1 g+h, — g1-270722a0)- | W,

IA

T | g+, — gD (4=7~17(2): gy (2) # 9@))- | W, || = 0

since Iim, ||g xh, — g]|, = 0 and since the net of sets {x € G: gxh,(x) #g(x)}
is eventually contained in some fixed compact set. Since L!xC,, gener-
ates a dense subset of 2, we have lim|[W, T — T| =0 for all
TeA,. Thus, {Whr} is a minimal left approximate identity for 2,.

We now turn to 9,. We shall need a theorem proved in [3] 4.2.

THEOREM 4. Let pt and the elements of a met {{.} be bounded,
complex, regular Borel measures on G such that

(a) Hm [ g {| = [[ 1]
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and

(b) liam Sfd#a = Sfdp, for each feCy.
Then, for each ge L, (pe[l, «[), lim, || ttuxg — tt*g ||, = 0.

COROLLARY. For each multiplier T in M, and each bounded,
complex, regular Borel measure ft, we have

(1) T(pxg) = p=T(g)
for all ge L,. In particular, for fe L, we have

(ii) T(fxg) = f=T(9) .

Proof. Since T commutes with left translation operators, it is
evident that (i) holds when p is a linear combination of Dirac measures.
Now let ¢ be arbitrary. Since the extreme points of the unit ball
of the conjugate space C; (where C, bears the uniform or supremum
norm) are Dirac measures, and since Alaoglu’s Theorem implies that
the unit ball of Cj is o{(C§, Cy)-compact, it follows by the Krein-
Milman Theorem that there exists a net {g,} consisting of linear
combinations of Dirac measures such that the hypotheses (a) and (b)
of Theorem 4 are satisfied. By Theorem 4, we have lim, || tt,xg —
¢xg|l, = 0 for all g € L,. This implies that lim, || T(ttxg) — T(t=9) ||, =0
for all ge L,. Consequently,

[ Tigeeg) — 2 T(9) |, < T || Tgevg) — T(peara) I,
+ T || T(ttng) — 5 T@) I, = 0 + T || = Tig) — 2 7(9) [, = 0 -

This proves part (i). Part (ii) is a special case of (i).

THEOREM 5. For each multiplier T in M, and each function f
i Co, the function T(f) is in L., and W,y = To W;.

Proof. Because f is in L,, it follows from the corollary to
Theorem 4 and (1) that g¢g+T(f) = T(gxf) = To W(g) for all ge C,.
This implies that || g«T(f)[l, = | Tll-ll W;[l-llgll, for all ge Cy.
Thus, by Theorem 1, T(f) is in L). Since C, is dense in L,, we
have that W, = T- W,.

We purpose to identify the multipliers on U,. To accomplish
this, we shall set down a general multiplier identification theorem.

Let B be a normed algebra with identity and let A be any sub-
algebra of B which is || ||z-complete and which has a minimal left
approximate identity. Define (B, A) to be the coarsest topology with
respect to which each of the seminorms °|| || (a € A) is continuous
where °||b|| = || b-a]|; for all be B. It is known (see [3] 1.4. (ii)) that
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(4) the map (a, b)) — a-b is &(B, A)-continuous

when @ and b run through any || ||z-bounded subset of B.

THEOREM 6. Let A and B be as above and suppose that the
following hold:

(1) the unit ball A, of A is &(B, A)-dense in the unit ball B,
of B;

(ii) [|b]l; = sup{|| b-a||z: @€ A} for each be B;

(iii) B, is &(B, A)-complete.
Then m(A) s isomorphic to B.

Proof. By [3] 1.8. (iv), A is a left ideal in B. Define the map
T|— m(A) by letting T,(a) = b-a for all be B and ae A. That T is
an algebra homomorphism of B into m(A) is easy to check. That T
is an isometry follows from (ii). That 7 is onto is a consequence
of [3] 1.12.

LemMA 1. The unit ball of U, is KM, A,)-dense in the unit
ball of IN,.

Proof. Let T be any operator in the unit ball of I,. Let {W}
be the minimal left approximate identity for 2, chosen in Theorem
3. For each index v, we know from Theorem 5 and (3) that T(h,)
is in L, and W, oToW, = W, oWyu, = Wropa,. From (4), we see
that {W, cT-W,} converges to IoToI =T in &EM,, A,): in other
words, lim Weapa, =T in &0, ;).

Thus, we must have lim, [| Wy, | ziTH, as is easily seen.
But lim, || Wrg o | = lim, [| W, o Te W, || < lim, [| W, [P-[| Tl = || Tl
Thus, we have lim, || Wy )0, || = [ T{l. It follows that lim, || Wra e |17
Wieia. = T in &I, A,). We have shown that T is the &(I,, A,)-
limit of operators in the unit ball of 2,.

LEMMA 2. Let {T.} be any K(B,, A,)-Cauchy net in B, such that
sup, || T. |l < oo. Then there is an operator T in B, such that lim, T, =
T in both the strong operator topology and the topology K(B,, A,).

Proof. Let S be the subspace of L, spanned by the set L, L.xC,.
If g is in L, and {&,} is the net in L.xC, constructed in the proof
of Theorem 3, then lim, || g+k, — g|/, = 0 (see [1] 20.15. ii). It fol-
lows that S is dense in L,.

Let >3, fixh;xg; be a typical element of S where f;€ L,, h; € L,
and g;€Cy (J=1,2,-+-,m). Then W,,, isin %, §=1,2, -+, m)
so that, by hypothesis, the net {7T.c W, ., } is || |[-Cauchy in B,. Since
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To(fixhi*9;) = Tao Wi, ,(f;) for each j=1,2,++-, m and each index
a, it follows that the net {T,(f;xh;xg;)} is || ||,-Cauchy for each j =
1,2, -+, m. Thus, {T (3™, fixh;xg;)} is || ||,-Cauchy and so has some
limit in L, which we shall write as T, (3 7, fi*h;xg;). The operator
T,|S— L, thus defined is clearly linear and, by the hypothesis
sup, || T || < oo, is also bounded. Since S is dense in L,, T, is the
restriction to S of a unique operator T in B,. Since the net {T,}
converges to T on the dense subspace S of L,, and since sup, || T.|| <
oo, it follows that lim, T, = T in the strong operator topology.

Let f be any function in L:xC,. By hypothesis, the net {T,0 W,}
is || ||-Cauchy and so has some || ||-limit V in ¥B,. For each ge L, N
L, we have

Vig) = lim Too Wi(g) = lim To(g+f) = T(g=f) = T Wy(g) -

Since L,N L, is dense in L,, it follows that V = ToW,. Thus,
lim, | (Ty — T)oW,|| = 0. Since {W,: fe L,xCy,} spans a dense subset
of U, and since sup, || T, || < o, it follows that lim, T, = T in &B,, A,).

THEOREM 7. Let 7w |IM,— By be defined by, for each TeIN,,
letting the function 7,|%,— B, be given by w (W) = ToW for all
We,. Then m is an isometric algebra isomorphism M, onto m(A,).

Proof. We shall apply Theorem 6 for B = M, and A = 2,. That
A, has a minimal left approximate identity follows from Theorem 3.
That condition (i) of Theorem 6 is satisfied follows from Lemma 1.
That condition (iii) of Theorem 6 is satisfied follows from Lemma 2.
To invoke Theorem 6 and so prove Theorem 7, it will suffice to show
that || T'|| = sup (|| T- W||: We,, ||W]| = 1} for each T e M,.

Let then T be any multiplier in ,. That || T|| = sup{|| To W||:
We, || W|| = 1} is obvious. Let ¢ be any positive number. Choose
feL, such that || f|[, <1 and || T(f)|[,>|| Tl — ¢/2. Let {W,} be a
minimal left approximate identity for %,. Then lim, W, = I in
KM, A,) where I is the identity operator on L,. By (4) we have
lim, ToW, = TeI =T in &M,, A,). By Lemma 2 we know that
lim, To W, = T in the strong operator topology. In particular, there
exists some index 7 such that || T W.(f) — T(f)|] < ¢/2. It follows
that

1 T W ()l = | TA) [l = [ TC) — Te W(f) I,
2T —¢2—¢2=|T|—c¢;

but ([ Te Wi(N)ll, = (| To W, (|-l f1l, = || To W, I, so that || ToW,|l =

[| T|l — e. Since ¢ was arbitrary and || W, || <1, we have shown that
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[Tl =sup{|| T-W|: We A, | W| =1}
We shall identify L! and 2, for several particular cases.

Case I. p =1. Since L, is a Banach algebra with 2-sided mini-
mal approximate identity, it follows that L! = L, and || W,|| = || f .
for all fe L,. Because L,xC, is dense in L,, it follows that 2, is
isomorphic to L, as a Banach algebra. Thus, in this case, Theorem
7 is the well-known fact that a bounded linear operator on L, commutes
with all left translation operators if and only if it commutes with
all left multiplication by elements of L,.

Case II. G is Abelian and p = 2. Let X be the character group of
G and 0 the Haar measure on X such that || f||, = || f|. for all fe L,.
In this case there is an isometric isomorphism ~| M, — L.(X) which

is onto L.(X) and such that 1/’(}) = T-f for all ge L,. Evidently,
L is just {fe L;: fe L.(X)}. It is known that there is a net {g9.} in
the set {f:feCwn(G)} such that |/ g.|l. =1 for each index « and
lim g,(x) = 1 uniformly on compact subsets of X. Consequently, the

set {ix}: he L, fe Cy} is dense in the set {g € L,(X) N L.(X): g vanishes
at oo}. It follows that , is isomorphic in this case to {fe L.(x): f
vanishes at <o}.

Case 11I. G s compact and p # 1. In this case L, is a convolu-
tion algebra ([2] 28.64). Thus, L' = L, and W may be viewed as a
non norm-increasing linear operator from L, into U,. Since C,C
L, N L, it is not difficult to show that W is an isomorphism into .

Let fe L, and choose a minimal approximate identity {f,} for L,
out of Cy. Then {fxf,} converges to f in L,. Consequently, { W, }
converges to W, in U,. All this shows that, in this case, %, is the
closure in B, of the set {W,: fe L,}.

Suppose now that G is also infinite. Then L, has no minimal
1-sided identity (see [2] 34.40. b); since 2, does have one, it follows
that W is not a homeomorphism. Since W is a continuous isomor-
phism, the open mapping theorem implies that W|L,— 2, is not
onto .

Case IV. G is compact and p = 2. Let Y be the dual object of
G as in [2]. For the spaces E,(2), €.(2), and &,(2) and the norms
[| l. and || ||, on these spaces, see [2] 28.34. It is an easy consequence
of [2] D. 54 that

(5) [ Ell. = sup{l| A-El;: Ae C(2), [[All. = 1}
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for all E€@_(2). For the definition of the Fourier-Stieltjes transform
f of a function fe L, see [2] 28.34. By [2] 28.43, the mapping

PN ~
| L,— &,(2) is a surjective linear isometry and, by [2] 28.40, fxg = fog
for all f, ge L,. Consequently, by (5),

(6) | Wil = [ fll. forall felL, .
Since C,, C L,, it follows from [2] 28.39, 28.27, and 28,40 that the set

A~

{f: feL,} is a dense subspace of &,(Y). Since 2, is just the closure
in B, of the set {W;: fe L,}, it follows from (6) that 2, is isomorphic
to ,(2) as a Banach algebra.
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SEQUENCES OF QUASI-SUBORDINATE FUNCTIONS

JAMES MILLER

In this paper a theorem is proved which connects bound-
ed analytic functions in the unit disk and sequences of quasi-
subordinate functions. As an application a necessary and
sufficient condition for certain sequences of quasi-subordinate
functions to converge is found.

Let f and F be analytic functions in |[z| < R. If there exist
two functions ¢ and @ which are analytic in |z| < R and satisfy
w(0) =0, [4(2)| =1, |0(k)| <R, and f(z) = ¢()F (w(z)) for |z| < R,
then we say that f is quasi-subordinate to F' in |z| < R and write
f<,F. Without loss of generality we may assume that R = 1.
This class was introduced by Robertson [2, 3].

We note that there are two special cases of quasi-subordination
which are of interest: If ¢ is the constant function one, then f is
subordinate to F, and on the other hand, if ® is the identity func-
tion, then f is majorized by F.

Let B denote the class of functions # which are analytic in
|z] <1 and satisfy |6(z)| <1 for |[2|<1. Then the functions ¢
and @ which are defined above are elements of B. In this paper we
prove a theorem which connects functions in B and sequences of
quasi-subordinate functions. As an application we find necessary and
sufficient conditions for certain sequences of quasi-subordinate func-
tions to converge. This is a generalization of Pommerenke’s results
[1] on sequences of subordinate functions.

Let {f,},n=1,2, .-+, be a sequence of functions which are
analytic in |[z]| < 1 such that f, <,f,., for each n or f,., <,f, for
each n. When considering the convergence of such sequences we
need to require that either the sequence {f,(0)} converges or the func-
tions agree at a single point. In this paper we shall assume that
the functions agree at a single point. Further we may assume that
the point is 2z = 0 for if the functions f, agree at the point a = 0
then we could consider the functions ¢,(z) = f.((z—a)/(1—az)). We
will use f,(0) = 0 for all n, otherwise the function ¢ would be identi-
cally one. The proof for the case where {f,(0)} is convergent is
similar.

THEOREM 1. Let {f,} be a sequence of functions which are ana-
lytic in |2| <1 and satisfy f.(0) = 0, a, = f1(0) £ 0, and £.(2) <,fuss
and let ¢,.,, W, € B and ®,,,(0) = 0 be such that

437
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fn(z) = ¢n+1(z)fn+1(wn+i(z))
Sfor |z| < 1. If 3w, arg ¢,(0) converges and lim,_ ., = a, |a|< «,
then Tl7-. 6.(0) converges.

Proof. We observe that if m <n, then we have f, <,f,. Thus
for m < n there are functions ¢,,, ®.,€ B where ©,,(0) =0 such
that

Sn(2) = ma(2) fo(@na(2))

for |z| < 1. Let ¢,,.,(3) = ¢,..(2). We now observe that
Su(0) = $nn(0)@74(0).f5(0)

or

(1) U = Gma(0) @ (0)ts,

Since 0 < |a, | =< |a,| for m < n and a,— «a, there exists an
integer K such that if » > m > K, then

(2) lg:—lt<e.

From (1) and (2) we see that

1l—e< | &n

= | Pna(0)@5n(0) | = | $ma(0) [ = 1.

n

We now observe that

n

¢mn(0) =k I”-.L[ ¢k(0) .

=m+1

Thus we have
1—e<| I s0|=1

for n>m > K. Since >\, arg 4,(0) converges this says that [, 4.(0)
converges. Further we have that ®,(0) —1 and w,,(0) = 1.

In applying Theorem 1 to sequences of quasi-subordinate functions
we will also need two lemmas for functions in B. The proofs of the
lemmas are essentially in [1].

LEMMA 1. Let ¢ B, ¢(0) =0, and satisfy |¢(0)| =0 >0. Then
the mapping w = ¢(2) maps the disk
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o
2 =9
Fl<e 1+ VvV1-o®

univalently onto a region that contains |w| < 0%

LEMMA 2. For e>0 and 0 < r <1, there exists an 17 >0 ((e, 7))
such that if ¢ € B satisfies ¢(2) = Dimo Bu2™ and | B, — 1| = 7, then

lg(z) — 2" | <e, for |z, <r.

THEOREM 2. Let {f,} be a sequence of analytic functions in
l2] <1 such that f,(0) =0, f, <,fur and a, = f2(0) %= 0, and let
Bni1, Dny € Band @,,,(0) = 0 be such that f,(z) = ,1+1(2) fr11(@,4.(2)) for
|z] <land 35, arg ¢,(0) converges. Then the sequence {f,} converges
uniformly in |z| < r for every 0 < r <1 of and only if

lime, = «, la| < oo .

Proor. If {f,} converges uniformly in |z | < » for every 0<r<1
then «, = f.(0) converges. Further since |a,| = |, ], fu(0) =0,
and «, # 0 we see that lim, . a, =a =0 and |a]| < <.

Let w,,,, ¢,1.€ B, and ®,,,(0) =0 be as defined in Theorem 2.
Further for m < n, let ¢,,, ®., € B with ®,,,(0) = 0 be such that

(3) Su(2) = Gun(2) fo(@0a(2)) -

Suppose that a, —a, |a| < . Then by Theorem 1 the product
115 ¢.(0) converges. We will first show that {f,} is a normal family
in|z|<1.

Let », 0 < r < 1, be fixed and o determined by

vr=—9 .
R WY

Since ¢ < 1 and «, — a %= 0, there exists an integer N, such that

>0, for n > m > N, .

-
a,

Further, since | ¢,,(?) | =<1, we have |¢,,(0) |7 =1. For n>m > N,
we have @),,(0) = a,./(®,$..(0)) or

1 a,,
$nn(0) @,

Thus by Lemma 1 the mapping { = @,.() for n < m < N, maps
|2|<1V 7 univalently onto a domain that contains [{| < r. Let «,,
be the inverse of { = ®,,,(2) in |{]| < r, then

(4) | @ (0) | = |
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[YmaQ) | SV 7

From (3) we may write

n ——————= fn(¥ma(C)) » f .
Fa@) = ¢M(Wn(c))f (¥ma(C)) or [{|<7r
For || < r we have
Sn(2) 1
0] = max | LB < g

From Lemma 2 with & = 0, given ¢ > 0, there exists an 7 such that
if |Bpb—1| <7 then |¢(z) —1|<e for |z|<r. Since JI%-.:(0)
converges by Theorem 1 and ¢,.,(0) = [[f—ns 6:(0), there exists an
integer N, such that if » > m > N, then |¢,,0) — 1| <. Let N =
max(N,, N;). Thus, by Lemma 2 we have that | ¢,.(2) — 1| < ¢ for
|[z] <»rand n >m > N or

min |g,,(2) | =1 —e¢.

lzl=7

Hence, for n > N and |{| < r we have
1£0) <1 max |fyu(e) |-
1 — ¢ sy

Thus there exists M(r) such that

(5) [ fa(®) | = M(7)
for all n, that is, {f,} is locally uniformly bounded. Therefore {f,}
is normal.

Let {f, } be a subsequence of {f,} which is uniformly convergent
in |z| =7, for every r, < 1. Let f be the limit function of {f, }.
Let ¢ >0 and » < 1. Then choose y, such that

[fa, () — F(2) | < ¢/3

for y =y, and |z| Z<r. From inequality (5) we have that the se-
quence {f,} is bounded in |z| < » and thus equicontinuous in [z | < 7.
Therefore there exists a 6 > 0 such that

for |2, — 2, | <0, |2, |Zr+0, |2|=r-+ 0, and for all n.

Using (4), the convergence of >,7_, arg ¢,(0), and applying Lemma 2
we have that there exists an integer M, such that if » = m = M,, then

| 0,a(2) —2| <0, for|z|=r



SEQUENCES OF QUASI-SUBORDINATE FUNCTIONS 441

where M, is chosen so that | ®,,.(0) — 1| < » for a suitable . Again
making use of Lemma 2 we have that there exists an integer I,
such that if n > m > M, then

l¢mn(z)_1|<€/3M(/")’ fOI' |2[<’r-
Let M = max {M,, M;, n,}. If M<k<mn, and |z| < r then

|fu2) = f(2) | = [fu(®) — fa,(2) | + [ fa,(2) — f(2) |
< &f3 + [ fa,(2) = Bra, (RS0, (Win,(2)) |
=¢e8+ [, () — 1o (@10, (2)) |
+ [ fo (@1, (2)) [1 — G1n (2)] |
< ef8+¢/3+ M(r)e/BM(r) =¢

for |z] <» and k£ > M. This completes the proof of Theorem 2.

THEOREM 3. Let {f.} be a sequence of functions analytic in
2| <1 such that £,(0) =0, a, =f10) %0, and foo <,fn and let
Guit, Wy € B and @,.,(0) = 0 be such that

Fui1(2) = 6,11(2) fu(@,4.(2))

for [z2] <1 and >y, arg ¢,(0) converges. Then the sequence {f,} con-
verges uniformly in |z| < r for every r <1 if the sequence {e,} con-
verges. The limit function is constant if and only if

limea, =0.

n—o0

The proof of this theorem is similar to that of Theorem 2 and
Pommerenke’s Theorem 2 [1].
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THE HASSE-WITT-MATRIX OF SPECIAL
PROJECTIVE VARIETIES

LEONHARD MILLER

The Hasse-Witt-matrix of a projective hypersurface de-
fined over a perfect field & of characteristic p is studied using
an explicit description of the Cartier-operator. We get the
following applications. If L is a linear variety of dimension
7 + 1 and X a generic hypersurface of degree d, which divides
p — 1, then the Frobenius-operator % on H*X-L; Z.y) is
invertible.

As another application we prove the invertibility of the Hasse-
Witt-matrix for the generic curve of genus two. We don’t study
the Frobenius &  directly, but the Cartier-operator [1]. It is well-
known, that for curves Frobenius and Cartier-operator are dual to
each other under the duality of the Riemann-Roch theorem. A similar
fact is true for higher dimension via Serre duality. We have there-
fore to extend to the whole “De Rham” ring the description of the
Cartier-operator given in [4] for 1-forms. We give this extention in
§1. Diagonal hypersurfaces are studied in §2 and the invertibility of
the Hasse-Witt-matrix is proved, if the degree divides p — 1. The
same theorem for the generic hypersurface follows then from the
semicontinuity of the matrix rank. The §3 is devoted to hyperelliptic
curves and is intended as a preparation for a detailed study of curves
of genus two.

1. The Cartier-operator of a projective hypersurface. We ex-
tend the explicit construction of the Cartier-operator given in [4] to the
whole “De Rham” ring, but restrict ourself to projective hypersurfaces.

As an application we show: Let V be a projective hypersurface
of dimension n — 1, defined by a diagonal equation F(X) = > *, a, X7,
a; €k a perfect field of chark = p > 0,a; # 0. Let X be a linear
variety of dimension ¢ 4+ 1. If » divides p — 1, then

F L HY XV, Ory) > H(X-V, Ox.y)
is invertible, .# being the induced Frobenius endomorphism. We have
to rely on a technical proposition, which is a collection of some lemmas
in [4]. We give first the proposition.
PropPOSITION 1. Let
Vv E[T]—E[T] (T= (T, -+, T)
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be k p™'—linear and

T if p=pey
0 else .

wuw={

Then the following holds:

(1) 4(Ty =+ Tuh) = T, +++ Tuh, for some hek[T]

(2) LetD,= T.(3/0T,) and D,g = 0 for a given 1 < p < n, then
¥(Dyh-g) =0

(3) Let D.g =0, then y(h*"'D,h-9) = D,hy(g).

Proof.
(1) By the p~'-linearity of -+ we may assume % to be a monomial.
The statement follows then directly from the definition of «.
(2)  is p~*-linear, so we may assume % to be a monomial

h=Tne Ty, O0s=msp—1

(say ¢ = m), then Db =r,+h. If v, =0 then (2) is trivially true.
So 7, = 0. Again because of p~'-linearity we may also assume ¢ to
be monomial.

But D,g =0, so

g = Tyteee Tprpt 0=vn=p-1.

So the exponent of T, in D,h-g is r, and 0 < r, < p — 1, therefore
not divisible by p. The definition of + gives

W(D,heg) = 0.

(3) We may write
h=fo+fisTut oo +fTiy, O=r=p-1
and
D,fi=0.
We proceed by induction on 7. 7 =0 clear. Let » =1, then & =

f + T,h with D,f =0 degTﬁ < r. Now

p—1], p—1 ) — AY] D#Tﬂ D#E
Tk mum)(an7T+ E)'

By p~*-linearity of - and induction assumption for 2 we get

V(9 TE WD T,h)) = Tuhiir(g) + Tup(g-h*DR)
= ")k(g)(T;J_L + T#D/J—L)
= Dy(T.h)4(9) -
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On the other hand

r oP
Te=1pr=t — (h — F)P~! = pP—! ,
: (b= py= =+ 2

where P is a polynomial in f and A. We have
D(Tt) = D,(h — f) = D,h .
So
T?*h*=*D(T.h) = h*~'D,h + D,P .
Multiply by ¢ and apply +, then one gets
D,y (9) = Du(T)4(9) = y(h*""D,h-g) + y(D,P-g) .

But by (2)
¥(D,P-g) = 0.

Let F(X, .-+ X,) define a absolutely irreducible hypersurface V/k
in &, , chark = p > 0. We denote by f(X,--- X,) an affinization of
F. Let F, = (0/0X,)F, similar f, 1 < < n. We assume f, not to
be the zero function on V. Let K = K(V) be the function field of
V. We assume that K = K*(x, -+ &; -+- x,) for any index j. The «;
are the coordinate functions and #; means omit »;. As a consequence
of these assumptions, we have that for a given index 7 any function
z € K can be represented modulo ' by a rational function G(X, --- X,),
which is X;-constant, i.e. such that 0G/0X; = 0. Write

Fii, = (X;, ooe X; - X,)7'F .

MARRAE XTI

DEFINITION 1. Let

J . = . . ) =1
VF-il""”” m = Ffpl,~~~,7,,,.,no”‘}/‘° [77RTeN i

»

Let w = 3%, huyyepi ode;, A = -+ A dx; be r-form on V. Put

v
J
o dwy A -ee Ada,
Ry .
i Ia

@;

Define
Clw) = 20 Ve Bigyei, — ) @i s,
Rt

The definition is justified by the following theorem.

THEOREM 1. (1) C s p~*-linear
(2) If w =do, then Clw) =0
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(3) If =2 2072 N\ o +- Ndz;, then C(@) =dz; N\ <+ Ndz; .
In other words, if ome restricts C to Zj,, the closed forms, then

C: Z;r/k iand Q;/k
18 the Cartier-operator of V [1].

Proof of the theorem.
(1) The p*-linearity follows from the p~-linearity of .
(2) Let @ =234 i, Pipeoni,_ 0% A »++ AN da; _ be a (r — 1)-form,
then

9

i1yeenip ) O dw; ce dw; .
i axg-((p" 5 N G e N By

and

To compute C(d®p) we have to compute

@i(iﬁ -fn)

39(;5

for every system (5, 4, »+-, 4,_,).
Now remembering the definition of " we have to show

W(F”“anFXil cee XZ.T_IDJ.QD) =0
in order to get C(dp) = 0.

We have to use the above proposition. We apply first (38) and
then (2) and get:

V(F*' D FX; o X Dip) = D, Fy(X; -++ X; . Di®) = 0.
Remark, that we assume j # (4, + -, %,_,) otherwise
dxj VAN dxil N e A dxir—-l =0.

That shows C(dp) = 0
(3) Let w =207 eee2fiide,, A\ <o+ N dz;.
We have
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dz,,;l /\ s /\ dz".'r — Z Dj]_zil ceo Dj,rz»,'r dle /\ coe /\ dxjr ’
Jyeeedp le see xj

0

axi )

r

D; = w;

To Compute C(w), we have to work out
U= y(F* D, F-Z{"+D;Z;+++Z}'D; Z; ) modulo F .
Z;mod F = z; .
We apply several times (3) of the propositition and get
U=D,FD;Z; -+ D; Z; mod(F).

Therefore

C@) = 3\ D, fD, 2 -+~ D 2 P N 22 N 4o,
Ipdr xnfnle [P x].T

=de A --r A dz, .

All forms of highest degree n — 1 are closed. We use the fact,
that H°(V, 2*™) has a basis of the following form

W, = T e T, .
where

:docl/\ cee A d,,

,
Xy oo Tofn

SMu; < r;r=degV and 1Zu;.
i=1

Recall z; = X;/X, are coordinate functions on V and of the affinization
of F, f, = 0f[0x,.
We get the important corollary to the theorem.

COROLLARY 1. Let A,, be the matrixz of the Cartier-operator on
H(V, Q"™ with respect to the above basis w,. Then

A,., = coefficient of X° in (F?™'- X"

n
Xv=Xpooer Xin, S =30 =7
=0 7

1 =0

15w,

1< o, for 1 =1--vm.
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Proof. By definition

. x;'ftl) dxl /\ et /\ dﬂb‘n_l

C(wu) = YFiey x;‘rl **
Vg 7

= P(f*P "o, .

Now recall

W)

_ V( Fr1X ..

br
0

X’“)modF

n
Zui:T, 1§u,‘, 7;:1"‘”/-
=0

If A,, is the coefficient of X’ in (F77'- X").
Then
Clw,) = 3 A, 20 2p0, =3 A,,0,.

lsvisr
T=1se+7

Notice

n
7=

n
U, =20 =r, 1Z2u,1sv,1=1+--n.
0 i=0

REMARK. We have now on explicit description for the Cartier-
operator on HYV, 277). We can use Serre duality H(V, ;)Y =
H*\(V, 7). Under this duality C is the Frobenius .# on H YV, &y).
We have therefore also an explicit description for &,

2. The Cartier-operator of a diagonal hypersurface. Let
F(X) = >7,a; X7 define a “generic” hypersurface. To compute the
Cartier-operator, by the preceding discussion we have to analyse

$(FrXY) (z wi= 1, s> o) .
i=0

Let us adapt the following notation:

n
]

n
o :‘oé...‘oiﬂ a =TJ]afi, X*" =] XHt,

=0 =0

ful:éui, u>0=u>0 (=0---m).
=0
THEOREM 2. Let
chark = p > 0, F(X) = S a: X7, [la;#0ek
=0 =0

Vik is defined by F. Suppose r divides p — 1. Then the Cartier-
operator
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C: Ho(V, Qi) — Ho(V, 2w

1s tnvertible.

Proof.

pro s, = Dlgaye

|m|=p—1 m.

Using p*-linearity of + we get

i SEED V=10 CEUT e S &

|m|=p—1 m' |mi=p—1 m'

We put @ = a"?, and rm + u = pv. Notice if # > 0 and |u| = 7, then
also v > 0 and |v| = r. If we write

PEFPTXY) = > A,LXT,
[vi=r

>0
then we have
if rm=@E-Lv+v—u

AL, = lu|=|vl=7r >0 v>0
0 else .

Let us now assume:
p—1=rs.
If » divides v — w put v — 4 = r-E(u, v) then

L g if rlv—-u and m = sv + E(u,v)
Ar, = m!

0 else .

We fix now a total ordering of wu,v. Let us order the n-tuples
(w, «+-u,) resp (v, --+7,) lexicographically and put

Uy = fr—Zn]u.; resp. vozr—i]vi
i=1 i=1
v < % means now, that either v, <wu, or v;,=u, for 1=1---5 — 1 but
v; < u;. If any case, if v < u, then v; < u; for some j. We claim
if v<u, the 4,,=0.

Case 1. » does not divide v — v, then 4,, = 0.

Case 2. 7 divides u —v. Now if v <u then for some j uw; — v; >0
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and » divides %; — v;. But r = w; and v; =1, so r—~1=u; — v,
therefore r cannot divide ; — v;. This contradiction shows, if v < u,
then 4,,=0. A,, is therefore a triangle matrix.

What is the diagonal?

with m = s-u. Therefore

(et 4,.)7 = II <__1 )af 0
u (su)!
COROLLARY 2. The assumptions are the same as in the theorem.
Then

F:H NV, &7y) — H 'V, &) (F 1is the Frobenius morphism)

s invertible.
Proof. Clear by Serre duality and the fact that C =72

The Cartier-operator of W-H. The differential operator C as
given in Definition 1 on ' is by p~-linearity completely determined
on ' by its value on @ = h-dx, where 2 runs through a set of coordi-
nate functions.

We have C(w) = z'y(xh)dx, that notation is only intrinsic, if
dw = 0, because - depends on the coordinate system. If we choose a
different coordinate system, then we get in general a different opera-
tor; but for w with dw = 0, we get the same, namely the Cartier-

operator.
That fact can be exploited in the following way. Suppose

W=l =2+-=2=0NH.

We write now C, resp. C, for the the operators. The above defini-
tion shows @i., Kdx,; is stable under C;. But by the property of 4,
Ww(X;H) = X,;H for some H, we have for

@ = w:hdx; 17 <,j arbitrary

Let 2 = {®, -+~ .}, then A2y, P Bi., & xdx; is stable under C,. By
the exact sequence

1]
0 — A%y, + g O uQx; — Qe — Ly — 0

Cy induces an operator Cy on 2,. Cy has again the properties
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(1) Cy is p'-linear
(2) Cy@h)=0
(3) Cyph*'dh) =dh .

If we restrict C; to the closed forms on W, then C,, is the Cartier-
operator.

Let now L be an arbitrary linear variety. After a suitable coordi-
nate change we may assume L is the intersection of some coordinate
hyperplanes. W = L-H has then the above shape.

Let us assume that the hypersurface H has a diagonal defining
equation of degree d diving p — 1, » = char k. Then the above Theo-
rem 1 shows that C, is semisimple on Z},,. In the same way as
before we can extend Cj, to any 2%, in particular to 2}, where
m = dim W. As result of this discussion we get:

THEOREM 3. If L is a linear variety of dimension m + 1, then
there exists a hypersurface H of degree d, which divides p — 1, such
that

%HM(L.H’ ﬂL.H)"*Hm(L'H, ﬁLH)

18 invertible.

3. The Cartier-operator of plane curves. For curves the explicit
description of the Cartier-operator is of special interest if one wants
to study, how the Cartier-operator varies with the moduli of the curve.
Unfortunately one is restricted to plane curves, because the above ex-
plicit form of the Cartier-operator is available only for hypersurfaces.

If one specializes the above results to plane curves, one has to
assume, that the curve is singularity free.

The space W = {homogenous forms of degree d — 3} is for non-
singular curves V of degree d isomorphic to H°(V, 2}, under

W~ HY(V, 2
P(X) — P(z)o,

where the coordinate functions are given by
z=X/X,, y=X,/X, mod F,

F being the defining equation for V and f(z, y) the affinization, f,
denotes 0f/0y. With that notation w, = d=z/f,.

But it is important to know, that one can give a similar description
also for singular curves. Then W is the space of P(X), which define
the “adjoint” curves to V. These are those curves, which cut out
at least the “double point divisor”.
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To give an explicit basis depends on nature of the singularities.

Hyperelliptic curves: Let p = chark > 2.

For a detailed study of the Hasse-Witt-matrix of hyperelliptic
curves one needs the explicit Cartier-operator with respect to various
“normal forms”.

Let the hyperelliptic V' be given by ¥* = f(x), deg f(x) = 29 + 1
and such that f(x) has no multiple roots. V has a singularity at
“infinity”. One could apply the above method and work out the adjoint
curves in order to get a basis for H(V, 2},). But we have already
a basis, namely if w = dz/y then {v‘w|i =0-.- g — 1} form a basis.

We specialize the results of §2 and get from Corollary 1 as matrix
for the Cartier-operator with respect to the above basis (let us put
» — 1/2 = m):

A, ., = coefficient of x**! in (f(x)™x**) 0 < ;’f <g-1.

Legendre form: We assume now the defining equation in Legendre
form.

f@)=a@—-DII@—»r) 72071
=i NE N~ 0,1

Notation: Let

ol =0+ - +p,
A = AL eee N2,

The permutation group of r elements S, operates on the monomials
NN e S, .
Let G, be the fix group of A and G* = S,/G,. Let
H®0\) = >, ame

reG(0)

Apparently
He =H®, iff 5=7m().
We may therefore assume
l=sop=s0=0.=m.

For given

0<V<g—1 let o= |p|—vp+u.
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Put

o= () (7)

and

Al = ZaBHO0N) g2y g g1

o
the summation condition being:
0=p=s--=20,=m, p=|pl—v+u, 0=0=m
vp—u+m= o= vp—u.

We state as a proposition

PRrROPOSITION 2. Let be A,, 0= :’f < g — 1, as defined above, and
o = da/y, then

Clx"w) = >, A, 2w
0 1

v=g—-

is the Cartier-operator.

Applications: We want to investigate, when the Cartier-operator
is invertible. It seems that an answer to that question, without any
restrictions is not available. It is therefore worthwhile to have various
methods even in special cases.!

We restrict ourself to genus 2, although the method could be
applied to higher genus, but the calculations would be very easy.
Let » >2 and g = 2

le. =@ — D@ — )@ — W)@ —N), MFENFOL 1£7.

The notation is the same as above.
H®(\) is homogeneous in the \’s of degree 3m — |p|, m = (p — 1)/2.
We have

A= S anHON

A
IA

U
v 1

Oo=10l—v0o+u vp—us|p/Zvp—u-+m.

We want to know of A2 ,, what the forms of lowest homogeneous degree
in the \’s are. We have to give 0| the maximal possible value.
We use the shorthands

v Added in proof: We settled this question in the meantime, see [6].



454 L. MILLER

(%) =1()

and D(u, v) = degree of the lowest homogeneous term in A2,. In the
list below is p, = max [o| — vp + u.

(,v) | maxfo| | o | Dlw,)

0, 1) 3m m—1 0

1,0 m—1 m P

1,1 3m | m 0 .

We get therefore:

A? AP, = terms of degree p — 1 + higher terms
A? Ar, = terms of degree p + higher terms .

The lowest degree term L in det (4,,)? is given by

L=m3 (Z‘)wa)

O+ 0+ 05 =m
000205

Notice, if p # p, then H*® and H @ have no monomial in common.
Therefore L is not the zero polynomial. We are able to specialize
the variables (A, My, \y) in the algebraic closure of k%, such that
det (4.,.) # 0. In other words, there exist curves of genus two with
invertible Cartier-operator.

We do not know, what the smallest finite field is, over which
such a curve exists.

REMARK. For large p we could push through a similar discus-
sion for higher genus. We omit that, because there is a more elegant
method for large » by Lubin (unpublished). Let y*=x*"'4ax’™+ .
The claim is, that for large p (depending on g) and variable a the
Hasse-Witt-matrix of that curve is a permutation matrix.
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A THEOREM ON BOUNDED ANALYTIC FUNCTIONS

MicHAEL C. MOONEY

The purpose of this paper is to prove the following
TueoREM; Let ¢y, &2, -+ be an infinite sequence of func-

2
tions in L0, 2z]) such that L(f)=lim So fe®¢,(0)do exists
forevery fe H*, Then there is a ¢¢< LY([0, 2z]) such that
2

74

L(f) = 0f(ei")gé(ﬁ)olﬂ for all fe H~.

Thxoughout this paper we will use the following notation and
conventios: D will denote the unit disc and T its boundary. In
order to save time we will avoid making distinctions between T and
[0, 2] if no confusion results. Similarly, it will be convenient to
treat elements of H~[= H>=(D), the bounded analytic functions on D]
as though they were the same as those functions on 7 with which
they are mturally identified.

If aweD, the symbol g, will stand for the function z — g(wz).
C(T) wrillstand for the usual space of continuous functionson 7. A
will denote the subspace of C(T) of functions analytically extendable
to D. il denote ordinary Lebesgue measure divided by 27 and
“WLOG” means “without loss of generality”.

In their paper [4] Piranian, Shields, and Wells observed that the
theorem stated above would imply their result, namely that if a,, a,, - - -
was a sequence of complex constants such that lim,., > .7, a,b,r"
exists foral fe H* [with Taylor coefficients b, b,, «-+], then the a,’s
are the the nonnegative Fourier coefficients of an L'([0, 2x]) function.
They alsomentioned that our result here was a question raised in [1].

Kahane [3], using a somewhat different method than that in [4]
showed that under the hypothesis of our main theorem, there was a ¢ ¢
L' ([0, 27] such that the conclusion held for all f € A. He went further
to show that the subset of H= for which the conclusion held was
large in sme sense. Qur proof here makes use of Kahane’s result.

2. Remarks and lemmas. First, given the hypothesis of the
main thern we may assume WLOG that the ¢,’s are uniformly
bounded in I! norm. To see why this is so we observe that for each

", g — Lﬂ(g)ngqun is a bounded linear functional on A. By the

uniform houndedness principle, the norms of the L,’s as elements of
A* are wiformly bounded, say by M. By the Hahn-Banach Theorem,
each L,, maybe extended to an element of C(T)*with norm less than

457
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M. This extended functional corresponds in the usual way to a Borel
measure p, on T having variation norm less than M. For each =,
U, — \@, is also a finite Borel measure on 7. Since this measure is
orthogonal to A, it must be absolutely continuous [by the classical
F. and M. Riesz Theorem] and, in turn, so must y,. Hence we may
replace ¢,’s with dy,’s if necessary. From here on we assume ||, <
1, for all n.

Suppose now for purposes of contradiction that there is an fe
H= such that L(f) ;&S fé¢ where ¢ is the function referred to in
Kahane’s result. We nTlay assume WLOG that ¢ = 0 [simply subtract
¢ from ¢,’s beforehand and that |f|. = 1. We also assert WLOG:

LEMMA 1. There exists a bounded, increasing fumnction B on T
such that

tim | 16,1 = | ds

n—0d

whenever E is a finite union of closed subintervals of T.

Proof. Since all our previous assertions remain valid if the ¢,’s
are replaced by an infinite subsequence, we will do this if necessary
so that the functions Slgzs,,]’s converge pointwise on T to a funection
which we call 8. This construction and the conclusion of the lemma
follow from the Helly’s Theorem. [See Zygmund [5] IV-4.6-(p. 137).]

We consider the fact that:

limlim | f.6, = 0 % lim lim S fun = L(F)

r—1— n—co S N—00 Pol—

despite the fact that f.’s are uniformly bounded and converge to f
in measure. It is reasonable to subspect that in some useful sense
of the word that the support of S f6, tends to become concentrated
on smaller and smaller sets as n — .

To be more specific, our plan at this point is to produce a sequence
of pairwise disjoint “nice” closed sets E,, K, --- such that S I
tends approximately to L(f) while S | /6, remains uniformly <'s €

T—
(L(f)]. [We will find that it is expedlent to replace f with f — f,
for some 7 in order to do this.]

Ultimately we will construct ge H> so that ¢ is approximately
(=1)" on E,. The function gf [actually we will look at g x (f — f,)]
will give us a counterexample to the condition that L(h) exists for
all he H=, and hence we will have a contradiction to the assumption
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L(f) = 0.

Let &, = (1/10)|L(f)|. In order to prove Lemma 2, it will be desir-
able to keep the singular part of g small, say less than &/2. To be
sure of this we can choose a closed subset E of the support of the
singular part of 8 such that outside of E, the singular part of g
has variation norm less than ¢,/2.

Let g denote a Rudin-Carleson type function such that ge A4, g is
zero on E, and ¢ is close to 1 outside some neighborhood of E. Such
functions were used in both [3] and [4], and a proof of their existence
is available in Hoffman [2] p. 80, 81. [See also [2], Notes on p. 95.]
If the original ¢,’s are replaced by g¢gg.’s, we may proceed as before
with our new set of ¢,’s, ¢, B, etc. The new dB = |g| times the old
dB, and hence the singular part of the new B will have variation
norm less than &,/2. This process gives us a new value for L(f),
however, and we must be sure that the new value is close enough
to the old that our assertion is still valid when the new value of L(f)
is used in the expression for ¢,. To do this we observe that the
functions f¢, also satisfy the hypothesis of our Theorem [in place of
the ¢,’s] and that by Kahane’s Theorem, there is a € L'([0, 27]) such
that

lim SThfngn - ST’“” for all he A .

n—

In particular this is true when h = g. Since + is absolutely con-
tinuous and since we can make ¢ uniformly as close to 1 as we like
outside neighborhoods of E taken as small as we like, the new L(f) =

S g+ can be taken as close to the old L(f) = \ Jr as we like. Hence
r JT

WLOG we may assume that the singular part of 8 has variation norm
less than ¢,/2. Let us now choose 6 > 0 such that

ME) < & — SEdBa < &2 — STdBS

where G, and B, are the absolutely continuous and singular parts of
B respectively. We note that if J is a finite union of closed intervals,

and A\(J) < d, then for » sufficiently large | [4,.] < &/2.
J
Choose 7€ (0,1) such that M(F) < 6 where

F={0]0€]0, 2a], [f(e”)| — fr(e*)]| = &} -

Let G be an open subset of T such that F < G and \MG) < é.
Since

L(£) = 0, L(f) = L(f = £ = lim | (7 = £ag, + im | (£ = £)s..
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[We may choose subsequences of the original 4,’s if necessary in order
to guarantee the limits exist.] Now for each =, S [(f — fé.] =&
-G
Hence H (f — f)d. — L(f)| < ¢, for all sufficiently large n.
G

LEMMA 2. There exists a sequence of sets E,, E,, +++; a sequence
of positive numbers 6, 0,, +++; and an increasing sequence of Positive
integers j,, Ja, +++ such that:

(a) Each E, is a finite union of closed intervals.

(b) Let E} denote the closure of the d; neighborhood of E;. Then
E;c@G.

() j#k=E/NE,=o. [Notethat this =N\E;)—0, and ME})—
0.]

(d) SG_E [6;,| < &f2 for k=1,2,---.
@ | =581, — 0 where 1o, — L(7)] < 22,

Proof. Construction using mathematical induction and the fol-
lowing scheme: After the first &k, E;’s, 0;’s and j,’s are constructed, we
pick 7.1, Eir1, and 6,,, in the order.

Using the fact that 1im§ 1 < (2%, [since MUk EY) <

noe JUp= By
MG) < 4] and the fact that S (f — f)¢. eventually comes within e,
G
of L(f), we have that for j,., sufficiently large: S e o Pi ] < (1/2)e
_,E

Up 1
and S L (f = £)6s,,, is within 26, of L(f).
—Up=1Fp

We now choose E,., inside the open set G — Ui, E). Using the
absolute continuity of ¢; ., we can choose E,., large enough that (d)

holds, and that | (f = g, is within 25, of L(f).

El+1

04+, Will now be chosen so that (b) and (c) satisfied. Obviously
our construction will satisfy (a), (b), (¢), (d). We may choosen an
appropriate subsequence if necessary in order that (e) be satisfied as
well.

3. Construction of the counterexample function.

LEMMA 3. Let E be a closed subset of T,& > 0. Then thereis a
Sunction, s, analytic on D such that:

(@) s has positive real part and |sl. <1

(b) 0eE=|sE’) —1|<e

(c) 0¢E=|s(e”)| < 2\n(E)/e-dist (¢, E)

@ [s(0)] < M(E)/e.
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Proof. Let U= (1/¢)wz on T [r; denotes characteristic function
for E]. Let u be the harmonic function on D corresponding to U on
the boundary [« is the integral of U with respect to Poisson’s kernel].
Let v be the conjugate harmonic function for % such that v(0) = 0.
Let g = w + iv. [g is analytic on D with positive real part.]

Note that for 0 ¢ E, [g(¢'?)| = |v(e*’)| where

iy — 1 (7 igy_ sin (0 — ¢) _ 1 sin (0 — ¢)
e = o Lu(e ey sl 27:55131 ey R

The maximum modulus of the function inside the integral occurs when
|6 — ¢| = dist (4, E). In order not to be troubled by awkward trigono-
metric expressions in the material to follow, we observe by some ele-
mentary calculations that |sin z|/(1 — cos z) < 2/|x| for || <7. Hence
we may assert that |v(e??)| < 2\ (F)/e-dist (4, E). Now let

s=9/l+9 =1-1/1+9).

(a) Since g is of positive real part, the range of 1/(1 + g) is
contained in the disc {z||z — 1/2| <1/2}. So is the range of s.

(b) For 0¢ E, Re (9(¢%)) = 1/ and hence Re (1 + g(¢”)) =1 + 1/e.
This makes |1 4 g(e”’)| =1 + 1/e and in turn |1/(1 + g(¢)) | < e/l +e) <e
whence [s(e’) — 1] = |1/ + g(e¥))| < e.

(c) For 6¢E,[s(e®)]| = |g(e®)|/I1 + g(e”)| where

[g(e®) | < 2M(E)/e-dist (0, E) and |1 + g(e®)| =1

(d) s(0) = g(0)/(1 + g(0)), where ¢g(0) = M(E)/e and the proof is
complete.

Construction. Given &,>0, ¢,>0; a sequence of functions s,, s,, ++-
is to be constructed as follows:

Suppose s,, s, +++, s, have been chosen and that S, = >k s; is
such that |S,|. = M, < <o, 8;,, will be of the form ¢,,,s where ¢c,,, is
a positive real number and s is related to E, . in the same manner
that s is related to F in Lemma 3.

We want ¢, sufficiently large and ¢ [in Lemma 3] sufficiently small
that:

() OeE,  =¢&log|S,(e")] = (—1)""(x/2)(mod 27) —7/2 within
an error of magnitude not more than ¢,. Note that we can pick ¢
dependent only on ¢, and ¢, [independent of k£ + 1], and ¢,., > M, so as
to make the ratio between |s,,, + S,| and |Re (s;.,)| small enough to
make log [S,,| close enough to log (c;+,) on E,, . for this purpose.
Furthermore, the choice of c¢,,, depends only on E,, E,, -, E,,.
We wish further to have:

(b) OeE,, = ¢log|S,(e?)| = (—1)*w/2(mod 27) — 7/2 within an

k+1
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error of magnitude not more than ¢, for all p > k. To do this, we
use the fact that for 6 € E, , p > k; then dist (¢, E, ) > d,, [independent
of p-note]. Hence |s,(¢%)| < c,)»(E’np)/e-dist 0, E,)< eME, )/ed,,.  Re-
call that the choice of ¢, depends only on S,_, and is independent of
E,,. Hence we may require that MZ,)— 0 sufficiently rapidly to
guarantee that 3,_.,c,ME, )/ed,, is always small enough that (b) is
satisfied. The above requirement also guarantees that 37, ¢,\M(E,,)/e
converges.

Each s, has positive real part and hence by Harnack’s principal
the S,’s must either converge to an analytic function, S, of positive
real part on D, or diverge to - on D. The latter is impossible since
each [S,(0)] < St-, [5u(0) | < St eMB,)fe < iy eME,)fe < 0. We
also note that our requirement in (b) above also guarantees that the
S,’s converge absolutely on each E,, and hence we also have: 6 ¢ E, —
& log |S| = (—1)¥x/2(mod 27) — 7/2 within an error of magnitude not
more than e¢,.

Let g = ¢*2"°sS, Then ¢ is bounded on D [in fact: e™%"* < |g(2)| <
e for all ze D]. @€ E, = argument (¢(¢”)) = ((—1)’x/2)(mod 27) —
/2 + error not larger than e,. This is, given &, > 0 we may choose
€,& so that 1 — &, < |g(R)| <1 + & for all ze D and such that
lg(e’) — (=1)?| < ¢, for all e E, . Now:

o = a0, = | 0 = £ou, + [, o0 = s,

+1, o7 = £, -

Recalling Lemma 2, we see that the first of these three integrals
is within 2¢(1 + &,) of (—1)?L(f); the second has magnitude less than
&(l + &) [by (d), Lemma 2] and the third also has magnitude less
than &(1 + ¢;) [from the way in which f, and G were chosen]. If

¢, is chosen small enough, g 9(f — f)¢;,, fails to have a limit as k —
T

c and we have our contradiction.
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DIFFERENTIAL EQUATIONS ON ABSTRACT
WIENER SPACE

M. ANN PIECH

The main purpose of this paper is to indicate a simple
method by means of which the work of L. Gross concerning
the Laplacian on an abstract Wiener space may be extended
to a certain class of pure second order elliptic operators
with constant coefficients. A short proof of uniqueness of
the solution semigroup of the heat equation will also be
given.

Our extension method is motivated by the often-used technique
of performing a change of variables in order to reduce a pure second
order elliptic operator on R" with constant coefficients to the Laplacian.
However, some fundamental dissimilarities between finite dimensional
and infinite dimensional potential theory must be taken into account.
First let us define an infinite dimensional Laplacian. Let H denote
a real separable Hilbert space and D’f(x) denote the second Fréchet
derivative of a real-valued function f on H. We may regard D*f(x)
as a bounded linear operator on H. We define 4f(x) = trace D*f ()
whenever D*f(x) exists and is of trace class. This obviously extends
the finite dimensional Laplacian. However, unlike the finite dimen-
sional case, the existence of D*f(x) is not sufficient to ensure the
existence of 4f(x). Another dissimilarity is a consequence of the
unavailability of a substitute for n-dimensional Lebesgue measure
which would be countably additive on the Borel field of H. Use of
Gauss cylinder set measure can provide an integration theory on H,
but this is not adequate for potential theory, and more particularly
for regularity studies. The reason for this inadequacy is that a
Brownian motion defined in H in terms of Gauss cylinder set measure
would have the property that the probability of a particle starting
at the origin and instantly leaving the ball of radius » > 0 would be
one.

To avoid this inadequacy, the concept of an abstract Wiener space
(H, B, ©) was introduced by Gross [1]. B denotes the completion of
H with respect to a fixed measurable norm ||-{|, and ¢ is the natural
injection of H into B. Gauss cylinder set measure on H determines
a cylinder set measure on B, which in turn extends to a countably
additive Borel measure on B (Wiener measure). The measure on B
determined by Gauss measure on H with variance parameter ¢ >0
is denoted by p,. For a Borel set I'c B and ze B, let p(z, I') =
p(I" — x). The measures p,(x, -) give the transition probabilities
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for a Wiener process with continuous sample paths initiating at the
origin of B.

Problems in potential theory are stated in terms of a fixed (H,
B,t). If u(t, x) is a real valued function on [0, =) X B and if

(to, %)) € [0, ) X B

is fixed, then we may consider i(x) = u(t, %, + x) as a function from
H into R. The second H-derivative of % at (¢, «,) is defined as

D u(t,, %) = D*h(0) .
The initial value problem for the heat equation can now be stated as

0

5 u(t, x) = trace D*u(t, ) t>0
[/

u(0, @) = f ()

where x varies over B. We note that we are only concerned with
differentiation in directions of H, even though the space variable
ranges over B. In an analogous fashion, open sets in B are appropriate
for a statement of the Dirichlet problem.

Let A be a fixed member of L(H) (the space of bounded linear
operators on H) satisfying

(a-1) A is symmetrie,

(a-ii) A = eI for some ¢ > 0,

(a-iii) A =TI + C where C is of Hilbert-Schmidt class.

We claim that within the context of a given abstract Wiener space
(H, B, ©) most of the results of Ref. [2] hold when the Laplacian is
replaced by the differential operator trace AD*f(x).

Properties (a-i) and (a-ii) guarantee that 1/ A exists as a positive
symmetric invertible member of L(H). When H is finite dimensional
it is customary to transform trace AD*f(x) into the Laplacian of f
by making the change of variables x —1 4 *%. Now H = B when
H is finite dimensional; otherwise H & B. Since x is to vary over
B, this application of a change of variables is meaningless for infinite
dimensional H. It turns out that, rather than transforming the
differential operator, we can meaningfully transform the fundamental
solution of the heat equation.

Let H, be the Hilbert space obtained by replacing the inner product
(,) on H by [k, k] = VA h,VAk). The invertibility of VA4 ™
ensures that [,] and (,) give rise to equivalent norms. Thus ||« ||
is a measurable norm on H,, and we may also view B as the com-
pletion of H, with respect to || - |l. If 7, denotes the natural injec-
tion of H, into B, then (H,, B, 1,) is an abstract Wiener space. We
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will let p# denote that measure on B determined by Gauss cylinder
set measure on H, with variance parameter ¢t > 0. p{ will be called
Wiener measure on (H,, B, 1,).

Wiener measure p, on (H, B, i) gives rise to a fundamental solu-
tion of the heat equation

(1) ait u(t, x) = trace D*u(t, x)

(x ranges over B, and t over (0, «)). Specifically, the family
{pu(z, dy): x€ B, t > 0}
has the following properties [2, Theorem 3 and Porposition 6]:

For each bounded real-valued uniformly Lip 1 function f on B,
letting

pf@ = F@pe ),

(b-i) p,.f(x) satisfies the heat equation (1)—that is, o/(at)p,.f(x)
and Dp, f(x) exist, D*p,f(x) is of trace class and the equality (1)
holds;

(b-ii) .. f(x) — f(x) as t | 0, uniformly for all & in B.

As a consequence of (b-i) and (b-ii), we say that

{pw(z, dy); z€ B, t > 0}

forms a fundamental solution of the heat equation.
By analogy with the finite dimensional situation, we expect the
measures {g.,(x, dy): € B, t > 0} defined by

(2) 9.(x, dy) = [det A] 72~ W7 "E—vm=nlit (22 dy)
to form a fundamental solution of

N

5 u(t, x) = trace ADu(t, x) .

(3)

That is, we expect that for each f in the family .o~ of bounded
real-valued uniformly Lip 1 functions on B, the function

0.f@ = | FWa (&)
satisfies (3) and ¢,f — f in sup norm as ¢ | 0.

REMARK. We must explain the meaning of the exponential term
which occurs in the expression for ¢.(z, dy). It is to be interpreted
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as the limit in mean (p.(z,dy)) as F— I of the net of tame func-
tions {exp[—([A™* — I](x — Ppy), * — Pyy)/At]: F' is a finite dimen-
sional subspace of H which is left invariant by C and P, is projection
onto F'}. The integral of a tame function with respect to p, is
described in Ref. [1]. We will see later that this net does converge.

A direct verification that {q.(x,dy)} has the properties of a
fundamental solution would be both difficult and lengthy. However,
Theorems 2 and 3 of Ref. [5] assert that pi is mutually absolutely
continuous with respect to p,, with Radon-Nikodym derivative given
by

pi(dy) = [det A]7M2e= Ty (dy)

provided VA — I is of Hilbert-Schmidt class. The latter property is
verified by writing VA = I+ C[I+ VA]. Setting pix, I') =
pM(I" — x) for Borel sets I' in B, we see that ¢,(z, dy) = pi(x, dy).
We may now appeal to the work of Gross [2] to establish many
properties of {q.(z, dy)}. Before doing so, however, we recall some
properties of trace class operators.

We will identify individual elements of H and of H, via the
identity map on the topological vector space H. Similarly we will
identity individual elements of L(H) and L(H,. We recall that the
family of trace class operators in L(H) is

{Te L(H): 2([T*T]1’2ei, e;) < o for some orthonormal basis {e;} of H} ,

with the trace of T defined as Tr T' = > .2, (Te;, ¢;) where {¢;} is any
orthonormal basis of H. The trace class norm of Te L(H) is

| T lpe popy = Tr [T*T]V2

The completely continuous operators in L(H) with |- |.4 form
the dual of the space of trace class operators in L(H) under the
pairing (U, V) = Tr U*V, where U is completely continuous and V
is of trace class. Since operators of finite rank are dense in the
space of completely continuous operators, we may write | T |1 =
sup{|Tr [TF)|/| F |, m: F is of finite rank in L(H) and F = 0}. For
any S in L(H) and T of trace class, ST and TS are of trace class
and Tr ST = Tr T'S. Thus the set of trace class operators on H is
invariant under a change of inner product. Consequently the set of
trace class operators and their traces are the same whether we con-
sider L(H) or L(H,). The trace class norm does vary with the change
of inner product, although |- |;.» and |« [y, are equivalent norms.

We point out that, by definition, D%, f(x) is a member of L(H,
H*). The identification of D?q,f(x) with an element of L(H) is
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dependent on the inner product assigned to H. Unless otherwise
specified, we will always intend this identification to be via (,). If
we let T'(¢, x) denote the operator in L(H) determined by considering
D*q.f(x) as a member of L(H,, Hf), identifying H} with H, via [, ]
and L(H,) with L(H), then T(¢, x) = AD%*,f(x). Since

{pii(x, dy): x€ B, t > 0}

is a fundamental solution of the heat equation in (H,, B, 7,), we im-
mediately have the

PROPOSITION 1. Assume A satisfies (a-i), (a-ii) and (a-iii). Then
{g:(z, dy): e B, t > 0} forms a fundamental solution of the equation

g—t u(t, ) = trace AD*u(t, x) .

ReEmMARK. The existence of fundamental solutions of Eq. (3) in
situations where A is nonconstant has been considered by the author
in [3]. There A — I was assumed to be of trace class, and this
property was relied upon considerably. Proposition 1 allows general-
ization of the results of Ref. [3] to situations where 4 is of the form
I+ C, + C, where A = ¢l for some ¢ > 0, I +C, satisfies (a-i) — (a-iii)
and I + C, satisfies the hypotheses made in Ref. [3]. Generally
speaking, then, such an A is of the form identity plus a constant
Hilbert-Schmidt class operator plus a variable trace class operator.
We conjecture that the results of Ref. [3] may be extended to oper-
ators of the form identity plus a variable Hilbert-Schmidt class
operator.

Now let us assume that fe.%” and that f has bounded support.
We may apply the preceding technique to obtain a solution of

(4) trace AD*u(x) = f() .
We define the Green’s measures G and G, on Borel sets I" of B by

(I = V’ p([)dt

and
G = " qurat,

and the potentials G& and G,k of a Borel function 2 on B by

Gh(z) = XB h(x + y) G (dy)

and
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Gab@) = | hw+ 1) Gy -
Then by Ref. [2, Theorem 3], Gf(x) satisfies

2 trace [(D'G)@)] = —f(@
for all  in B. We thus immediately have the

PROPOSITION 2. Assume A satisfies (a-i), (a-ii) and (a-iii). For
fin & and of bounded support,

u(®@) = —G,f (%)
satisfies Kq. (4).

REMARK. Many smoothness properties and corresponding estimates
concerning p,f(x) and Gf(x) are given in Ref. [2]. Analogues of
these may now trivially be deduced for ¢.f(») and G,f ().

From Ref. [2] we see that for ¢ >0 the operators ¢q,: f—q.f
form a strongly continuous contraction semigroup on the space &
of bounded uniformly continuous functions f on B with || f|l.. Let
&~ denote the infinitesimal generator of this semigroup. Then [2,
Cor. 3.1] for f in . ¢.f is in the domain &.. of & and

(£°q.f)(x) = trace [(AD’q.f)(x)] = Lf (=) .

A question naturally arises concerning possible uniqueness of the
semigroup {q.: t > 0} among semigroups on % whose infinitesimal
generators are “related” to L. This question for variable coefficients
A(z) will be discussed by the author in a forthcoming paper [4]. The
method used there could be applied to the case presently under con-
sideration. However Ref. [4] makes use of a theory of stochastic
integrals on (H, B, ), which requires a special hypothesis on the
abstract Wiener space (H, B, 7). Moreover, the approach of [4] is
unduly cumbersome in the constant coefficient case. Therefore we
will now present a brief uniqueness result for the constant coefficient
case. We begin by showing that &~ is the closure of L. Specifical-
ly, we have the

PROPOSITION 3. Let the set .S consist of real-valued fumnctions
f satisfying

(c-1i) fis in 7

(c-ii) Df: B— H exists, 18 bounded and continuous;

(c-iii) D*f: B—trace class operators on H with | - |1, exists, s
bounded and uniformly continuous.
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Then & C Z.., for f in & Ff = Lf, and {(f, £ f): f€ .S} is dense
in the closed subset {(f, £ f): f€ D} of & X &

Proof. Assume f is in .$% Since
@@+ ) = | 7@+ sh + y)ady) ,
(c-ii) enables differentiation under the integral sign, yielding
(Da.f @), W) = | (DF( + v), a(dy)
for all h in H. Similarly (c-iii) enables us to write
(D*q.f) @)k, B) = SB (D*f (@ + y)k, k)q.(dy)
for all £k and % in H, and
La.f@ = | L@+ vady) -

Since ¢.f € &, we have
Za.f = qLf .

Lf is in & by (c-iii). Thus ¢,Lf — Lf uniformly as ¢ | 0, and so
Zq.f — Lf uniformly as ¢ | 0. But ¢,f — f uniformly as ¢ | 0 and,
since &~ is a closed operator by basic semigroup theory, we conclude

that fis in &, and &¥f = Lf.
It is shown in Ref. [2, Cor. 3.2] that functions of the form

0@ = | e f)@)at
where fe.% are dense in the domain of .2 in the graph (¥ X ¥)
norm. It is furthermore shown that such functions g satisfy (c-iii).
It is trivial to see that ¢,: .& — .o and hence that ge. % To
verify (c-ii) we make use of Eq. (8) of Ref. [2]—vViz. for h in H
(Da.f@, 1) = @)~ | F@+9) b vla@) -
Thus we obtain
(Dg@), 1) = [T | F+ 0)b, vla. @t
= ["eeo | r@+ @y h, vipt @t

Therefore



472 M. ANN PIECH
| g, 1y < " et 11 1[0 ol Fot@n)} e
SFANARE S

and so

| Dg(x) [ < constant + || f |l «

In addition, we see that
| (Dg(@) — Dg(), ) | < constant - S”e—trl/z e — ||| h|ndt

and we conclude that ¢ satisfies (c-ii).
Thus we have proved that (&, &) is the closure of (L, .&).

REMARK. The preceding calculations of Dgq,f and D%, f were
possible because ¢.f is a convolution of f with p,(dy). This is not
the case with variable coefficients.

We now give a uniqueness result for the semigroup {q¢.}.

ProrosiTiON 4. If {qi:t > 0} is a contraction semigroup on %
whose infinitesimal generator ' extends (L, .&”), then q, = q, for
all t > 0.

Proof. If we show that <., = <. and that &’ = & on their
common domain, then since {¢,} is strongly continuous on % it fol-
lows from basic semigroup theory that ¢; = ¢,. Since (&', &.,) is
a closed operator, we have (&7, &7.) D (%, &2.). Let

fez,.,g=0—-A)f
and

% ={hin &: | ¢h —h|l.—0as t | 0}.

., C & and &' &, — %, Thus ge &,. Itis well known that for
g in &, the equation (I — )b = g has a unique solution in & ... By
the strong continuity of {g,}, there exists a unique solution 7 in <7..
of the equation (I — <°)h = g. Since f is also in &r,,, &'f = ~F
and so f = f. Thus (7', 2.) (L, Z.).
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SESQUILINEAR FORMS IN INFINITE DIMENSIONS
ROBERT Pi1zZIAK

This paper is concerned with sesquilinear forms defined
on vector spaces of arbitrary dimension. Motivation is
taken from classical Hilbert space theory, as the ortho-
gonality relation induced by the form is used to replace the
topology. First, an algebraic version of the Frechet-Riesz
Representation Theorem is proved for linear functionals
having an orthogonally closed kernel. Next, the notion of
adjoint is formulated, following von Neumann, in the lan-
guage of linear relations. It is proved that the adjoint of
an arbitrary relation is a single valued linear relation pre-
cisely when the domain of that relation is orthogonally
dense. Finally, an algebraic version of a continuous linear
operator is introduced and the relationship with the notion
of adjoint and linear functional is studied. The main result
here is that an operator is orthogonally continuous precisely
when it has an everywhere defined adjoint. These general
results of pure algebra imply standard topological results in
the context of a Hilbert space.

There are two directions in which to generalize away from the
concept of a Hilbert space. One is the familiar topological generali-
zation via Banach spaces, linear topological spaces. The other direc-
tion is algebraic via inner product spaces, sesquilinear forms. The
finite dimensional theory of sesquilinear forms is well worked out.
However, the infinite dimensional case seems fraught with pathology.
Kaplansky and others have initiated a study of the infinite dimen-
sional case [6], [7], [8]. Gross and Fischer [4] have used topological
methods. In this paper, we propose an algebraic approach to infinite
dimensions motivated by the “happy accidents” in Hilbert space
theory that correlate algebraic and topological conditions. In par-
ticular, we prove an algebraic version of the Frechet-Riesz Represen-
tation Theorem, von Neumann’s theorem on the single valuedness of
the adjoint relation, and discuss continuity, all in the algebraic con-
text of a vector space over a division ring with no “natural” topology
present.

2. Quadratic spaces. We shall follow the terminology of
Bourbaki [2] on sesquilinear forms.

By a quadratic space we mean a triple (k, E, ®) where E is a
left vector space over the division ring £ and @ is a nondegenerate
orthosymmetric #-sesquilinear form on FE with respect to the in-
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volutive anti-automorphism 6 of k. Given vectors x and y in E, we
say « is orthogonal to y and write ¢ 1. ¥y when @(x,y) = 0. For any
subset M of E, we define the orthogonal of M by

M* ={x in EF|z L m for all m in M}.

It is clear that M* is always a subspace of E. A vector & of F is
called isotropic if » L 2 and is anisotropic otherwise.

The two main differences between general quadratic spaces and
Hilbert space is first in the general nature of the scalars and second,
in the possible existence of nonzero isotropic vectors. The role of
isotropic vectors is important in physical theories and indeed a good
example to hold in mind is the geometry of space-time with the
Minkowski metric. Here, of course, £t = R, E = R* and

(e, a,, a5, @), (B, Bay Bsy BY)) = Ay + 3y + 3 — B, -

The first “happy accident” to note is that in Hilbert space, a
subspace M is metrically closed precisely when M = M**. Thus we
are led to consider the closure operator M+ M** on the lattice of
all subspaces of E, Lat (k, E), as an algebraic substitute for the
topology. Let P.E, ®) = {M in Lat (k, E)|M = M**}. The geometry
of P,(E, @), which is of interest in the study of the logical founda-
tions of quantum mechanies, has been considered in [9].

In a Hilbert space H we have that each closed space M yields
an orthogonal direct sum decomposition H = M M*. This is not
true for a general quadratic space. A subspace F of E is said to
be a splitting subspace provided E = F + F*. Let P/(E, @) be the
collection of all splitting subspaces of E. It is easy to see that each
splitting subspace is 1 -closed. We shall show later that the con-
verse need not hold.

It is well known that the lattice of closed subspaces of a Hilbert
space is an orthomodular lattice. We have shown elsewhere [10]
that orthomodularity actually residues in P,(E, ®) in general and
P,(E, @) is an orthomodular poset which need not be a lattice. Thus
the orthomodularity of the lattice of closed subspaces of Hilbert space
arises from the “happy accident” that P, (H) = P,(H).

3. Linear functionals. The next “happy accident” we note is
that a linear functional on a Hilbert space is continuous exactly when
it has a closed kernel. This motivates our next definition.

Let (E, @) be a quadratic space. Let f be a linear functional
on E. Call f orthocontinuous if ker(f) = ker(f)**. Let E’ denote the
set of all orthocontinuous linear functionals on E and call it the
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orthodual of E. Let E* denote the algebraic dual space of E.

3.1. Frechet-Riesz Representation Theorem. Let (E,®) be a
quadratic space. Then the induced map d: E — E* defined by

d(y)(@) = D(x, y)

is a 0-linear monomorphism and im(d) = E’. Moreover, the image
under d of all anisotropic vectors consists precisely of all those linear
functionals whose kernel is a splitting subspace of E.

Proof. For y in E we have kerd(y) = (ky)* which is a closed
subspace of E. Thus im(d) & E’. Next let f be in E’. If f is the
zero functional then f = d(0) and f is in im(d). So assume f is not
identically zero. Then ker(f) is a hyperplane in E. Thus there is
line kw with E = ker(f)@kw. Now pick a nonzero vector z in ker(f)*.
Then

(0) = B+ = (ker(f) @ kw)* = ker(f)* N (kw)*

so that ®(w,z) = 0. Let y = (P(w, 2)""f(w))’ 2. Note y is in kz
which is contained in ker(f)*. Thus &(w, y) = f(w).

Now let 2 be any vector in E. Then there is a unique =z, in
ker(f) and 2, in kw such that « = x, + x,. Then f(x) = f(x,) and
D(z, y) = O(x,, y). But =, = Mw so f(z) = f(x) = Mf(w) = N0(w, y) =
0w, y) = O(z,, y) = O(x, y). Thus f = d(y) and hence im (d) = E’.

The fact that d is a monomorphism follows from the non-
degeneracy of @.

If y is anisotropie, then y does not belong to ky* so ker d(y) =
(ky)* and (ky)* @ ky = E. On the other hand if ker(f) @ ker(f)* =
E, then ker(f) is closed so there is a y with f= d(y). Since
(ky)* @ ky = E, y is clearly anisotropic.

Note that the theorem above implies the usual Frechet-Riesz
Representation theorem for real, complex, and quaternionic Hilbert
spaces.

The corollaries below follow readily.

COROLLARY 3.2. If @ admits monzero 1isotropic wvectors, then
there are closed subspaces of E that are not splitting.

COROLLARY 3.3. The orthodual of E is a total subspace of E*.
COROLLARY 3.4. Let M be a closed subspace of E with x a vector

not in M. Then there is an orthocontinuous linear functional f
such that f(x) = 0, but M < ker(f).
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4, Adjoint. Let (&, @) be a quadratic space. We shall imitate
the von Neumann formulation of the notion of adjoint. Let T be a
relation on £ with graph G(T). We say T is a closed relation if
G(T) = G(T)*+ where L is taken relative to @@ E@ E. Note a
closed relation is necessarily a linear relation i.e. T or G(T) if you
prefer, is a subspace of E@ E. The closure T of the relation T is
defined by G(T) = G(T)'*. Clearly T extends 7. We also note that
if T is a closed linear relation, then ker(T) is a closed linear sub-
space of K.

Now define U: Ex E— Ex E by U(x,y) =(—y,x). Then Uis an
everywhere defined linear bijection with U~'(y,x) = (¢, —y). Also
note that @ P O(Uz, w) = @ P d(2, U'w) and for MS E x E, we
have U(M*) = U(M)*. TFor T any relation on E, define T* a rela-
tion on E by G(T*) = U(G(T))*. Call T* the adjoint of T. Note
then that every linear operator has an adjoint. The question is
whether or not the adjoint is single valued.

The usual definition of adjoint is given by demanding the ex-
istence of a linear operator T* for a given linear operator T, such
that the identity @(Tx, y) = @(x, T*y) holds for all » and y. It is
interesting to note this formal identity persists. For if T is a rela-
tion on E with (z,2) in G(T) and (y, w) in G(T'*), then

@(Z, y) = @(x’ w) .

If we formally write z = Tw and w = T*y, we recover the previous
equation.

It was brought to our attention that the next theorem was pre-
viously obtained by R. Arens [1] p. 16, Prop. 3.32. The Hilbert space
origin of the idea goes back to J. von Neumann [12].

THEOREM 4.1. Let T be a relation on E. Then T* is single
valued if and only if (dom(T))*+ = E.

In view of [1], we omit the proof.

It is interesting to note that the single valuedness of T'* depends
only on the nature of the domain of T and not whether T is single
valued or even linear.

COROLLARY 4.2. (1) Let T be a linear relation on E. Then T*
1s single valued if and only if T has an orthogonally dense domain;

(2) T* has dense domain if and only if T** 1s single valued;

B) The closure of a linear operator is single valued exactly
when its adjoint has a dense domain.

Following S. S. Holland Jr., (to whom we are indebted for several
ideas of this section), we shall use the term CDD operator to mean
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a closed domain dense linear operator.

COROLLARY 4.3. The adjoint T* of a CDD operator T is CDD
and T = T**.

THEOREM 4.4. Let T be a CDD operator. Then T* satisfies
O (T, y) = Oz, T*y) for all x in dom(T) and y in dom (T*). Also
any linear operator S satisfying O(Tx,y) = O, Sy) for all = in
dom(T) and y in dom(S) is such that SE T*. If dom(S) = dom(T*),
then S = T*.

Proof. Since T is domain dense, T* is single valued and
(T, y) = O(x, T*y)

for all 2 in dom(7T) and % in dom(7T'*). If @(Tx, y) = @(x, Sy) for all
z in dom(T) then @ @ o((y, Sy), (— Tx, x)) = —0(y, Tx) + &Sy, x) = 0
for all x in dom(T) so that (y, Sy) is in U(G(T))* = G(T*). Thus y
is in dom(7T*) and T*y = Sy. Thus S& T*.

In Hilbert space, a bounded linear has a topologically closed
graph and conversely. We can prove that if T is a domain dense
linear operator on E and 7T'* is domain dense then T has a 1 -closed
graph. It would be more interesting to prove the following open
question: Algebraic Closed Graph Theorem if T is an everywhere
defined closed linear operator then 7T has an everywere defined ad-
joint. We conjecture this is not true in general but is true in the
case that every closed subspace of our quadratic space is splitting.

5. Orthocontinuity. In Hilbert space, the continuous linear
operators are of great interest. We shall show how to approach
these algebraically.

Let (E, ®) be a quadratic space with T: E— E linear. We say
T is orthocontinuous if for all subspaces M of E we have

T(MYS TM)" ' .

PROPOSITION 5.1. Let T: E— E be linear. Then the following
statements are equivalent

1) M= M"** implies T7'(M) = (T (M))**

(2) M closed implies T (M) closed

@ TM)s T(M)+

4 TN 2(TH(N)H

6) T is orthocontinuous

The proof is easy and is omitted.
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LEMMA 5.2. Let T: E— E be an everywhere defined linear oper-
ator. Suppose dom(T*) = E. Then for any M= M*‘* we have
T (M) = (T*(M*)*. In particular then ker(T) = im(T*)*.

Proof. Let M= M'*., Then z is in T7'(M) if and only if Tx
is in M= M+** if and only if @(Tx,y) =0 for all ¥y in M* if and
only if @(x, T*y) = 0 for all ¥ in M* if and only if x is orthogonal
to T*(M*).

Next we make a connection between the domain of the adjoint
and the orthodual.

THEOREM 5.3. If T s an everywhere defined linear operator on
E, then dom(T*) comprises exactly those y in E for which the linear
Junctional f(x) = ©(Tx, y) 1s orthocontinuous.

Proof. Since T is domain dense, T* is single valued and
O(Tx, y) = Oz, T*y)

for all # in E and all ¥ in dom(7T*). First let ¥ be in dom(7T*). Then
2 is in ker(f,) if and only if f,(x) = 0 if and only if &(Tx,y) = 0 if
and only if @(z, T*y) = 0 if and only if = is in (kT*y)*. Thus

ker(f,) = (kT *y)*

is closed.

Conversely, let ¥ be a vector such that f, is an orthocontinuous
linear functional. Then by Frechet-Riesz, there is a unique vector
y* such that f,(x) = @(x, y*) for all  in E. That is, O(Tx,y) =
@(x, y*) for all z in E. Thus

2D 2y, v*), (— T, x)) = —D(y, Tx) + P(y*,2) =0
for all # in E so that (y, ¥*) is in U(G(T))* = G(T*). This means y

is in dom(7*).

We are now in a position to relate orthocontinuity to the adjoint.
We first state a lemma whose proof will be omitted.

LEMMA 5.4. Let T be an everywhere defined linear operator on
E. Define the linear functional f, by f,(x) = @(Tx, y) for all x in E.
Then ker(f,) = T7'((ky)*).

THEOREM 5.5. Let T be an everywhere defined linear operator
on E. Then T is orthocontinuous if and only if T* is everywhere
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defined.

Proof. Let T be orthocontinuous. Then T *((ky)') is closed for
all ¥ in E. Thus by (6.3) and (5.4), ¥ is in dom(T*).
Conversely if dom(T*) = E, then for

M=M" T7(M) = (T*(M"))"

by (5.2) and this is closed so T is orthocontinuous.

COROLLARY 5.6. T s orthocontinuwous if and only if T'((ky)*) is
closed for all y in E.

We close by remarking that the algebra of bounded operators
on Hilbert space is a well studied object. The algebraic analogue
for a quadratic space is the adjoint algebra, Ad(E, @), of all linear
operators on E that have everywhere defined adjoints.
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THE EQUATION y'(¢) = F(t, y(g(?))
MuriL L. ROBERTSON

A functional differential equation, in general, is a rela-
tionship in which the rate of change of the state of the
system at time ¢ depends on the state of the system at values
of time, perhaps other than the present.

In this paper, sufficient conditions are given for g so that
the initial value problem v'(t) = F(t, y(9(?))), y(p) =¢q, may be
solved uniquely; where F' is both continuous into the Banach
space B, and is Lipschitzean in the second position.

1. DEFINITIONS. If p is a real number and I ={I,, I,, ---} is a
collection of intervals so that pel, and I, &< I,,, for each positive
integer m, then I is said to be a nest of intervals about p. Let
I, = {p} and a, = b, = p. Also, let [a,, b,] = I, for each nonnegative
integer n. Let I* denote the union of all elements of I.

In general B denotes a Banach space; and if D is a real number
set, let C[D, B] denote the set of continuous functions from D into
B. Whenever D is an interval, C[D, B] is taken to be a Banach space
with supremum norm |-|.

If g is a continuous function from I* into I* so that ¢(I,) & I,
for each positive integer =, then g is said to be an I-function. If ¢
is an I-function then for each positive integer n, define the following:

A, ={xela,, a,.]:9@el,_},
B"b = {Q? € [bn—ly bn]' g(w) & I'n—1}7 and
E,.(s) = [p, 9(5)] N (A, U B,), for each sel,.

Let S h(s)ds denote the Lebesgue integral of & over the subset

D of the I()iomain of the Lebesgue integrable function #.

Let F denote a continuous function from I* x B into B so that
| F(x,y) — F(z,2)|] < M(x)-|ly — 2| for all xeI* and y,z€ B, where
M is Lebesgue integrable on each I,. Furthermore, if f is a con-
tinuous nonnegative valued function from I* to the reals, and m is

a positive integer, let Sx(M, f, 9, m) denote
»
z | (o) 9(s8p_1)
m [ M) 1o 7 M) f (sl <+ (s, ds]
If D is either 4, or B,, letg(M, f, D, m) denote

|, M)
D
If D is a subset of the domain of the function %, let |, denote

M) - g M(s,)f(s,)ds,, - - - dsds, -

Ep( Ep(s,,—1)

483
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the restriction of % to D. Also, let fog denote the composition of f
with g, whenever applicable; fog(x) = f(g(x)).

2. Main results.

THEOREM A. Suppose I is a mnest of intervals about »,q€ B, g
is an I-function, k is a sequence of positive integers, and for each
positive integer n, @, — Q(M, 1, A,, k(n)) < Land g, = S(M, 1, B, k(n)) <
1. Then there is o unique function ye C[I*, B] so that ¥'(t) = F(t,
yg(®t)) and y(p) = q, for all teI*. [We say then that the initial
value problem (IVP) has uwique solution.]

Proof. Since, I, = {p}, then certainly y, = {(p, ¢)} is the unique
function in C[I,, B] so that for all te I, y,(t) = q + S;F(s, Yo(9(s)))ds.

Next, suppose 7» 1s a nonnegative integer so that there is a
i
unique function ¥, € C[I,, B} so that, for each tel,, y,.(t) = ¢ + S F(s,

4.(g(s)))ds. The following is the construction of y,.,. Let D :,,{ fe
Cll,:, Bl: f|;, = y.} and let m = k(n + 1). Then,if feDandtel, .,

let 7 be so that Tf(¢) = q + YF(S, f(g(s))ds. Then, certainly T is
from D into D. ’

Lemma 1. If f,heD and tel,,,, then
17750 — Tk = | (M, 1fog — hogll, g, m), for each positive
integer m.
Proof of Lemma 1. (by induction on m) If m =1,
177 — T = 1| [FGs, Fla(e)) = Fls, ha(s)Nds]|

=

[I17G, £a@) — Fs, bats) l1ds|
= I Mo 1766 — mo6) 1ds| = | O, l1fog — hegl, 0, 1) -

R

Now, suppose the lemma holds for m = r. Then,
T f @) — T h(?) ||
=|{'1F6, mr@) - F6, THg@)ds|

A

| F(s, T"f(9(s) — F(s, T'h(g(S)))lldS}

A

| M) 1775 a(5) = Tlg(@)) 15|

A

M)\, [0 = hegl, 9, s,

g
»
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by the induction hypothesis, but this equalsgz(M , ||feg — hegll, g, 7+ 1).
V4

LEMMA 2. If N is a bounded, measurabdle function from I,.,
to the reals so that N(s) = 0 whenever s is in I,.,\(A,., U B,.,), then

S”"“ (M, N, g, m) = S(M, N, A, m),
V4
and

Sbn-H(M’ N; g: m) = S(M, N, B’n+17 m) *
»

Proof of Lemma 2. (by induction on m) If m =1, S%H (M, N, g,

»

1) = 'S* M(s)N(s)ds{ - g M(s)N(s)ds = S(M, N, A,.,, 1), because

N is 0 at each point of [;,+él,n+1]\An+1. Suppose the lemma is true

for m = r. Then, SG"H (M, N,g,r+1) = Sa”“ (M, U, g,7), where
P V4
Uls) = IS‘ ’M(t)N(t)dt}, for all se I, If s€l,.\(Ave U Boyr), g(s) €
V4

I,. Thus, N is 0 on [p, g(s)], and so U(s) = 0. Whence, U satisfies
the conditions for N in the lemma. So, by the induction hypothesis,
S UM U, g, 1) = S(M, U, A, 1) = S (M, N, A,.,, r+ 1), because
V4

U(s) = S )M (t)N(t)dt. The proof of the second equality in the lemma

Ent1(s
is similar. Thus, Lemma 2 is proven.

Now, the two lemmas are applied. By Lemma 1, ||T™f(¢) —

Tu0) | < | O, 1 fog = hegll, g, m), for all tel, = max{["" (1,

b4

bp+1 .
1 £og = hegll, g, m), | (M, || fog — hog ll, 9, m)} which by Lemma

2 is = max {[ O, || fog — hegll, Aver, m), | O, 1Fog = Rogll, Bupsy m},
because [|£(9(s) — 1(g@)|l = 0 for all seL,i\(AyU B,,). Thus,
7f = 7o) < max { {34, 11 £og = hogll, Auwsy m), | QL 1109 — hogll

Bm,m)} < max {S(M, 1, Ay, m), K(M, 1, By, m)}-|f — h|. Thus, T
is a contraction map from the complete metric space D into D. Thus
T™ has a unique fixed point ¥,... It is a known result that this
implies that y,., is the unique fixed point of 7. [(T¥,.,) = T(T™(Ty,.,) =
T™(TYa+s), but only ¥,., is so that ¥,.. = T"¥urre S0 TWuis = Yasos
and uniqueness is clear.]

Thus, Yuea®) = Tyuul®) = q + S’F(s, Ynin(g(9))ds, for all tel,.,

and is the unique such function.p Hence, by inductive definition,
for each positive integer ¢, there is a unique function y; <€ C[I;, B]

so that for all tel;, y;(t) = q + StF(s, ¥:(9(s)))ds. Now, define ye
P
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C[I*, B] so that y(¢) = y,(t), whenever teI,. Since m < n implies
t
Yulr,, = Ym, ¥ is well-defined, and y(t) = ¢ + S F(s, y(g(s)))ds, for all

teI*. Now, suppose z(f) = q + StF(s, 2(g9(s)))ds, for all teI*, and z¢
C[I*, B]. Then, if n is a positipve integer, and tel,, 2|, (t) = q+
StF(s,zl,n(g(s)))ds. S0, zl;, = ¥» = yls, for each positive integer n.
Tphus, 2 =1.

COROLLARY 1. Let M be the constant 1 function, and let k(n) =
2, for all n. Suppose for each n, g min {|g(®) — a,_i|,|g@®) — b,_, |}dx <

n

1, and S min {|g(x) — a,_|,|9(@) — b,_.|}dx < 1. Then, the IVP has
B

a unique “solution. [See Figure 1. All the shaded area between each
pair of vertical dashed lines is less than one.]

|
I
:
l
l
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qu;an=gzwwg Jm@mdazgg dsds,. Now, s,¢
Ap Ep(sp Ay JE, (37

A, implies

n(

7 sy — | A= 0[P, 0(s)] 5 g(s) € A, and
o) = {Bn N [p, 9], if g(s) € B, .

Thus, E,.(s) S [g(s), a,_] if g(s) € 4,, and in this case, |g(s) — a,_,| =
lg(s) — b,_,|. Also, E,(s) & [b,_,, 9(s))] if g(s)) € B,, and in this case,
lg(s) — b,.| < lg(s) — a,_|. Thus, E,(s), which is certainly mea-
surable, must have measure < min {|g(s) — @,_.|,|9(s) — b,_,|}. Hence,

gg @ﬂaggxmmmwo—%ﬂmm@—wMMMNMwmeL(@&
Ay JEy(sy) A, n (81
is the measure of E,(s). Thus, a, < 1, and similarly g, < 1, for each

positive integer n. Apply Theorem A.

COROLLARY 2. Suppose k(n) =1 for each n. Then, if g M<1

An

and S M < 1, for each m, the IVP has unique solution.

By,
Proof. Immediate.

COROLLARY 3. Suppose M is the constant 1 function and k(n) =
1 for each n. Then if max{b, — b,_,, a,, — a,} <1, for each m, the
IVP has unique solution.

1§S 1=

@n

szmgmwmmm&gmwmnmmg
1g§

Ay

n

&, — a, and S =b, —b,_,. Apply Corollary 2.

By, byt

The following example illustrates the advantage of allowing k(%)
to assume integral values other than 1.

ExAMPLE. Let F be so that M =1 in the IVP—y(p) = q, ¥'(t) =
F(t, y(9(?))), where

20 , if £ €]0, pl, and

9(w) = 4p — 2z, if x€[p, 2p] .

then it is straightforward to show that if J is a subinterval of [0, 2p]
and ¢g(J) & J, then J = [0, 2p]. Thus, if I is a nest of intervals about
any point of [0, 2p] and I* = [0, 2p], then I, = [0, 2p] for each positive
integer m, if g is to be an I-function. Thus, in order to apply
Corollary 3, it seems necessary to require p < 1, in order to solve
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the IVP. However, if Theorem A is applied with k(n) = m for all n,
then Theorem B, which follows, shows that the condition p < 2—nim
gives the best apparent bound for the size of p in order to solve the
IVP. Now, since m is arbitrary, clearly, » may be any positive
number less than 2.

THEOREM B. If g is as in the above example, and for each posi-
tive integer m, F(5) = Sxa, 1,9, n + 1), then
»
(1) F, is symmetric about p. That s, for each n, F,(x) =
F.2p — x), for all x€]0, p]; and
(2) F,(x)+ F,(p—x)=9p""/2", for each n, and for all xz¢€
[0, p/2].

Proof. (induction on n) Suppose % = 1. Then, if z¢€ [0, 2p],
Fi() = !S’”;g(s) — p|ds|, which is

(P°/2 — px + o, if ze[0, p/2] ,
px — &% if xe[p/2, p],
— 2p* 4+ 3px — &%, if x<[p, 3p/2], and

5p*/2 — 3px + 2%, if x€[3p/2, 2p] .

Fx(x) -

It is straightforward to show that F, satisfies the conditions (1) and
(2) of the theorem. Now, suppose the theorem is true for the positive

integer k. Then, for each z¢€]0, 2p], F\.. (%) = H:Fk(g(s))dsl. If xe
[0, o1, Fun@p — ) = | |7 Fuo()ds|. Thus, if o < 5 < p, () = 25 =
ip —22p —9) = 9@2p— 9. S0, Fuous@) = | Fuo@)ds = || Fulotep -
s))( — 1)ds, by change of variable, but this is Sip_sz(g@p — 8))ds =
Szp—sz(g(s))ds = Fi.(2p — x). Thus, F,,, is symmetric about p.

r

Now, suppose % € [0, p/2]. Then,

Fin@) + Fru(p — @)
= |"FPuoends + | _Fulo(s)ds

Il

F.2s)ds + Sp

P

F.(2s)ds, because g(s) = 2s

Sl’

SPFk(Zs)ds + gp F.2p — 2s)ds, because ¢g(z) = g2p — 2)
xz pP—2x

gzﬂ

Fo(25)ds — §° (1/2)F,(s)ds, by change of variable
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F,(25)ds + (1/2)S:”Fk(s)ds

gp
» F

= S F,(2s)ds + S F,(2s)ds, by change of variable
z 0
»

-1,

= (1/2)Szka(s)ds, by change of variable

0

P
= | F\(s)ds, because F, is symmetric about p
0

P2

_ SMZF,,(s)ds + 5”/ Fu(s)ds
pi2
S F,(s)ds — SMF,,(p — 8) (— 1)ds, by change of variable

C(FE) + Bl ~ 9)ds

12

= Sp {p*+'/2%}ds, by the induction hypothesis
0

— pk+2/2k+1.

By Theorem B, F,(0) + F,(p — 0) = p**/2*. But, F,(p) =0, by
definition of F',, and thus F,(0) = p™*'/2". Also, F,(2p) =F,2p — 0) =
F,(0) = p*'/2". Thus, if p**'/2" < 1, then «,,, < F,(0) = p*/2" < 1,

and B, < F,(2p) = p"*'/2"< 1. Apply Theorem A.

3. Applications. The following is a generalization of a theorem
by Anderson [1].

Let F be a continuous real-valued function with domain D of
the plane R x R so that the partial derivative F, is continuous on D
and (0,b)eD. Let 2’ and %k be so that if [z| <& and |y — b]| Z &,
then (x, y) e D. Let K= sup{|F(x, y)|:|x|<h and |y — b| <k}, h =
min {¥', k/K}, and M = sup {|Fy(x, ¥)|: || < h and |y — b| < kL

THEOREM C. Suppose there are intervals I, =L, &S .. &I, =
[ — A, k] so that max {b, — b,_, a,_, — a,}- M <1 for each integer in
[1, m], and so that O0e€l,. Let I, =1, for each j = m. Then, if ¢
18 an I-function, there is a unique function y so that y(0) = b and
y' () = F(, y(9(t)), for all te[— h, h].

Proof. Let E = {(x, v):|x| < h,|y — b] £k}, and let G be an
extension of F'|; so that

F@, b—k), if y<b—k, and

GO = o b+ k) i y= btk
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By continuity of F, and the mean value theorem, it follows that F
is Lipschitzean in the second position with constant M. It follows,
also, that G has the same Lipschitz constant M. Then, by Corollary
2, there is a unique function ye€ C[I*, B] = C[[— k, k], R] so that
¥ () = G(t, y(g(®)), y(0) = b, for all te[— h, h]. Equivalently, y(t) =
b+ S G(s, y(9(s)ds, for all |¢ < h. Thus, |y() — b| = | StG(s, y(g(s)))ds]
< h-soup{lG(s, y(g(s)))]: |s| < h}, and since the range oof G is a subset
of the range of F'|;, we have that this is < k-sup{|F(z, v)|: |z] <
hyJv — b]| <k} = h-K <k, by definition of k. Thus, Gz, y(g(x))) =
F(x, y(gx)), for all |z| < h. So, ¥'(t) = F(, y(g@®)), ¥(0) = b, for all
te[— h, hl.

The following is a generalization of a theorem by Kuller [3].

THEOREM D. Suppose only that g is a continuous function with
connected, real domain E so that g is not the identity, but gog s
the tdentity. Then, of M = 1 and g € B, there is a segment Q about
the unique fized point p’ of g so that if p€ @ N H, the IVP has unique
solution.

Proof. Kuller proves that ¢ has a unique fixed point »’ and that
¢ is strictly decreasing. Let 0 < k< 1/2. Let B, = p and let B be
a nondecreasing sequence of reals so that B, — B8;_, < k, for each
positive integer 4, and so that 8 converges to the right boundary
of E, which may be + <. Then, for each positive integer %, let
{ail, 247 PR ain,,;} be so that Q(Bz) = Uy, = DUy = Ay = g(Bi—-L) and
also so that a;; — a; ;.. < k, for all j. Then, {[a;, g(a;)]:7 =1 and
1 <j < n;} is a monotonic collection of intervals, each containing ». Let
I, = |a,, g(a,)]. Suppose I, has been defined to be [«;;, g(a;;)]- Then,
let g(a.;)

[ i1, 9(@i500)], if §<m;, and
Im+1 = ep

[@iyi2 9(@iir0)]y if J = m; .

Relabel I, to be [a,, b,]. Then, max {a,_, — a,, b, — b,_,} < 1, for each
positive integer n. Let @ = (a,, b). Then apply Corollary 3.

Kuller required differentiability of g in order to solve ¥y = yog,
y(p') = q, where p’ is the unique fixed point of g.
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CONTINUA IN WHICH ONLY SEMI-APOSYNDETIC
SUBCONTINUA SEPARATE

LeELAND E. ROGERS

E. J. Vought has characterized hereditarily locally con-
nected compact metric continua as those which are hereditarily
aposyndetic, and (subsequently) as those which are aposyndetic
and have only aposyndetic separating subcontinua. Also,
Vought characterized hereditarily locally connected, cyclically
connected compact metric continua as those having no cut
point and separated only by aposyndetic subcontinua. In this
paper it is shown that similar characterizations can be obtained
when a larger class of subcontinua are allowed fo separate,
namely those which are semi-aposyndetic.

A continuum is a nondegenerate closed connected set. If z and
y are points of the continuum M, we say that M is aposyndetic at
2 with respect to y if there exists a subcontinuum H < M — {y} con-
taining 2 in its interior. The continuum M is aposyndetic at = if
M is aposyndetic at x with respeet to each point of M — {x}. If M
is aposyndetic at each point x e M, then we say that M is aposyndetic.
If x and y are points of a continuum M, then M is semi-aposyndetic
at {x, y} if M is aposyndetic at one (at least) of x and y with respect
to the other. If M is semi-aposyndetic at each 2-point subset, then
we say that M is semi-aposyndetic. Thus every aposyndetic continuum
must be semi-aposyndetic. But the converse does not hold, indeed,
M may be aposyndetic at none of its points yet still be semi-aposyndetic,
as shown in the example below. A set D separates M if M — D is
not connected, and a point z cuts M if there exist points z, ye M — {2}
such that every subcontinuum of M containing both z and ¥ also
contains z. A continuum M is cyclically conmnected if each pair of
points of M are contained in a simple closed curve in M. A property
(e.g., locally connected, aposyndetic, or semi-aposyndetic) of a continuum
M is hereditary if each subcontinuum of M has that property.

The notion of semi-aposyndesis has recently been shown to be
useful in the study of w-mutual aposyndesis in the Cartesian products
of continua [8]. Also, C. L. Hagopian has a number of results con-
cerning semi-aposyndetic plane continua [2; 3; 4], the most interesting
being that non-separating semi-aposyndetic plane continua are arcwise-
connected [3]. That semi-aposyndesis is weaker than aposyndesis is
evident: the cone over any regular Hausdorff space S is semi-aposyndetic
[8, p. 240] but clearly not always aposyndetic.

EXAMPLE. A compact planar semi-aposyndetic continuum which

493
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is aposyndetic at mone of its points. Let K be a cone over the Cantor
set C (built in [0, 1]), i.e. [0,1] x C with {0} x C identified. Let B
denote the copy of [0,1] X {0} in K. Assume that K is situated in
the plane so that B coincides with the line segment {(x, 1/3/6)| —1/2 <
x <1/2}, with the order on B agreeing with that of L from
(—1/2,v73/6) to (1/2,173/6). Let f and g denote the rotation maps
of 120° and 240° respectively. Finally, let M = KU f(K) U g(K),
with B U f(B) U g(B) forming a triangle and the rest of M outside
this triangle. It is clear that M has the required properties.

Vought [10, p. 96] showed that hereditary aposyndesis and here-
ditary local connectedness are equivalent. Since the cone over the
Cantor set is hereditarily semi-aposyndetic, it is clear that his result
does not hold when hereditary aposyndesis is replaced by hereditary
semi-aposyndesis. However, in the event that the continuum is
aposyndetic, such a substitution does work. It should be noted that
the proofs of Theorems 2, 3, and 4 are patterned in general after those
of Vought’s in [9].

First we extract a result from [8, p. 242]:

LEMMA 1. Let M be a compact metric semi-aposyndetic continuwum.
If M is irreducible between two points, then M 1is an arc.

Another useful and well-known result is

LEMMA 2. Let x be a point of a compact metric continuum M
such that M s aposyndetic at each point of M — {x} with respect to
x. Then x cuts im M if and only if x separates in M.

THEOREM 1. Let M be a compact metric continuum. Then M is
hereditarily locally connected if and only if M is aposyndetic and
hereditarily semi-aposyndetic.

Proof. Suppose that M is not hereditarily locally connected. Then
[11, p. 18] there exist disjoint subcontinua C,, C, .-+ converging to a
subcontinuum C disjoint from each C;. Let x and y be distinct points
of C. Let x;, y;,€C,; (for each 4) such that ¢ = lim«; and ¥ = lim y,.
For each 7, let 4; be an irreducible subcontinuum of C; from z; to ¥;.
Then by Lemma 1, each A4; is an arc. Let zelim 4; — {x, y} [taking
a subsequence, if necessary]. By the aposyndesis of M, there exist
subcontinua H and K in M — {2} such that xe H° and ye K° (for
any set S, S° denotes the interior of S). We may assume that each
A; meets HU K and that no A, is contained in H U K. Select z;€¢ 4; —
(HU K) [for each ¢] such that z = limz;. Let A} be the subarc of A;
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which is the closure of the z,-component of A; — (HU K). Let 4’ =
lim A} [taking a subsequence, if necessary]. Let we 4’ — (HU K U {z}),
and let w, € A; (for each 4) such that w = lim w,. Let p; and ¢; denote
the endpoints of A.. We may assume that w; precedes z; in the order
that A! has from p; to ¢;. For each 4, let D; be the subarc of A;
defined by D; = [p;, 2;] for odd 4, and D; = [w;, ¢;] for even 4. Finally,
let B denote the continuum CU HU KU (U D;). By hypothesis, B
must be semi-aposyndetic. However, it is easily seen that B is
aposyndetic at neither of w and z with respect to the other. This
contradiction concludes the proof of the theorem.

Bing [1, p. 499] showed that for compact metric continua in which
no subcontinuum separates, aposyndesis at a point implied local con-
nectedness at that point. Vought [9, p. 258] allowed aposyndetic sub-
continua to separate and obtained the same conclusion. When semi-
aposyndetic subcontinua are allowed to separate, we show that if M
is both aposyndetic and semi-locally-connected at =, then M is con-
nected im kleinen at x, but not necessarily locally connected at .
Whether the “semi-locally-connected at x” is actually necessary is
unknown to the author. (Clearly semi-locally-connected at « without
aposyndetic at x is not sufficient, because of the cone over the Cantor
set.) First we prove a useful lemma.

LEMMA 3. Suppose B is a subcontinuum of the compact metric
continuum M, x is a point of M — B, and A 1is a subcontinuum of
M irreducible from x to B. If AU B is semi-aposyndetic, then A is
an arc.

Proof. By Lemma 1, we need only show that A is semi-aposyndetic.
Suppose there exist distinet points w, z€ A N B. Since A U B is semi-
aposyndetic, there exists a subcontinuum H of A U B such that, say,
we H° and z¢ H. It xe H then any subcontinuum of H irreducible
from z to B would contradict the irreducibility of A. Thus z¢ H.
If A — H is connected, then Cl (4 — H) is a continuum missing w
but containing « and z. This contradiction implies that A — H=FE U F,
separated, with x € E. The continuum H U E contains both z and w.
Thus any subcontinuum of H U E irreducible from 2 to B would con-
tradict the irreducibility of A. Thus A N B consists of only a single
point w.

Suppose that 4, z€ A such that A4 is not semi-aposyndetic at {y, z}.
By the semi-aposyndesis of A U B, there is a subcontinuum H of A U B
such that, say, ye H° (relative to A U B) and z¢ H. By the choice
of y and z, it follows that HZ A. Then H — {w} = E U F, separated,
with ye E. Hence E U {w} is a subcontinuum of A containing y in
its interior (relative to A) and missing z. This contradiction com-



496 LELAND E. ROGERS
pletes the proof.

THEOREM 2. Let M be a compact metric continuum in which
only semi-aposyndetic subcontinua separate. If M is both aposyndetic
at x and semi-locally-connected at x, then M is connected im kleinen
at «.

Proof. Suppose M is not connected im kleinen at x. Then [11,
p. 18] there exists an open set U containing %, and a sequence C,, C,, -«
of closures of distinet components of U such that xeC = lim C;, and
CnNC;=¢ (for each 7).

We may assume that x is a non-separating point of M, since if
K is a component of M — {x}, then « is a non-separating point of
of KU {z}, and we would need only show that each K U {x} is con-
nected im kleinen at # in order to complete the proof.

Since M is semi-locally-connected at xz, M is aposyndetic at each
point of M — {x} with respect to xz. Hence M — U can be covered by
a collection of subcontinua missing x, and by compactness, a finite
number of these cover M — U. Then since = does not separate, by
Lemma 2 we have that x does not cut. Hence the union of this finite
collection of subcontinua is contained in a subcontinuum missing x.
Thus we may assume that M — U is connected.

We first note that if B is any subcontinuum of C; irreducible
from x; to Bd U [Bd denotes boundary], then BU (M — U) is a sepa-
rating subcontinuum of M and hence is semi-aposyndetic. Thus by
Lemma 3, each such continuum B is an arc. Now for each ¢, let
v, ¢: € C; — U [p; and g; possibly the same point] such that there are
ares T; and S; in (C;N U) U{p) and (C;N U) U {q;} respectively ir-
reducible from z; to p; and q; respectively. Let p = lim p; and ¢ =
limq; (taking a subsequence of {C;}z, if necessary). If p = ¢ for
each possible choice of sequences {p;}, and {g;};=,, then M would not
be aposyndetic at x with respect to p. Hence there are sequences
{p.}r. and {g;}, such that p # q. For each 4, let 4; be an arc from
p; to ¢; contained in T, U S;; hence A; — U = {p;, ¢;}. Let A =1lim A4,
(taking a subsequence, if necessary), let w and z be distinct points of A4,
and let w;, z; € A;—{p;, q;} (for each %) such that w=Iim w; and z=1im z,.
We may assume that for each 7, w,; precedes z; in the order that A,
has from p; to gq;. For each 4, let D, be the subarec of A; defined by
D; = [p;, ;] for odd 4, and D; = [w;, ¢;] for even <. Finally, let B
denote the continuum (M — U) UA U (UD;}). Then B is not semi-
aposyndetic at {w, z} but it does separate M. This contradiction estab-
lishes the theorem.

A well-known example (see Figure 3-9 of [5, p.113]) of a con-
tinuum which is connected im kleinen at x but not locally connected
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at x satisfies the hypotheses of Theorem 2 and hence shows that the
conclusion cannot be improved to “locally connected” as in the cases
of Bing’s and Vought’s results.

THEOREM 3. A compact metric continuwum M is hereditarily locally
connected if and only if M is aposyndetic and each separating sub-
continuum 1is semi-aposyndetic.

Proof. Using Theorems 1 and 2 (and the fact that a continuum
is locally connected if it is connected im kleinen at each point), the
proof of Theorem 3 is essentially the same as Vought’s proof [9, p.
259].

The final result is a “semi-aposyndetic version” of Vought’s
Theorem 3 of [9, p.260], which generalizes Bing’s result [1, p. 504]
that a compact metric continuum in which no point cuts and no sub-
continuum separates must be a simple closed curve.

We first prove two lemmas.

LEMMA 4. Suppose that mo point cuts in the compact metric
continuum M, % is a point of the open set Uc M, Bd U is nondegen-
erate, and each subcontinuum of M irreducible from x to Bd U is an
arc. Then for each € > 0, there exists an arc A in Cl U with end
points in Bd U such that the distance from x to A s less than e.

Proof. We shall assume that each arc S irreducible from a point
p of U to Bd U is ordered from p to Bd U. Furthermore, for a, be S,
Sla, b] denotes the closed interval of S from a to b; open and half-
open interval notation denote analogous subsets of S.

Let T be an arc irreducible from = to Bd U, and let b be the
point of TN Bd U. Let @ be the set of all points y€ T such that
there exists an arc S containing y and irreducible between two points
of Bd U. Since no point cuts, there exists an arc S’ containing x and
intersecting Bd U — {b} but missing b. Then in T'U S’ there is an arc
which contains a point of T — {b} and is irreducible between b and
some other point of Bd U. Hence Q = . Let ¢ = glb Q. We need
only show that ¢ = z.

Assume that ¢ = . Since ¢ does not cut 2 from Bd U, there
exists an arc D from z to Bd U missing ¢q. Since ¢ = glbQ, DN
T{q, b] # @. Let y be the first point (with respect to the order on
D) of DN T(q, b]. Let z be the last point (w.r.t. D) of D[z, y] N Tz, q].
We may assume that D = T[x, 2] U D[z, y] U Tly, b].

Since ¢ is either in @ or a limit point of @, there exists a point
we T, ¥) N Q (possibly w = q). Thus there are arecs A and B each
from w to Bd U such that AN B = {w}). We may assume that w
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precedes all other points of (AUB N T[w.rt.T]. If DNB= @,
then ze Q@ because of the are BU T[z, w] U D[z, b]. But since this
contradicts the fact that ¢ = glb Q, we have that DN B+ @. Let
v denote the first point (w.r.t. D) of DN B. If AN D[z v] = @, then
z€ @ because of the continuum A U T[z, w] U D[z, v] U Blv, ¥'] where
b’ is the point of BN Bd U. This contradiction implies that A N
Dlz, v] = @. Let p be the first point (w.r.t. D) of AN D[z, v] and
let @ be the point of AN Bd U. Then A[p, a] U D[z, p] U Tz, w] U B
shows that z€ Q. This contradiction implies that ¢ = « and the proof
is complete.

LEMMA 5. Suppose that M 1is a compact metric continuum in
which no point cuts and only semi-aposyndetic subcontinua separate.
If M is semi-aposyndetic at {x, y}, then M 1is aposyndetic at x with
respect to y.

Proof. Assume that M is not aposyndetic at & with respect to
y. By semi-aposyndesis, there exists a subcontinuum BcC M — {w}
such that ye B°. Let C, C, C,, --- be the closures of distinct com-
ponents of M — B such that zelim C;c C. TUsing Lemmas 3 and 4,
we can construct (for each ) points p; and ¢; in BN C; and an arc
A, irreducible from p; to ¢; in C; such that A; N B = {p;, q} and lim 4;
is non-degenerate [taking a subsequence, if necessary]. Let A = lim A4;
and select distinet points w, ze A. Let w;, 2;€ A; — {p,, ¢;} (for each
7) such that w = limw; and z = limz;,. We may assume that w,; pre-
cedes z; in the order that A; has from p,; to ¢;. Let D, be the subarc
of A; defined by D; = [p,, 2] for odd ¢, and D; = [w;, q;] for even <.
Then (U D;) U AU B is a subcontinuum which separates M but which
is not semi-aposyndetic at {w, z}. This contradiction concludes the
proof of the lemma.

THEOREM 4. A compact metric continuum M 1is hereditarily
locally conmnected and cyclically connected if and only if no point cuts
wm M and only semi-aposyndetic subcontinua separate M.

Proof. Since the necessity is obvious, we consider the sufficiency.
Using Theorem 3, Lemma 2, and [7, p. 138], it is clear that we need
only show that M is aposyndetic.

Suppose that £ and » are points of M such that M is not aposyn-
detic at x with respect to u. Since no point cuts in M, M is both
aposyndetic and semi-locally-connected on a dense G;-subset Z of M
[6, p.412]. By Theorem 2, M is connected im kleinen at each point
of Z. Let y,ze€Z — {z, u}, and let H and K be disjoint subcontinua
in M — {x, u} such that ye H® and ze¢ K°.
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Suppose that M — (HU K) is connected. Then the continuum
Cl[M — (HU K)] is semi-aposyndetic since it separates y from z.
Hence M is semi-aposyndetic at {x, w}. By Lemma 5, M is aposyndetic
at ¢ with respect to #. This contradiction implies that M — (H U K)
is not connected.

Thus M — (HU K) = D U E, separated. One of HU D U K and
HU EU K must be a continuum. We shall show that the other is
also. Let HU D U K be a continuum and suppose that HU £ U K =
P U Q, separated subcontinua, with HC P and KC Q.

The continuum H U D U K is not irreducible about H U K, or else
points in D will cut P from Q. Let W be a proper subcontinuum
of HU D U K containing HU K. Suppose P+ H and @ # K. Then
the three continua HUD U K, PU W, and Q U W each separate M
and hence are semi-aposyndetic. Also each of x and w is in the interior
of one of them. Thus their union, namely M, is semi-aposyndetic at
{z, w}. Then by Lemma 5, M is aposyndetic at x with respect to u.
Thus it cannot be the case that P H and Q@ = K. We assume,
without loss of generality, that P = H. Then Q@ = KU E.

In order to show that x € D, we suppose that this is not the case,
i.e., that xe E. The continuum @ is not irreducible about K U {x},
or else # will be cut (in M) from K by any point of E — {z}. Let
T be a proper subcontinuum of @ containing both z and K. In order
to show that @ — T is connected, we suppose that Q — T'= T, U T, sep-
arated. Then TU T, and T U T, are separating, hence semi-aposyndetic,
subcontinua. Assume that w¢ T, so that we T,, say. Then TU T,
is aposyndetic at either (1) w with respect to =, or (2) a with respect
to w. In the first case, it would follow immediately that M is aposyn-
detic at u with respect to x, and by Lemma 5 we would have a
contradiction. In the second case, M would be aposyndetic at & with
respect to u because of the continuum which is the union of T,, T,
and the subcontinuum of 7'U 7T, missing % and containing 2z in its
interior (relative to T'U T,). This contradiction implies that e T.
Each of TU T, and T U T, are semi-aposyndetic at {x, w}. Without
loss of generality, we may assume that there is a subcontinuum S,
of TU T, such that xe S? (relativeto TU T,) and u¢S,. Now TU T,
cannot be aposyndetic at & with respect to u since it would follow
that M also is aposyndetic at ¢ with respect to %. Thus there is a
subcontinuum S, of TU T, such that we S; (relative to T U T,) and
x¢ S,. The continuum T U S, separates T U 7, into sets A, and B,
(otherwise S, U Cl (T}, — S,) would be a continuum with « in its interior
and missing «, and by Lemma 5 we would arrive at a contradiction).
Similarly T U S, separates T U T, into sets 4, and B,. Then T U S, U
S: UA, UA, is a continuum. Since it separates M, it must be semi-
aposyndetic. Thus it contains a subcontinuum S; which, say, misses
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2 and contains % in its relative interior. In a similar manner, T U
S, US; U B, U B, is a semi-aposyndetic subcontinuum of M. If it con-
tains a continuum missing # and containing % in its relative interior,
then the union of that continuum with S, will miss # and contain
% in its interior (relative to M) and by Lemma 5, we would arrive
at a contradiction. So there must be a subcontinuum S, missing «
and containing x in its interior (relative to TU S, US,U B, U B,).
Again in a similar manner, TU S, U S, U B, U A4, is a continuum which
separates M and hence is semi-aposyndetic. In case this continuum
is aposyndetic at & with respect to u, then it follows that M is also.
Thus there is a subcontinuum S, which misses 2 and contains % in
its relative interior. Then S, U S; is a continuum missing « and con-
taining « in its interior (relative to M) and by Lemma 5, M is aposyn-
detic at x with respect to w. This contradiction implies that @ — T
is connected. The dense G;-set Z intersects @ — T, so the continuum
Cl(Q — T) is decomposable and hence can be written as the union of
two proper subcontinua X and Y. Suppose X does not intersect T.
Then 2 is in the interior of the continuum Y U T that separates M.
It follows that M is semi-aposyndetic at {x, }. Then by Lemma 5,
we arrive at a contradiction. Thus both X and Y must intersect 7.
Each of the continua XU T and YU T separate M and hence are
semi-aposyndetic. Using an argument similar to the one above (which
involved TU T, and T U T,), we arrive at a contradiction.

Since the assumption that « € E has led to a contradiction, it must
be that xe D. The set D cannot be connected, or else, Cl D is semi-
aposyndetic since it separates M, and by Lemma 5 we would have a
contradiction. Thus D = D, U D,, separated, with xe D,. Let A denote
the z-component of D, U HJ K. Since D, U HU K has at most two
components, x€ A°. If K A, then A is a continuum which separates
D, from E, and hence is semi-aposyndetic. Then by Lemma 5, we
would arrive at a contradiction. Thus we suppose that KN A = ¢.
Then A meets H, and Cl D, meets both H and K. Let D'=D,U FE
and E' = D,. Then HU K U D’ is connected while H U KU E’ is not.
However, earlier (the portion of the proof which preceded this para-
graph) we showed that x could not lie in such a part of a separation
of M — (HU K). This contradiction implies that the original supposi-

tion that HU E U K is not connected is false. Hence both HU D U K
and HU F U K are continua.

Suppose both HUDUK and HU E U K are irreducible about
HyU K. Since M has no cut points, no point of D cuts any other
point of D from HN K in HU D U K. Assume that H cuts a point
d of D from K in HU D U K. Since no point cuts in M and HN Cl1 D
cuts the point d from K in M, then H N Cl D must contain more than
one point. If HNCIDNClE +# ¢, then C1 D UCIE is a separating,
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hence semi-aposyndetic, subcontinuum, and by Lemma 5 we have a
contradiction. Thus HN ClD N ClE = ¢. Consequently, C1H° NClD + ¢,
or else the continuum H U D U K would be the union of two separated
sets ClH° U(HNCIE) and KU ClD. Next, using Lemma 5 and the
fact that the continuum Cl1D U KU Cl E is the complement of H°,
it follows that H° is connected. Similarly, K° is connected. Suppose
Cl H° contains a proper subcontinuum R which intersects both H N Cl D
and H N Cl E. Then the continuum C1D U R U Cl E is semi-aposyndetic
since it separates H° — R from K°, and by Lemma 5 we reach a
contradiction. Thus Cl H® is irreducible from HN ClD to HNCl E.
Similarly Cl K° is irreducible from KN ClD to KN ClE. It follows
that C1K° UClD is irreducible from HNClID to KNClE. Note
that C1 H° and Cl K° UCl D are the only two subcontinua of M ir-
reducible from HNClD toClE. LetacClH°NClD and let be HN
Cl D — {a}. Since no point cuts in M, there exists a continuum R
which contains b, interseects Cl E, and misses the point a. Then R
must contain one of the two continua Cl H° and Cl K° UClD, each
of which contains the point a. Since ¢ R, we have a contradiction.

Using a similar argument for the case of K cutting b in D from
H in HU D U K, we have that neither H nor K cuts the other from
any point of D in HU D U K. Thus the upper semi-continuous de-
composition whose elements are points of D together with the two
sets H and K is an arc [1, p.501]. Similarly, HU E U K can be de-
composed into an arc. Then M is aposyndetic at each point of D U F,
hence at «. This contradiction implies that one of HUD U K and
H U E U K is not irreducible about H U K.

Let N be a proper subcontinuum of H U D U K irreducible about
H U K. Since the G;-set Z is dense, there exist points » and ¢ in
D — (NU{x,u}) and E — {x, u} respectively at which M is connected
im kleinen. Thus there exist subcontinua P and @ such that Pe P° C
PcD—- (NU{z,u}) and ge Q° c QC E — {=, u}. As was shown above
(with M — (HU K)), we have that M — (PU Q) = SU T, separated,
such that PUSUQ and PU TU Q@ are continua. We may assume
that NcS. Thus the continuum PU T U @ misses N (hence HU K)
and therefore is contained in D U E. But since pe D and qe E, the
continuum P U T'U @ intersects both parts of the separation D U E.
This impossibility implies, contrary to our initial assumption, that M
is aposyndetic at x. Thus the proof is complete.

Just as in [9, p. 262], an easy application of Theorem 4 yields the
following result due to Bing [1, p. 504]:

COROLLARY. FEwvery compact metric continuwum in which no point
cuts and no subcontinuum separates is a stmple closed curve.
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BILINVARIANT PSEUDO-LOCAL OPERATORS ON
LIE GROUPS

L. PrEISS ROTHSCHILD

Let G be a connected Lie group whose Lie algebra is not
the semi-direct sum of a compact algebra and a solvable alge-
bra. It is shown that any bi-invariant pseudo-local operator
on (G is the sum of an invariant differential operator and an
operator with smooth kernel.

1. Introduction. We consider a class of operators on Lie groups,
satisfying a weak local property. Roughly, a pseudo-local operator
on a manifold M is a continuous linear operator, P, on the space of
compactly supported functions on M, which extends to an operator
P’ on the space of compactly supported distributions on M, such that
P’ preserves singular support. It has been shown by Kohn and
Nirenberg [3] that any pseudo-differential operator is pseudo-local.
Stekaer [6] has proved that any bi-invariant pseudo-local operator on
a complex semisimple Lie group is the sum of an invariant differential
operator and an operator with smooth kernel. The proof of this theorem
reduces to verifying that every smooth, invariant function on the Lie
algebra of G minus the origin can be extended smoothly over the
origin. Our main result is the verification of this hypothesis for a large
class of Lie groups, proving the above theorem for these groups. For
a given Lie group, this theorem implies that the class of bi-invariant
differential operators on that group can be substantially extended only
by considering operators which do not satisfy local properties.

After the original version of this paper had been submitted, the
author learned that these results have been extended by Anders Melin
[8] to include any Lie algebra which is not the direct sum of a
compact algebra and an abelian one.! Independently, the author had
extended the results to include the nilpotent case.

The author wishes to thank I. M. Singer, Victor Guillemin, and
Gerald McCullom for helpful discussions on this work, and the referee
for many suggestions which have greatly improved the exposition.

2. Definitions and notation. Let G be a Lie group and C~(G),
(resp. C2(G)), the space of smooth functions (resp. smooth functions
with compact support) on G. The dual of C*(G), which is the space
of compactly supported distributions on G, will be denoted &’'(G),
while the dual of C=(G), the space of distributions on G, will be
denoted 2'(X).

1. The author is indebted to Sigurdur Helgason for informing her of Melin’s work.
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For we &’(X) we define the singular support of u, denoted sing
supp %, as {xe€ X|u ¢ C>(U) for any neighborhood U of w}.

A continuous linear operator P: C3(X) — C=(X) is called a pseudo-
local operator if it extends to a continuous operator P’: &'(X) — ='(X)
such that P’ preserves singular support; that is,

sing supp P'u & sing supp for ue &'(X).

We now assume that there is a Lie group G which operates
differentiably on X. That is, there is a differentiable map z

22Gx X—X

such that z(ab, x) = z(a, 2(b, x)) for all ¢,be G, and all xe X. If fe
Cy(X) we define ,f, the left translate of f by ae G as

J(X) = f(z(a, w)) for ze X.
If X = G, then the right translate of f by ac G is defined by
fa(0) = f(ba) for ac G.

We call the pseudo-local operator P left imvariant (resp. right
invariant) if

P(f) = (Pf) feCP(X) (resp. P(f.) = (Pf).) -

If G = X is a Lie group, P is called bi-invariant if it is both left
and right invariant.

Let g be the Lie algebra of G, and let 1 denote the identity in
G. @G acts a group of automorphisms on g via the adjoint represen-
tation, Ad. For any ae G, xc g, we write a. x for Ad(a)x. A function
f on g or g — {0} is called inmvariant if it is constant on the orbits
of G on g. A function on G or G — {1} is called invariant if it is
constant on the conjugacy classes of G. If & is a family of func-
tions, .# ¢ will denote the subset of invariant functions.

3. Pseudo-local operators on Lie groups. Our main result is
the following.

THEOREM. Let G be a connected Lie group and g its Lie algebra.
If g is not the semi-direct sum of a compact algebra and a solvable
one, then every bi-invariant pseuwdo-local operator on G s the sum of
an invariant differential operator and an operator with smooth kernel.

This. theorem has been proved by Stekaer-Hansen in the special
case where g is complex reductive, non-abelian, using the following
reduction to a criterion involvling invariant functions on g.
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PROPOSITION 1 (Stetkaer). Let G be a connected Lie group with
Lie algebra g. If the restriction map r:(C=(g))?— (C=(g — {0})¢ s
surjective, then every bi-invariant pseudo-local operator on G is the
sum of an invariant differential operator and an operator with smooth
kernel.

For the proof of this proposition see Stetkaer [6].

We shall refer to the condition on g in the proposition as Stetkaer’s
hypothesis.

Stetkaer’s verification of this hypothesis for the case where g is
complex reductive uses a result of Kostant ([4] Theorem 7). Kostant’s
theorem implies the existence of a hyperplane p © g — {0} and a smooth
map ¢: g — b satisfying the following conditions.

(i) There is a dense subset t < g such that for any x € r, there
exists a unique «' €¢v with a.x = 2’ for some ac G.

(ii) Forany zer, t(x) = 2’. In particular, if yevNx, then i(y) = y.
Conditions (i) and (ii) above show that any invariant function f on
g — {0} is completely determined by its values on v. Since bcg —
{0}, the function fot is defined and smooth on all of g. Therefore
fot is the desired extension of f since in agrees with f on g — {0}.

Since Kostant’s result does not extend even to real reductive Lie
groups, we shall use a substantially different approach in our proof.

4., Proof of the main theorem. We shall verify Stetkaer’s
hypothesis in the case where g is not the semi-direct sum of a compact
Lie algebra and a solvable Lie algebra. If f is an invariant function
which is smooth on g — {0}, it will be shown by explicit computation
that all partial derivatives of f can be extended continuously over 0.
We shall define a one parameter subgroup {a.}:;.x of G and show that
for a suitable basis of g the transformation of the partial derivatives
with respect to this basis can be easily computed (Lemma 3). Invar-
iance of f under the action of this one-parameter group is sufficient
to prove the theorem, since the action of {a.}.,.r pushes “most” small
elements in g — {0} to the unit sphere.

Let g =g, + g, be a Levi decomposition of g, with g, semisimple,
and g, solvable. By assumption, g, is not compact. From the struc-
ture theory of semisimple algebras, it is well known that g, contains
a subalgebra u, where u is isomorphic to 3[(2, R), the Lie algebra
of the real special linear group. (For the proof of this, as well as
the details of the representation theory of u, to be used later, see
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Serre (5), Chapitre IV and VI) or Helgason ([1] Chapter VI].) For
any xeg let ad # be the endomorphism defined by ad x(y) = [, y]
for all yeg; i.e. ad is the adjoint representation. If u is any such

subalgebra, let xcu be the inverse image of the element ((1) _ (1)>
under a fixed isomorphism of u with 8l(2, R). From the representation
theory of three-dimensional simple Lie algebras there is a vector sum
decomposition

g =g% + 3g" + 39777,
j=1 j=1

where g/ = {yeglle,yl = ry}, g7 ={yeg| [z, 9]l = —riyh g” =
{yegl[z, y] = 0} where the r; are all positive integers.

k k
Let gt = >,g"" and g~ = >, g™ .
j=1 J=1

We make the convention that r_; = — ;. Let @, %, -+, %, be a
basis for g, and for each j, positive and negative, let x;;,, «-- Tipiy
be a basis for g"s’. Give g the metric for which the above basis is
orthonormal. We write |y| for the length of an element yeg. Any
y€g has a unique decomposition ¥y = y, + ¥, + y_, with y, e g*, ¥, € g©
and y_eg™. Then [y = [y + [%l" + [y

Let D be the family of all partial derivatives for the given basis.
We write D, for the partial derivative
a"”.fl a”jz a‘njm

ale 500,—2 (9:17,-m

where n; = (n;, n;,, «++, n; ), with n;, = 0 for all ¢, for all 7, positive,
negative or zero. Any De D can be written D, _, ++- D, . The order
of D, O(D,,j), is defined by
O(D,,LJ) = ; Nj, o
Then the order of D is defined by
k
Oo(D) :j;kO(Dnj) .
The heitght of D, k(D) is defined by
k
(D) =j§k 7; O(D,)) -

For any real ¢, let a, = exp tx, where exp:g— G is the exponential
map. Then {a};.x is a one-parameter subgroup; we shall need only
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the invariance of f under {a}.

Then if yeg“?, a,y = €y, where a,-y denotes the adjoint action
of a, on the element yeg. The following lemma shows how the
partial derivatives transform under the action of a,.

LEMMA 2. Df(a;-y) = e "' Df(y) for yeg,y + 0, for any De D.

Proof. We prove the formula by induction on the order of D.
Suppose first that D = 9/0x;. Then

aa;,f (@, y) = lim fla-y + 89023) — fla.-y) ,
— lim S + sa;:xh) — )

by the invariance of f,

= lim Sy + ee”im;) — f(y)
£—0 &
2L ) = e Df ().

0x;,

= g7 t"J

Now assume the lemma is true whenever O(D) < k. If O(D) = &,
then D = (8/0x;)D, where O(D) = k — 1.

Df(a;+y) = lim Df(a,-y + ex;) — Df(a.y)
e—0 5

= lim e—t*® (Df(y + £a;t%y) — Df(y))

&0 I

— o~thD lim Df(y + ee"w;) — Df(y)

€0 I

— e—th(l"))e—trj 0 Df(y)
0x;,
= g th@ ] ,

which proves Lemma 2.

LEMMA 3. Let yeg — {0} and 6 > 0 such that |y| < 6. Then for
DeD and any € > 0, there exists y' €g, |y | < 0, such that

(1) Y. #=0and y.#0
and
(2) |Df(y) — Dfy)| <e.

Proof. Since Df is continuous at y, there exists a neighborhood
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V of y such that ze¢ V implies | Df(y) — Df(z)] < . The intersection
of V with the ball of radius ¢ around the origin is again a neighborhood,
V', of y. Since [y = |y *+ |%[* + |y_]% if either y, or y_ is 0,
we may choose 2. eqg* and 2’ eg~ sufficiently small so that % =y +
2, + 2. is still in V' which proves the lemma.

We now define a compact neighborhood U of width 1/2 around
the unit sphere, i.e.,

U={yegll/2<|y| <3/2}.
Since U is compact, for any D e D, ¢ > 0, there exists ¢, > 0 such that

[y, — %] < 0, == | Df(y,) — Df(y,)| < ¢ for any y,, € U.

LEMMA 4. Let De D with (D) = 0. Then for any € > 0, there
exists a mneighborhood S, of 0 in g such that iof ye S, — {0}, then
IDf(y)| <e.

Proof. Let M = max,.,|Df(z)|, Then for any te R,z2eU
| Df(a,-2)| < |7 P M|, by Lemma 2. We shall assume, to minimize
notation, that A(D) > 0. The proof for (D) < 0 is similar. Choose
t, satisfying |e™* ' M| < e. Then |e*P'M| < ¢ for all ¢ >t. Now
let r = max;_,,..,7;, and let 6, = min (1/2, e%/r). We define S, as
the sphere of radius 6,, and we shall show that this satisfies our
condition. For suppose y = ¥, + 9, + ¥_€Sp. By Lemma 3 it suffices
to assume that y. % 0 and y_ % 0. Since |y|* = |y |* + %> + |v_]5
we have |y_|<éd,. Since y. # 0, there exists ¢ such that |a_,-y|=1.
Then

ooy —asey-| =la e Wo + Y| = ¥+ ¥y < 0p é% .

So that a_,-yc U. But
1=lay | =|r| €] |y-1,
so that
e = 1/riy_| > 1/r(e t/r) = e,

which proves that ¢ > t,. Therefore, since a_,-y € U, it follows from
the definition of ¢, that | Df(a.-(a_.-y))| < &. Since a,+(a_;+y) = y, this
proves Lemma 4.

LEMMA 5. For any DeD with (D) =0 and any € > 0, there
exists a neighborhood S, of 0 in g such that if y,y" €Sp, — {0}, then
|Df(y) — Df)| <e.
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Proof of Lemma 5. Choose 4,0 < 0 < 1, such that for any z, 2" € U,
|z — 2’| < & implies | Df(z) — Df@)| < % :

and let S, be the ball of radius §/2 around 0. Now let v, ¥’ €S, be
arbitrary. We will show that |Df(y) — Df(y)| < e.
We write

Y=Y+ + Y+ Y-

and
¥ =9+ y+ y-

as before. By Lemma 3 we may assume that y., y_, ¥'.y_ are all
nonzero. We show first

(3) |Dfwo + y.) — Dfw)| < and | D, + ) — DIW)| < -
For this, choose ¢ > 0 such that |a,ry,.] = 1. As in the proof of
Lemma 4, a,.y and a,*(% + y+) € U. Then |a,.y — a,-(y + ¥,)| =
la,+y_| < |y_| < 0. By the choice of d, we have | Df(a,-y) — Df(a,*(y, +
y,)) <e¢/5. Since (D) = 0, Df is invariant under a,, so that the first
inequality of (3) holds. The proof of the second is the same.

By continuity of Df at y, + v, and y; + ¥., we may choose ¢q_¢
g~ with |g_| sufficiently small so that

(4) |Df) — Dfyo + y)| < ¢/5 and | DfW') — Dflys + ¥2)[< ¢/5,

where ¥y =q_+ %, + vy, and ¥ =q_ + y; + ¥.. Now choose s> 0
such that |a_,-q_| = 1, which is possible since ¢_# 0. Then a_,-7 ¢
U and a_,-y’ € U. We shall show

(5) | Df(@) — DF@)| < g .

Indeed,

la_or¥ — a_*¥'| = |a—s (¥ + ys) — a_o(yo + ¥4)|
= o (o + y) | + lass(ys + 91|
= %+ vl + 1y + 4
0 )
2 4+2 5,
< 2 + 2
which proves | Df(a_,-y) — Df(a_,-%’)| < ¢&/5. Then (5) follows immedia-
tely since Df is invariant under a_,.
To complete the proof of Lemma 5, note that
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| Dfty) — DfW)| = | DA) + Dflyo + y:)| + | D) — Df(y; + v%)|
+ [Dftyo + y+) — DA@)| + | DFy; + %)
— Df@"| + | Df(y) — DH)|

€ € € € €
<E+E+E+_5-+ 5 by 3),(d) and (6) = ¢.
We may now complete the proof of the theorem. Lemmas 4 and 5
show that for any D e D, the function Df can be extended continuously
over 0.
We shall assume the following, which can be proved using ele-
mentary calculus.

(6) If h(x) is a function on R such that dh/dx exists and is
continuous off 0, then h is differentiable if the function dh/dx can be
extended continuously over 0.

By (6) and induction, it follows that Df exists and is continuous
on all of g for any D e D.
This finishes the proof of the theorem.
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THE FIXED POINT PROPERTY FOR ARCWISE
CONNECTED SPACES: A CORRECTION

R. E. SMITHSON AND L. E. WARD, JR.

Several years ago the second author stated a fixed point
theorem for a class of arcwise connected spaces which includes
the dendroids as well as certain nonunicoherent continua.
Subsequently the first author detected a flaw in the proof.
The present collaboration has produced a correct proof. Since
the theorem has not been subsumed in the literature of the
intervening years and since other authors have alluded to it,
it seems desirable to publish the new proof.

For recent references to the theorem, see [1],[4] and [7].
The original, erroneous argument can be found in [5]. (The error
(p. 1277) occurs in the assertion that S’ = |J(S;} is connected, and
hence that _#~ has a maximal member.)

In the present exposition a few changes have been made in
terminology. In what follows an arc is a compact connected Haus-
dorff space with exactly two non-cutpoints. A space X is arcwise
connected if for each two elements # and y of X with x +# y, there
exists an arc [z, y] contained in X. It is convenient to write [z, 2] =
{x} and [2, y) = (¥, 2] =[x, y] — {y}. A circle is the union of two arcs
which meet only in their endpoints. We write [] to denote the
empty set. If ec X then an e-ray is the union of a maximal nest
of arcs [e,x]. If R is an e-ray then

K = n{R - [6, x): [67 -’L']CR} ’
where the bar denotes closure. If X is not compact then it may be

that K, is empty, but in the compact case this cannot occur.

THEOREM. If X 4s an arcwise connected Hausdorfl space which
contains no circle, if ec X and if f: X— X ts continuous, then f
has a fized point or there exists an e-ray R such that f(Kz) C Kj.

COROLLARY. If X is an arcwise connected Hausdorff space which
contains no circle and if there exists ec X such that Ky has the fixed
point property for each e-ray R, then X has the fixed point property.

Before embarking on the proof of the theorem, some subsidiary
results will be helpful.

LemMA 1. If X is a Hausdorff space, A is an arc and f:A—
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X is continuous, then f(A) is arcwise connected.

Since A is locally connected and compact it follows that f(4) is
locally connected. In contrast to the case where A is separable, the
arcwise connectivity of f(A4) is not immediate [3]. A proof of Lemma
1 can be found in the thesis of J. K. Harris [2]; it is a modification
of an argument first used by J. L. Kelley (see, for example, [6; p. 39].)
We give a sketch of that argument.

If # and y are elements of f(A), then there exists a closed subset
F of A which is minimal with respect to {, ¥} C f(F) and f(a) = f(b)
whenever a and b are the endpoints of a complementary interval of
A — F. It follows from this minimality that f(F') is connected and
that « and y are the only non-cutpoints of f(F). Therefore f(F) is
an arc, and so f(A) is arcwise connected.

For the remainder of this paper X is an arcwise corinected Hawus-
dorff space which contains mo circle and ec X. In particular, if
and y are distinct elements of X then the arc [z, y] is unique.
Consequently the relation # <y if and only if xe[e, y] is a partial
order. As usual, if # <y and x # y we write z < y.

Of course each arc in X has a natural order which does not
necessarily agree with the partial order <. If a and b are elements
of X and if p precedes ¢ in the natural order on [a, b], we write [a,
p: q: b]'

LEMMA 2. If a,b and ¢ are elements of X such that a <b and
a £ ¢, then aclb, c].

Proof. If b < c¢ then by transitivity the hypothesis that a £ ¢ is
contradicted. Therefore, by the uniqueness of arcs there exists d =
b such that [e, b] N [e, ¢] = [¢, d]. Moreover,

acle, b] — [e,d]c[d,b]c[d, b] U [d, c] = [b, ] .

LEMMA 8. Let f: X— X be continuous and suppose x and t are
elements of X such that v < t < f(x),t < f(t) and f(x) £ f({t). Then
there exists ye (x, t] such that f(y)e[f (), f)] and fly) < f(x).

Proof. By the uniqueness of arcs there exists z€ X such that
[2, f(@)] = [e, F@]IN[f®), fF@]<[f(@), f(@)], and therefore by Lemma
1, [2, f(@)] < f([=, t]). Because f(x) £ f(t) and z < f(¢) it follows that
z # f(x). Consequently there exists y € (x, t] such that z = f(y).

LEMMA 4. If f: X — X s continuous and if p and q are elements
of X such that [f(p), », q, ()], then there exists w<|[p, q] such that
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x = f(x).

Proof. By a straightforward maximality argument there exists
[x, y] < [p, ] which is minimal relative to [f(2), %, ¥, f(v)]. If f(x) #~
x then & = f(x) where x, € (%, y] so that [z, y] contradicts the mini-
mality of [z, y]. Therefore f(z) = =.

A subset C of X is called a chaitn if it is simply ordered with
respect to the partial order <.

LemmA 5. If xe X such that x £ f(x) and if there ewxists t,¢ X
such that t, < f(t) < x, then f has a fixed point.

Proof. Let T be a subset of X which is maximal with respect to
TU f(T)C e, x] and t < f(t) for all te T. Since T C [e, 2], there is
a least upper bound ¢, of T. We will show that ¢, = f(¢,).

Suppose first that ¢, £ f(t) and f(t) £ %. Then there exist
disjoint open sets U and V such that t,e V, f(V)C Uand UnN e, t] =
O=Vnle f(t)]. If te T is chosen so that [¢, ¢]CV, then [f(¢),
Ff)l < £(¢, t.]) c U since, by Lemma 1, f([t, t,]) is arcwise connected.
Since ¢ < f(t) and ¢t £ f(t,), it follows from Lemma 2 that ¢e[f(¢),
f(t)] < U, and this contradicts our assumption that U and V are
disjoint. Therefore, either f(t) < ¢, or t, < f(t)-

If f(t,) < t, then there exist disjoint open sets 0 and W such that
t,e0 and f(0)c W. If ye T is chosen so that [y, t,] 0, then [f(y),
f(t)] W and, since f(t) <y = f(y), it follows that ye W. Again
this is a contradiction and therefore ¢, < f(¢,).

If t, < f(¢,) then there are disjoint open sets U’ and V’ such that
tLeV,f(VhYcU and U'NJe t] =0. If se[t, z] is chosen so that
[t., s] < V', then s < f(t,) and hence [f(), f(s)]< U’. By Lemma 3
there exists ze€ (¢, s] such that f(z)e[f(t), f(s)] and f(z) < f(t).
Since z < f(2) < f(t,) < =, the maximality of the set T is contradicted.
Therefore t, = f(t,).

Proof of the theorem. Let .5 denote the family of all subsets
S of X such that SU f(S) is a chain and ¢t < f(¢) for each te S.
Clearly {e}e &7, so by Zorn’s Lemma .&” has a maximal member S,.

Suppose S, U f(S,) C[e, 2] for some xe X. If 2 £ f(x) then f
must have a fixed point by Lemma 5. If x < f(x) for each x such
that S, U £(S,) C [e, #] then by maximality both « and f(x) are members
of S, and hence z = f(x).

Therefore we may assume that S, U f(S,) is cofinal in some ray
R. It follows readily that S, is cofinal in R. We will show that if
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f(Kz) — K # [0 then f has a fixed point. Choose y € K, such that
f(y) e X — K ; then there is a generalized sequence z, (i.e., a function
whose domain is some ordinal number) in R such that z, < x,,, and
x, —1y. Since S, is cofinal in R, the sequence x, can be so chosen
that there exists v, €S, N [%.,, ,..], for each =.

If there exists n, such that w, ¢[e, f(x,)] then [f(¥a.), YUny Ty
f(x,)], so that by Lemma 4, f has a fixed point. Consequently we
may assume 2z, < f(z,) for each n. Moreover, since f(y)¢ K, we
may assume f(z,) ¢ R, for each n.

If there exists n, such that f(x,) < f(f(«,)) then we may find
m such that y,, ¢ [e, f(f(,,))] and therefore [f(Yn), Ym, f(®n), [ (f(@a)]-
Again, f has a fixed point by Lemma 4. Hence we may assume that
xz, < f(x,) £ f(f(x,). But then the hypotheses of Lemma 5 are
satisfied.
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ZEROS OF SUMS OF SERIES WITH HADAMARD GAPS
L. R. Sons

If f is a function of the complex variable z in the unit
disc and the power series expansion for f about zero can be
expressed as a finite sum of series with Hadamard gaps, then
f(z) assumes every finite value infinitely often provided the
coefficients in the power series expansion of f do not tend to
zero and the average value of (logtl/| f(re®)|)? does not grow
too rapidly as + — 1~ for some p > 1.

1. Introduction and statement of results. Let f be a function
analytic in |z] < 1 for which

(1) f@) = o + 3 ae™
where {n,} is a sequence of positive integers for which

(2) M > g1, (b=1).
N

The series in (1) is said to have Hadamard gaps.
If q is greater than about 100, G. and M. Weiss [9] proved f(z)
assumes every finite value infinitely often provided

(3) golck]:w.

If ¢ >1, W. H. J. Fuchs [2] showed f(2) assumes every finite value
infinitely often provided
(4) lir;asuplc,,]>0.

In [3] Fuchs has extended his result to show that f assumes every
finite value infinitely often in each sector

S={zla<argz< g and |z2]|]<1}

where a and g are fixed real numbers.
The original result of Fuchs may also be extended as follows:

TEOREM 1. Let {n,} be a sequence of positive integers for which
(2) holds. Letl be a fized positive integer, and let n® for 1=1,2, <+, 1
be integers for which

Ny < B < NV < vee <P < My,
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Suppose f is a function analytic in |2| <1 for which

f(z) = a, + Z (an,{cl)zn’(tl) + an,(cl_”zn;‘l—l) + e + an;(c”zn;c” =+ ankz"‘k) ’
=i
(5)

- Z Ckzk .
k=0

Suppose (4) holds and for some p > 1 there exists a constant C with
0< C< +oo such that

(6) (" og*1/1 £re®) )t = 0L | og#1/1 £ re) pas)

for a sequence of wvalues of r approaching one. Then f(z) assumes
every finite value infinitely often in |z| < 1.
Two immediate corollaries of Theorem 1 are:

COROLLARY 1. Assume the hypothesis of Theorem 1 with n{® =
n,—a for k=1,2,3,--- and 0 < a=1. Then f(z) assumes every
finite value infinitely oftem im |z| < 1.

COROLLARY 2. Let f be a function analytic in |z| < 1 for which
&) = 3 et = fi@) + £@) + -+ + £(2)

where for each 1, f;(z) has a power series expansion about zero with
Hadamard gaps. If (4) holds and for some p > 1 there exists a con-
stant C with 0 < C < + o such that (6) holds for a sequence of values
of r approaching one, then f(z) assumes every finite value infinitely
often in |z| < 1.

Corollary 1 is a special case of Theorem 1 and extends a result
of C. Pommerenke [6] who showed that functions of the type of
Corollary 1 without the assumption (6) must assume every value at
least once. (G. Schmeisser [7] has recently extended the method in
[6] to show the Pommerenke-type series assume every value infinitely
often). Corollary 2 follows from Theorem 1 by noticing that f(z) can
be rewritten, if necessary, to be in the form (5).

For functions of the form (5) for which

lim sup log M(r)

——= ) > 22+ 1
1~ —log (1 — 7) ( )

where M(r) denotes the maximum modulus of f(z) on [z| =7, we
remark in [8] that

lim sup n(r) >0,

- —log (1 —7)
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where 7n(r) denotes the number of zeros of f in |z| <. It seems
probable that functions of the type of Theorem 1 also assume every
finite value infinitely often in each sector

{zla<argz< g and [z]|<1}

where a and B are fixed real numbers. It has been shown by P.
Erdos and A. Renyi [1] that if {n,} is an increasing sequence of natural
numbers satisfying

lim inf (n, — n,)"* 9 =1,
(k—j)—oo

then, for any sequence {w,} of natural numbers for which

lim @), = + oo

k—oo

there exists a sequence {m,} of natural numbers such that
0=m —m <o,

and a function g, analytic in |z| < 1 with the power series expansion

9(z) = go bz™

where the b, are positive, such that g¢(z) is unbounded in |2| < 1, but
bounded in the domain |z| < 1, |arg z| > &, for any & > 0.

If f is an analytic function in |2| < 1, D. Gaier and W. Meyer-Konig
[5] have defined the radius R, defined by 2z = re?, 0 < r < 1, singular
for f if f(2) is unbounded in any sector |2] <1, —e< argz< ® + ¢
with ¢ > 0. They showed that if f is unbounded in |z| < 1 and the
power series expansion for f about zero has Hadamard gaps, then
every radius is singular for f. We have

THEOREM 2. Suppose f is a function which is analytic in |z] < 1
and has the power series expansion (5). Suppose

lim sup {max |¢,|r*} = o .
r—1""
Then each radius R,(0 < @ < 2r) vs singular for f.

In section two the necessary lemmas are stated and the theorems
are proved, while section three contains the proof of the essential
lemma which enables us to use the idea of G. H. Hardy and J. E.
Littlewood of accentuating the dominance of the largest term in the
series (5) by repeated differentiation (c.f. Fuchs [2]).

2. Proofs of the Theorems. We need three lemmas:
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LemMMA 1 (Fuchs [2]). Let g be a function analytic in 2| < R.
If, for some positive integer P

9”@ =M (z|<R),
and
(970 = A >0,

then ¢(2) assumes in |z| < R every value w lying in the disc
jw — g(0)| < KRPAPHM™?

where K is a positive number depending only on p.

LEMMA 2 (Gaier [4]). Let E be a closed subset of {z||z]| = 1} and
assume that E has measure 21y where 0 < v < 1. If p is a polynomial
with N terms, then

max |p(z)| = Cy(7)-max |p(z)|

where

(7) log Cx(v) = ( LAY 1 )logS .
11—~ 1—7
LEMMA 8. Assume the hypothesis of Theorem 1. Let p, v, and
a be positive integers where 0 <a <1. For k=1,23, .- let n =
N,  Define

SO _ exp{_p/nia)} , S1 = eXp{——Zﬁw(l -+ (;Of %)} ’

and

Wew = (0 = D —2) +++ (i — p + 1)S

where S, < S<S; 0=l and k=1,2,3---. Then for a fized
v with 0 < v <1 there exists an integer p, depending on q and
such that for p > p, and v > v(p)

k¥#v—1,v,v+1

S Wew+ Wigy + o0+ W) < —i—(CsHs(’Y))_‘ W. i »

where C,.5(7) is defined by (7).

Proof of Theorem 1. We note that it suffices to show f(z) assumes
zero infinitely often in [z] < 1. So suppose f(z) is zero only a finite
number of times in |z| < 1 and denote these zeros by z, 2, «--, 2;.
Then N(r,1/f) = O(1), and it follows from the first fundamental theo-
rem of Nevanlinna theory that
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(8) m(r, ) = m(r,1/f) + OQ1) .
For 0 < r<1,

. oo 1/2
£0e)] >0 (3 lenPr ) >0
k=0
on a set of ¢ of measure not less than g, > 0 [10, p. 216'], so

(9) m(r, ) — e

as 7 approaches one by condition (4).
For a value 7' for which (6) holds, let & (+') denote the set of 4

in [0, 27] at which

1
(10) log* s > 5 m(r 1/f) .

Denote the measure of Z(»') by |& (+')|. Then using Holder’s in-
equality and (6)

mm(r’, 1/5) = S v 087 f(¢ Faen
1 P i p N 11
= <Lf(r)< | f (' ”)[) dﬁ) &0
= (2zC)Pm(r', 1/ )| & ()| .
Thus,
(7|2 C)") < | & ()] .
Define v by

27y = (7/(@7C))" .
Let 0 = MaX;<<j Izk{’ and let

U= Iirknsup]ck[ .
If U< <, let N be the least integer such that
ol < 2U

for k >N. If U= o, let N=0.
Define

p(r) = sup |e,|r*, o=r<1).
E>N

Let V = V(r) be the largest integer such that

I Theorem 8.20 on page 215 easily extends to finite sums of series with Hadamard
gaps, and so Theorem 8.25 on page 216 does also.
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ley|r” > -;—#(7") .

If U= o, we see
ICVI’I”V>1, (r>mr),
and also V(r)— o« as r—17. If U< o, we see

1

=U
3

feyfr” >

and again V(r) — « as r-— 1~ since there are infinitely many integers
k with

ol >32Uu>Luwy, @<y,
4 2
Using the notation of Lemmas 1 and 3, we choose » = max (N, p,)
and choose r so close to one that
o < 7S, = rexp{—p/n"}

where #{® = V(r), n{, > 2p, and vy > y(p). We may assume 7(S,S)"*
is a value ' for which (6) holds. Let

v+1 a

T@) = > (@,p2" + <=+ + a,,2") .
k=p—1

By Lemma 3

l

@
Olaﬂ;{f) |7 Wk,(i)) = pu(r) > +1(I/Vk,(z) +oeee o+ Wio) s

k#v—1,v,v+1 (i: ksbv—1,v,v

< 2,0 |17+ Cors) " W -
Hence,
FP(rSe?’y = TP (rSe®) + E(rSe)
where
[E(rSe”)| < —;— (Cors (M) P —1) = -+ (0 —p+1) [@, % (rS)=" 7 .
Consequently,
| F2(r8e) | = Culp, D7) |ane | ()"

and using Lemma 2 on the polynomial 7‘?(rSe?) where S is a value
¢ for which (6) is valid we find

| FP(rSe®) | = Cul(p, 1, V(M) |yt | (1Sy)™"
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for values of 6 in & (rs).
Therefore if ' = »(S,S,)"* is a value for which (6) holds, then we
may apply Lemma 1 to

9(€) = f(r(S,Sy)"*e* %)
with

R= %(1 - ql‘f—ql)-ﬁ%

where p and v satisfy the hypotheses of Lemma 3. Then
RPAPHM-? > Ca(p, q, l’ 7)]a”£g) [ (ero)n,(ﬂ)(So/Sl)pnf,d) ,

> C4(p’ Qy Z} '7)#(7.) ’
> C5(p, q, l’ ’Yv U) *

Thus f(2) takes every value w in the disc
(w - f(,r.(Sosl)l/Zeic‘})[ < Cﬁ(p9 q’ l’ 7) U) v
But by (10) we note that

|Fr(S,8)7%e%)| < exp (—2m(r(S:S)"), 1/)) ,

and because of (8) and (9) we conclude that when 7 is near enough
to one

|f(r(S:S) ") | < Colp, 9, 1,7, U) «

Thus f(z) will assume the value zero at points arbitrarily near |z| =
1 which contradicts our earlier assumption and proves the theorem.

Proof of Theorem 2. Suppose there is some radius R, which is
not singular for f, and so there exists an ¢ >0 such that |f(z)] is
bounded in the sector .&¥ = {z|® — e < argz< @ + ¢, |2| <1}. Then
for each complex number a, f(z) — a is also bounded in &% Thus
taking 27y = 2¢, the argument of Theorem 1 shows f assumes a
infinitely often in .&%2 Since a is arbitrary, |f| is unbounded in &4
and therefore R, is singular for f.

3. Proof of Lemma 3. If n} < p, then W, ;, = 0. Turning to
p = nP < nl, we first observe that for fixed g with 0 < B <1,

n(ﬂ)
'—k—JrEZq>19 (k:1)2)3,"')'

/n,;cﬁ) -

Assume Wi, # 0 and ), < n!®. Then
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W, nP \? (B) pl® nd \? np
y < k —n +n < k — k
< ) Syl < (—5-) exp {p(1 i)

Wiieo — \nifls bt2
< sup exp{p(l — t + log ¢)}

0<t<i/q

<exp{p(l — q) — loggq}.

Hence the right-hand side of (11) is less than A™'=(1+16(l+1)Cy.(7) !
provided

(11)

log A = p,.

i)o>logq—1—l—q"1_

Proceeding in a similar manner, we may also show

Wu—3,(ﬂ) < __]_-__ and Wu—Z,(ﬁ) gl

Wiw A Wi,w A

when p > p,. Consequently for W,,; # 0 where k <y — 3 and k+2n=
v —1, we see

W W, w,_ W, 1y
(12) k(B k+2.(8) L., v—5,(8) v—3,(8) < <__> , (O < /8 < l) ,
Wk+2,(ﬁ) Wk+4,(ﬁ) Wy—s.(ﬂ) Wv,(a) A

and for W, ; #= 0 where k =y — 2 and k + 2n = v we see

w Wi w._ W, 1y
(13) k(B ke, (8 .. v—4,(8) , v—2,(8) <(= , (0 < :8 < Z) .
ch+2,(.8) Wk+4,(ﬁ) W»——z,(ﬂ) Wu,(a) (A)

Using (12) and (13) provided » > p,, we get

Z (Wk,(l) + Wk,(l—«l) + e + Wk,(O)) < MZ (}—>nW,,,(a) 5
E<v—1 A =0 A_

2(1
SLIES

(14)

Now for k = v > y,(p) and x any integer with 0 <2 < p — 1, we
have simultaneously

nfl, — 1p nit, nfy, — 1p nl,
o <2 s <L oM 222 )
n® — x

and

Then when n{¥ = nl®,

(8)
Wiie, < 2( il >psnl(ﬂz—n}f’ ,
{

s (B) ny

< 247(Seyen |
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< 2t”{exp( 1 (1 + ;0_% ‘i))}w_n = 0(t)

where t = nf,/ni? = q. For t = q, 6(¢t) < 6(q), so

(15) Wecso. < 2exp{~Lpg — 1~ loga)},
ki (8)

when n{? = n{®. Hence the right-hand side of (15) is less jthan 1/4
provided

2log (24)

>_._______
P qg—1—logqg

= Pz

Proceeding in a similar manner we may also show

Wiz < l_ and W, s < _]_;

W..m A W,w A

when p > p,. Consequently fork = v+ 2= y(p) + 2and &k = v + 2n,
we see

W W, W, W, 1y
(16) kB YV k2,08 ., vid4,(B) v+2,(8) =< (_ , (O < B < l) ,
Wk—%(ﬂ) Wk—b(ﬂ) Wu-&—Zy(ﬂ) Wm(ﬂ) )

and for k= v +3>v(p)+3and k=v+ 2rn + 1, we see

W Wi W, |4
(17) Er(® k—2,(8) ... v+5,(8) v13,(8) < . (0 é ,8 é l) .
Wk—Z,(ﬁ) Wk—4,(ﬂ) Wu+3,(ﬁ) W/ (a) (A)

Using (16) and (17) provided » > p,, we get

2(1 e 71\
kél(Wk,(z) + Wiaeny + oo0 + W) < ( 2‘ )nz:lo (\Z> W, s
) 2(Z l)W
A. _ 1 v, (a)

Combining (14) and (18) we now have the lemma provided p, is the
maximum of p, and p, (and remembering that A =1+ 16(1 + 1)C,,.5(7)).

The authoress is grateful to the referee for his helpfulness.
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INTERPOLATION SETS FOR UNIFORM ALGEBRAS

ARNE STRAY

Let A be a uniform algebra on a compact Hausdorfl space
X and let E c X be a closed subset which is a G;. Denote
by Br all functions on X\E which are uniform limits on
compact subsets of X\E of bounded sequences from A.

It is proved that a relatively closed subset S of X\E is an
interpolation set and an intersection of peak sets for Bz if
and only if each compact subset of S has the same property
w. r. t. A. In some special cases the interpolation sets for
Bz are characterized in a similar way. A method for con-
structing infinite interpolation sets for A and Bz whenever
x€ F is a peak point for A in the closure of X\{x}, is pre-
sented.

With X as above let S < X be a topological subspace. Then C,(S)
denotes all bounded continuous complexvalued functions on S and we
put [|f]] = sup {|f(z)|: € S} if feCy(S).

A subset S of X\E closed in the relative topology is called an
interpolation set for B, if any feC,S) has an extension to X\E
which belongs to B;. If there exists fe€ By such that f =1 on S
and |f] <1 on (X\E)\S, we call S a peak set for B;. If S has both
this properties it is called a peak interpolation set for B,. Peak and
interpolation sets for A are defined in the same way.

It is easy to see that B, is a Banach algebra with the norm
N(f) = inf {sup, || fu|l: {fu} < A, f. — f uniformly on compact subsets
of X\FE}. It is an interesting problem in itself when this norm coin-
cides with sup norm on X\E.

In case X = {z:]2| <1} and A is the classical disc algebra of all
continuous functions on X which are analytic in D = {2: |2| < 1} the
interpolation sets for B, (where E is a closed subset of 6X) are char-
acterized by that SN 60X has zero linear measure and that SN D is
an interpolation set for H*=(D), the algebra of all bounded analytic
functions on D. This result was obtained in [8] by E. A. Heard and
J. H. Wells.

Their work has been generalized in different ways. Various
authors have considered more general subsets E of {z:|z] <1} and
more general algebras of analytic functions. ([2], [3], [4], [6], [9]
and [10]).

In this note we wish to generalize the results of Heard and Wells
to the setting of uniform algebras. We start with an extension of
Theorem 2 in [8].

525
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THEOREM 1. Let Sc X\E be closed in the relative topology.
Assume X 1s the maximal ideal space of A. The following statements
are equivalent:

(i) Given geCy(S),e > 0 and an open set UD S, there ewists
feBy such that f =g on S,|[fll =gl [fI<e on (X\E\U and
N() = llgll@ + ).

(ii) There ewists a constant M such that if ge Cy(S),e > 0 and
U> S is open we can find fe€ By such that f =g on S,|f| <e on
(X\E\U and N(f) < Mllg|l.

(iii) FEach compact subset of S is an interpolation set and an
intersection of peak sets for A.

Proof. That (i) = (ii) is trivial.

(ii) = (iii). Choose g € C(K) with ||g|| = 1.

Let K< S be compact, U and W open sets such that K< W c
WcUc Uc X\E and choose ¢ > 0. By hypothesis there exists
g, € B; equal to g on K such that |g,| < ¢/2 on U\W and N(g,) < M.

Hence we can find g, € A with ||g,|| < M, |g — g,] < eon K, |g,| < ¢
on U\W and ||g,|| £ M. By ([8], Lemma 2) applied to the restriction
map B; — C(K) we get that any ge C(K) we get that any ge C(K)
has an extension f to X such that feA,||f||=<M/1L —e¢) and |f|<
¢/l —¢) on U/W. Essentially by Bishops “1/4 — 3/4-Theorem” (See
[5], Th. 11.1 p. 52) we can use what is proved until now to find a
compact set K, and f,€ A such that fi=1 on K, |f,|<1 on U\K,
and Kc K, W. By “Rossis Local Peak Set Theorem” ([5], p. 91)
K, is a peak set for A and (iii) is proved.

It remains to prove (iii) = (i). We only indicate how to modify
our proof of Lemma 2.1 in [10] to apply to the present situation. As
in that lemma we construct a sequence {f,}r-, € A with the properties
listed there. Let te <0,1>. The sum >,°f, = f € B; and the proof
of Lemma 2.1 gives (i) if we can show that N(f) <1+ ¢. This is
obtained by constructing {f,} such that ||f, + fuil <1 + 1/2-¢ for
n=20,1,---.

This can be obtained if when constructing f,., we arrange it so
that |f, + far:l = [ful + [fus| on Koy U Koy (K,iy, Kove @8 in [10])
and then if needed, modify f,., to h-f,., where he A equals 1 = |||
on K,.,UK,.,UK,,,, is small where |f, + f,..| may be large and
has a small imaginary part.

We now state a lemma which is due to A. M. Davie:

LEMMA 1. There exists a sequence {Q.}r-. of polynomials with the
following properties:
(1) 3 Qu(® — 1 uniformly on compact subset of {z:|z| < 1}
(2) Q@) =0fork=1,2+-- and X7[Q:)| =3 if [2|=1.
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For a construction of {Q,} see the proof of Theorem 2.4 in [1].
We now have:

THEOREM 2. Let E be a peak set for A and let Sc X\E be
closed in the relative topology. The following statements are equiva-
lent:

(i) S s an interpolation set for Bg.

(il) There exists M > 0 such that if K S is compact and g€
C(K) we can find fe A equal to g an K and with ||f|| < M||g|l.

Proof. (ii) follows from (i) as in the first part of the proof that
(ii) = (iii) in Theorem 1. For the converse an argument used by
Davie in [1] works: Choose he A peaking on E and put E, = SN
{x: |Qroh(x)| = e-h™*} where ¢ > 0 is given in advance. Let ge Cy(S)
with ||g|| = 1. Choose by hypothesis g, A equal to g on E, with
loull £ M and put G = >3-, (Q,°h)-9,. Then by Lemma 1 G e By,
[IG]| < 3M and if xS we have

oo

1G@) — g@)| = |2 (9:(@) — 9@))Qiof(w)

1

A

iez“"=e.

By Lemma 2 in [8] (i) follows.

The hypothesis that F is a peak set for A seems unnecessary, but
we needed it to apply Lemma 1. It would be of interest to get some
examples where Theorem 2 holds without assuming E to be a peak
set.

A case which deserves investigation is when A is an algebra of
generalized analytic functions ([5], Ch VII) viewed as a uniform algebra
on its maximal ideal space. Then B, is very easy to describe when-
ever E is a closed subset of the Silov boundary of A. In particular
the norm N(f) coincides with sup norm on X\FE in this case.

We want to give two examples where a more detailed description
of the interpolation sets for B, can be given.

(@) Let UcC* be a strictly pseudoconvex domain with C*
boundary and let X be the closure of U. Let A be the algebra A(U)=
{feC(X): fl|, is analytic}.

In this case Theorem 2 is valid if E is any closed subset 6 U and
the interpolation set S can then also be characterized by the following:

(I): Each compact subset of SN JU is a peak interpolation set
for A,
and

(II): SN U is an interpolation set for H=(U), the algebra of all
bounded analytic functions in U.
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For a proof of this note that (i) = (ii) in Theorem 2 holds whenever
E is a closed G;. That (ii) = (II) is a simple normal family argument
and I also follows from (ii) by a result of N. H. Varopoulos [11] and
since each 2 €dU is a peak point for A(U) in this special case.

To obtain (i) from (I) and (II) one can argue as in the proof of
Theorem 2.2 in [10]. To use that proof one needs an approxima-
tion result similar to Theorem 2.1 in [10]. This nontrivial result is
contained in a recent work of R. M. Range [9].

(b) Assume A is a Dirichlet algebra on its Silov boundary Y.

Let E be a peak interpolation set for A and let Sc X\E be
closed in the relative topology and assume S\Y countable. Then one
can prove that S is an interpolation set for Bj if each compact subset
of SN Y is an interpolation set for A and if for some constant C the
following result holds: If P is a nontrivial Gleason part for A4 and
SNP=z,z,- -+ and a,, a,, --- are numbers such that |a,| <1 for
k=1,2, ... there exists f € H*(P) such that f(z,) = a, for k=1,2, -..
and |f| < C on P. (For the necessary definitions see [5] on page 34,
142 and 161).

Using this hypothesis and the Wermer-Glicksberg decomposition
([5], Thm. 7.11, p. 45) we can prove that SU E is an interpolation
set for A. This is done in the same way as Glicksberg proves Theo-
rem 4.1 in [7]. But then S is an interpolation set for B; by Theorem
2.

In [8] Heard and Wells described an explicit method for con-
structing infinite interpolation sets for B, if v € X is a non-isolated
peak point for A. Their method didn’t depend on Carlesons characteri-
zation of the interpolating sequences for H*=(D).

We indicate here how the polynomials {Q,} can be used for a
similar construction avoiding an unnecessary hypothesis about con-
nectedness which Heard and Wells assumed. ([8], Theorem 3).

THEOREM 3. Let x€ X be a peak point for A and PcC X\{z} a
set which contains © in its closure. Then an infinite interpolation
set for By, contained in P can be constructed.

Proof. Choose ¢ > 0 and f e A peaking at . For k=1,2, ...

choose numbers n, and m, such that =, < m, < n,,, and put H, =

mk Qjof. Using Lemma 1 it is easy to see that we can arrange it
such that the sets E, = {x: | H,(x)| = ¢27%} and

B, = Pn{x: |Hyx) — 1| < e27%
are nonempty for £k = 1,2, ... and that E; N E; = @ if ¢+ J.
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If we choose z,€ B, for k=1,2, ... then S = {z,};-, is an inter-
polation set for B,,. Forif ge C,(S) and we put G = >, g(x;) H, then
Ge B, |G|l = 3lg]| by Lemma 1 and |G — g| < ¢lg]| on S.

Comments on Theorem 2:

We want to point out that the hypothesis that E be a peak set
cannot be omitted. If A is any uniform algebra for which there
exists an infinite interpolation set F not meeting the Silov boundary,
one obtains a counterexample by taking E to be a limit point of F
and S = F\E. For an example of such an algebera A we refer to
Theorem 2.8. in [1]. On the other hand A. M. Davie has recently
proved (private communication) that in case A is the algebra R(X)
and X is a compact plane set, Theorem 2 is valid without assuming
E to be a peak set.
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APPLICATIONS OF RANDOM FOURIER SERIES OVER
COMPACT GROUPS TO FOURIER MULTIPLIERS

ALESSANDRO FIGA-TALAMANCA AND J. F. PRICE

The Fourier series of a function on a compact group can
be ‘“‘randomized’’ by operating on each of the Fourier coef-
ficients by independent random unitary operators. In this
paper the theory of random Fourier series is used to prove
several new results for a type of Rudin-Shapiro sequence and
for Fourier multipliers. Thus in §2 it is shown in effect that
M(L?, L) = M(L2, L?) for all p, g€ [l, o] except for the pair
(p, @) = (o0, 1), while in §3 the theory of random Fourier series
is used to construct a type of Rudin-Shapiro sequence. This
sequence is then used in §4 to obtain, for compact groups in
one case, and compact Lie groups in aneother, slightly more
restricted versions of several known families of strict inclu-
sions for Fourier multipliers over compact Abelian groups.

1. Notation and preliminaries. Throughout this paper we sup-
pose that G is a compact group (always Hausdorff) with normalized
Haar measure A, and that I" is the set of equivalence classes of
continuous irreducible unitary representations of G. The spaces of
p-integrable functions, continuous functions and Radon measures over
G will be denoted by L?(G), C(G) and M(G) [or L*, C and M] respec-
tively, while their respective norms will be denoted by || -/, ||+ |le
and ||-|[y. We will identify each function with the measure which
it generates.

If pe M(G), then p is uniquely represented by the Fourier series

p~ %d(7)t7[ﬂ(Dr)Dr(')] ,

where: D, is a representative (which we assume to be fixed throughout
the sequel) of the class veI';d(v) is the (finite) dimension of «; ¢r
denotes the usual trace; and f is the Fourier transform of g with
respect to {D,:ve '}, that is

an) = | D@ dp@ ,

for each vye I, D,(x)* denoting the Hilbert adjoint of D,(x).

Let H, denote the Hibert space of dimension d(v) corresponding
to the representation D,, and let & denote the set consisting of func-
tions W on I" such that W(v) is an endomorphism of H, for each .
We can now define the “randomizing group” for G. Let & denote
the product group II,.r % (H,), where % (H,) is the compact group

531
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of unitary endomorphisms of H,. Clearly & may thought of as a
subset of & Whenever e M(G) and Ue & we denote the series

721. d(tr[#(D;) U()D,]
by ¢7. The following two results are basic to this paper.

THEOREM 1.1. Suppose that & is equipped with its Haar measure
and that e M(G) has the property that ¢’ represents ¢ measure for
every U in a subset of & with positive measure; then p¢ is in L (G).

THEOREM 1.2. Suppose that f e L*(G). Then f" ts the Fourier
series of a function in Nispce LP(G) for almost every U in &, where
& 18 equipped with tts Haar measure.

The above two theorems are due to Figa-Talamanca and Rider
(see [4, (36.18)] and [2] or [4, (36.5)]).

MuLripLIERS 1.3. If A and B are any two spaces selected from
L*G),1 £ p £ o, C(F) and M(G), we define (A4, B) to be the set
of We@ such that

2,40 trlw™&(D;) D]

is the Fourier series of an element in B (we will denote this element
by T, t) whenever z belongs to A. Clearly the operator p+— T, p,
is linear, while its continuity is an immediate consequence of the
closed graph theorem. Thus we define a norm on (A, B) as the
usual operator norm on the set {T): We IM(A4, B)}, and we denote this
set by M(4, B).

2. Maultipliers and pseudomeasures. Let &, denote the subset
of & consisting of elements W such that

[ Wl = sup{|| W) |:vel} < o,

where || W(7)|| denotes the usual operator norm for endomorphisms of
H,. Whenever G has the property that sup{d(v):ve I'} is finite [for
example, if G is Abelian] and A, B are selected from L?(G), C(G) and
M(G), then it is banal to show that

2.1) M(4, B 6., ,

(see [4, Theorem (35.4), part IV]) and hence that each Te M(4, B)
may be written in the form T: f+— fxp, where ¢ is a pseudomeasure
(see [6, §2.2]).



APPLICATIONS OF RANDOM FOURIER SERIES 533

The inclusion (2.1) is known to be valid for some pairs 4, B over
an unrestricted compact group (see, for example, the table on pp. 410-
411 of Hewitt and Ross [4]) and in this section we extend its validity
to some further pairs, thus completing five squares of Hewitt and
Ross’s table.

THEOREM 2.1. Suppose that (A, B) is one of the pairs (L?, L9,
(Lo, LY, (L, M), (L™, L*y or (C, L*) where 1 < p <2< g < co; then

2.2) M(A, B) = G._ .

REMARKS 2.2. (1) Four cases remain open: (L=, LY, (L=, M), (C, L")
and (C, M). We were not able to decide whether (2.1), and hence
(2.2), is generally true for these cases. It is straightforward to show
that ML=, M) = IM(C, M) = M(C, L'). Also whenever S& " has the
property that sup{d(v):ve '} = <o, it is not true that there exists
W e G\E, with supp W < S such that We D(C, L) (ef. Theorem (35.4),
part V, of Hewitt and Ross [4]). For example, when S is a A(p) set
for some p > 1, Theorem 2.1 above applies to show that whenever
W e M(C, L") has the property that supp W< S, then We E.,; examples
are known of sets S which are A(p) for all p > 1 and yet sup{d():
ve S} = « (see Remark 10 of [2] or (37.11) (a) of [4]).

(2) There can be no analogue of Theorem 2.1 for non-compact
locally compact Abelian groups. For example, if G is a non-compact
LCA group and 1 < p < ¢ < o, then there exists a multiplier operator
from L°(G) into L%(G) which cannot be written as convolution with
a pseudomeasure; see Larsen [5, Theorem 5.5.5].

Proof of 2.1. By inspection of Table (36.20) of [4], it is clear that
to prove equality in (2.2) we need only show that IM(4, B)=&.. Sup-
pose that 1 < »p <2< ¢ < o and that WeI(L? M), that is, that
WFe M for all fe L. Since 2 < q < o, whenever fe L then

FU: v — F(D)UM)

is the Fourier transform of an L? function for a set of U in & of
measure 1 (Theorem 1.2). In this case WFU is the Fourier transform
of a measure for all such U and so, by Theorem 1.1, WS must be
the Fourier transform of an L* function. Thus We IM(L? L% and
since it is know that IN(L? L» = IMN.[4], we have proved (2.2) for
the pairs (L4, L*), (L% L and (L9, M).

If ¥ is a subset of @, write {F* = {W*: We g}, where W* is
defined by v+ W(v)*. Since we have just seen that (LY M) = €.,
and since it is obvious that (€,)* = @,, the proof of (2.2) can be
completed by showing
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2.3) M(C, L) = M(Le, M)* .

However (2.3) is a simple consequence of the theory of adjoint
operators. For if We IM(C, LY) we can define T%: L*— M by

[,92Ti) = | (Twgyfar

for feL?’, geC. Thus, whenever fe L’ and ¢ is a trigonometric
polynomial,

SAE[I(D)* (T4 (D)
= | garin) = | (Tuorfar,

= Zrdwm[(ngr(D,)*ngr)l
= S dMtrlg(D)* W*MF(D,)] -

Thus (T%f)"(D,) = W*%)F(D,) for all f in L? showing that W*e
ML, M), from which follows the required validity of (2.3).

We now look at the inclusion relation opposite to (2.1). The fol-
lowing simple proposition will describe exactly the cases when we
have

(2.4) G. <ML, L9 .

PROPOSITION 2.3. Suppose that G is infinite; then the inclusion
(2.4) s valid if and only if ¢ £2 < p.

Proof. (i) NNg¢=<2=<p, then L'2L*2L? and so ML, LY 2
M(LA, LY. However IM(L? L*) = €. and so (2.4) is satisfied.

(i) On the other hand, suppose that p < 2 and that (2.4) is
valid. Then certainly & = I(L*, L% and a straightforward applica-
tion of Theorem 1.1 implies that L? < L% an absurdity when G is
infinite compact.

(iii) Finally we have the case 2< g =< c and 2<p < . If
we also suppose ¢q % «, then

MLr, L) &M(C, L) SDULT, M)*

by (2.3), and the proof proceeds as in paragraph (ii). The case ¢ = o
follows easily from the inclusions.

ML, L) s ML=, L) = M(G)™ .
3. Rudin-Shapiro sequences. Let G be a compact group and

t any number in (2, «]. By a Rudin-Shapiro sequence of type ¢ (briefly,
a t-BS-sequence) we shall mean a sequence (%,), .y, Wwhere N={1, 2, --.},
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of functions in L(G) with the properties

inf ||, ll: >0, sup|lh.l < o,

@-1) lim || A, ]l = 0.

(Recall that by ||4.|l. we mean sup {||k.(D,)||: yeI}.)

When ¢ = o the above definition is essentially that of the Rudin-
Shapiro sequences discussed, for example, in Gaudry [3] (where it is
shown that co-RS-sequences exist for all non-discrete locally compact
Abelian groups) and in Edwards and Price [1, §5.4 and §§A.1-A.4]
(where further sufficient conditions are given for the existence of
o-RS-sequences). In this section we show that ¢-RS-sequences, ¢t < oo,
exist for all infinite compact groups. However, we would point out
that the proof is completely existential in nature. Similarly to [1,
§5.4], it is easy to see that if (h,) satisfies (3.1), then we can con-
struct a sequence (k,) from (h,) with the properties

kalle = Bin
3.2) Ik, ll, = BY*n t=s=1

el = 27,

where B, and B, are strictly positive numbers independent of x.

LEMMA 3.1. (@) Let G be an infinite compact group and let te
(2, ). Then there exists a Rudin-Shapiro sequence (h,) of type t.
Without loss of gemerality we can take (h,) with ||h, |, =1 for all
n € N.

(b) Moreover, if G is also a Lie group, then there exists a second
t-RS-sequence, (h}) say, with ||h,|l, = {|hi].( = 1), hyxhi = hixh,, and
a positive nonzero number 0 independent of n such that

(i) O (R |22 < | bt shall, < |lha |22,

for all neN, and 1< p =<2,

REMARK 38.2. When G is the circle group (the simplest compact
Lie group) the original Rudin-Shapiro sequence (¢,) consists of trigono-
metric polynomials such that ¢, takes only the values =+ 1 on its
support [0, 2"]. One might suspect that in this case Lemma 3.1 (b)
would be satisfied by taking h, = b} = 8,/|| 6. ||, Certainly (i) is satisfied
(with o = 1) but however (ii) is not since ||k, ||% = ||4.|l;% whereas

g haf = || 35 e

i galle® ~ log 2% g, [* .
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This difference is not essential: by convolving the nth term of
the classical Rudin-Shapiro sequence with the Fejér kernel of order
2" one obtains sequences which, after normalizing, satisfy part (b) of
the lemma. This depends on the fact that for p >1 Fejér kernel
and the Dirichlet kernel have essentially the same L* norms. For
our purposes Rudin-Shapiro sequences based on Fejér type kernels
are more convenient.

Proof of 3.1. Let (U,) be a contracting sequence of open, nonvoid,
symmetrie, central (that is, stable under inner automorphisms of G)
sets in infinite, compact G with the property that lim, \;(U,) = 0.
[When G is also a Lie group we learn from (44.29) of [4] that there
exists a number k& > 0 such that the U,s may be selected to also
satisfy

MU = kn(Us)

3.3
-9 UnUnw E UL -

Define ¥, to be the characteristic function of U,. Since each U,
is central, the Fourier series of each %, has the form

Xn ~ Direr AN T(DEr[D;]

where the ¥,(D,) are complex numbers. By the proof of Theorem 4
of [2] (which is Theorem 1.2 above), there exists a number B(f), in-
dependent of n, and a subset %/, of & with measure 1 such that

(3.4) i lle = BOAalle

for all W in %,. Since G is compact, the measure of %/, = Z/} is
also 1 so that %, and % * have a nonvoid intersection. Thus cor-
responding to each # we can, and will, choose W, in %, N Z.}.

Let h, = MU,) ™ *¥» and h} = MU,) "*¢¥%. Then

lhall: = 1, sup, [[ha [, = B()

and

nll = MU ™2 s, || 2.(D) W) ||
= MU ™| Zallo = MUD (| 2%n |y
= 7\’G(ljn)llz .

Thus (k,) is a t-RS-sequence, and so is (h}) by similar reasoning.
Clearly ||h,|l. = ||h¥]l; = 1 and A} *h, = h,*h} (since both convolu-
tions have MU,)'().)? as their Fourier transforms), so that if G is a
Lie group we have only to prove (b) of 3.1. The right-hand inequality
for p =2 is a trivial consequence of the fact that the norm of
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the operators f i f «h, from L?into L* is ||k,|l.. To prove the left-
hand inequality first note that ||h% %, |, = MU,) ™ % * Yo e

Suppose that the sequence (U,) is selected with the extra pro-
perties (3.3). Whenever z ¢ U,,,

An* An(®) = SU Xn(y2)AN(Y)
z | %0 9 21U -

because if ye U,, and ze U,,, then y~x e U,. Therefore

|z talanz | zan
G Usn
g )\J( U2n)k'( UZn)p Z kp_l)’a( Un)p+1 .
Thus
1R xRy ||, = MUY @I\ (U,) 012 = fmor1n ||, |22

(since [Fy ]l < kel = (U)Y% as required for (i), where o = k™.
To complete the proof of 3.1 (b) we establish the following straight-
forward string of inequalities:

WA # bl = MU L |y

= MU 212 = M UD“(SGX”"Z’“)Z

= MUDN D F = MU 2l
= MU Wl = [l

4, Strict inclusions for IM(L?, L9). In this section we use the
existence of Rudin-Shapiro sequences of type ¢, t < o, to prove several
strict inclusions for the spaces M (L?, L9). In particular, our results
will imply:
and then use interpolation.

4.1. If p,q and r belong to [1, o] and satisfy 1/p —1/¢ <1 —
1/r, then
Hg=flle = gl f 1l »

whence we have, by considering the operators ¢+ g = f,
(4.1) L(G)” < P(L*, L)

(where L"(G)” denotes the subset of € consisting of Fourier transforms
of functions in L"(G)). If furthermore 1< p <¢g< o, p # ¢ and
1 < 7 £ o, Theorem 4.3 below shows that the inclusion in (4.1) is
strict whenever G is infinite.
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4.2, If G is a compact group, then
(4.2) ML, L) = M(L*, L*)

whenever p, < p < ¢q,. If furthermore G is an infinite compact Lie
group and 2 < p < ¢,, then Theorem 4.4 below will show that inclu-
sion (4.2) is strict.

The above two results are essentially extensions to compact groups
or compact Lie groups of results in Gaudry [3] and Edwards and
Price [1, §5] for locally compact Abelian groups; in fact we follow the
broad outlines of the proofs used in [3].

THEOREM 4.3. Let G be an infinite compact group and let r
belong to (1, o]. Then whenever 1< p < q< o and p =+ q', there
exist elements in M(L?, L*) which are not in L™ (G)".

Proof. Suppose that the hypotheses of the theorem are satisfied
and that furthermore M (L?, L) = L"(G)". By the closed graph theorem
this imbedding is continuous so there exists a number K such that
for every function in L*(G), with 1 — 1/u = 1/p — 1/q (see (4.1)), we
have

(4.3) WAl = Kl Tl s

where || T||,,, denotes the norm of the multiplier operator g g=x f
from L*? into L?. We will show that (4.3) is impossible.
There are two cases.

Case 1. 1/p + 1/g < 1. In this case an application of the Riesz-
Thorin convexity theorem yields immediately that

I Tsll,e = I TrllEall T Il

where 1/p = /2 + (1 — a)/s’ and 1/g = /2. Since || T;|,, = |||l and
| Tsllereo = [ fls» We have

(4.4) | Trllpe < IIF112]F 115

with o =2/g#0 and 1/s =q@ —1/g —1/9)/(¢ — 2) # 0. Put t =
max {u, s, '}; then ¢ = o and from §3 we know that there exists a
sequence (k,) of L' functions satisfying (3.2). Substituting in (4.4)
yields

(4.5) [T, llp,e = const. 27" n' ™"

which tends to zero as % tends to infinity since a = 0.
On the other hand

(4‘6) Hkn”rz Hant’ gBl”‘
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Inequalities (4.5) and (4.6) together contradict (4.3) when 1/p + 1/¢ < 1.

Case 2. 1/p + 1/qg > 1. A similar application of the convexity
theorem yields

1 Tslls o = [T ll2all T 15"
= ANl

where 1/p=a/2 +1—a,1/g=a/2 + (1 — @)/s in which case a =
2p’ = 0 and 1/s = p(l/qg + 1/p — 1)/(2 — p) = 0. Inequality (4.3) may
be contradicted in a manner similar to that of Case 1 by using a
sequence satisfying (3.2), again with ¢ = max {u, s, 7'}.

THEOREM 4.4. Suppose that G is an infinite compact Lie group
and that v, q, 0., ¢.(€[1, «<]) have the properties that p, < q, 1/p, +
1/, < 1, p, < o and q, = 2. If furthermore q, > q,, then there exist
elements im M(Lro, L) which are not in M(L™, L®).

This result remains valid when M(L, L™) is replaced by M (L%,
L7y and/or M(L?, L") is replaced by MM (L4, L1).

Proof. Suppose that G and p,, ¢, », ¢. satisfy the hypotheses of
the theorem. By arguing as in the proof of Theorem 4.3 it is clear
that the result may be proved by finding a sequence (&,) of functions
such that

4.7 min{|[ T4, 5,0 | T, llag.o}/ 03X A]] T,y llaga 1| T llogng} — o0

as m— co.

Let (h,) and (h}) denote a pair of t-RS-sequences satisfying Lemma
3.1 (b) with ¢ equal to the maximum of », (¢, — 2)/¢,1 — 1/q, — 1/p,)
and 2 — ¢)/gs(L — 1/g, — 1/p,). Then, by proceeding as in the proof
of Theorem 4.1, we have

(4.8) max (|| T, oy || T llags) = const. ||, [12%
On the other hand we have, by the definition of the norms,
U T, lopa, = 1R % Baflg /1| R L,
and
1 Ti, oo = 11 Th, oy, = 1B * g {lo /IR L, 5

where T, is the operator f+— h,*f (see the discussion in 5.3 of [1]).
Thus

4.9) min (| Ta, (o0 1| Ty o) = 1B = bl /11 s, -
Now it is easily shown that if ge L% with ¢, = 2, then
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gl < lgllfllglla#* where 2 =8+ (1 — B)-q.,
and so
(4.10) VB xR flg, 2 ([ Rk B |55 B o o [0
Applying 3.1 (b), (4.10) and the definition of a t-RS-sequence yields

min (| T, 1oyl T, o) Z (01110} (0] B [[ )24 |17
= Allh, |2,

where A is a non zero positive mumber. This inequality combines
with (4.8) to show that (4.7) is satisfied whenever ¢, > g, since ||/, ]||l.—0
as n— oo,

COROLLARY 4.5. Theorem 4.4 (and hence also 4.2) remains valid
Jor compact group G which have a closed mnormal subgroup G, such
that G/G, s an infinite (compact) Lie group.

REMARKS 4.6. (i) We do not know whether Theorem 4.4 remains
valid for all compact groups or, for that matter, whether part (b) of
Theorem 3.1 remains valid in the general case. We should remark
that the construction of Rudin-Shapiro sequences for compact Abelian
groups is more complicated for groups which do not have a torus as
a factor group; see Gaudry [3].

(ii) In the notation of [4], G has the property of Corollary 4.5 if
and only if there exists a finite subset v, ---,v, of I" such that
[, -] is infinite. This follows from (28.10) and (28.6) of [4] com-
bined with the fact that a compact group G is a Lie group if and
only if its dual I" is finitely generated.

Proof of 4.5. Suppose that G, is a closed normal subgroup of G
and that I', is the dual (hypergroup) of G/G,. Let A, = A(l", G))
denote the annihilator of G, in I'; then there exists an isomorphism
@ between hypergroups 4, and I, in such a manner that for each
ve€ A, we can choose D, so that

Dyyyor = D,

where @ denotes the natural projection from G onto G/G,. For the
sequel we suppose that the D,,, are chosen in this manner. Thus,
for example, if f is an integrable function on G/G, and

[~ 3dey) tr[f(D,)D,] s

ro€lo

then
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(4.11) fom ~ 3 d)trlf(Dee)Di] -
€4y

For each pec @), we define ¢/ e (") by ¢ = pto® on A, and
zero otherwise. Corollary 4.5 is an immediate consequence of Theorem
4.4 and the fact that pe<M(L*(G/G,), LYG/G,)) if and only if g'e
M(L*(G@), L*(G)). The proof of this final equivalence is routine. (For
example, see Lemma 4.6 of [3]; use can also be made of equations of
the form (4.11) above and (A.3) (A.5) and (A.6) in the appendix of

[1D-

Added in proof. The authors have been able to show that
Theorem 4.4 (and hence also 4.2) are valid for an unrestricted com-
pact group. The proof will appear elsewhere.

REFERENCES

1. R. E. Edwards and J. F. Price, A naively constructive approach to boundedness
principles, with applications to harmonic analysis, L’Enseignement Mathématique, 16
(1970), 255-296.

2. Alessando Figa-Talamanca and Daniel Rider, A theorem of Littlewood and lacunary
series for compact group. Pacific J. Math., 16 (1966), 505-514.

3. Garth I. Gaudry, Bad behavior and inclusion results for multipliers of tyve (p, ),
Pacific J. Math., 35 (1970), 83-94.

4. Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, Volume II.
Springer-Verlag, Berlin (1970).

5. Ronald Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag Berlin
(1971).

6. J. F. Price, Some strict inclusions between spaces of L? multipliers, Trans. Amer.
Math. Soc., 152 (1970), 321-330.

Received August 3, 1971. Research of the second-named author supported by a
C.N.R. fellowship (Comitato Nazionale per la Matematica).

UNIVERSITY OF GENOA,
GENOA, ITALY









Pacific Journal of Mathematics

Vol. 43, No. 2 April, 1972

Arne P. Baartz and Gary Glenn Miller, Souslin’s conjecture as a problem on

thereal line. ...... ... . . . i e 277
Joseph Barback, On solutions in the regressive isols ...................... 283
Barry H. Dayton, Homotopy and algebraic K -theory ..................... 297
William Richard Derrick, Weighted convergence in length ................ 307
M. V. Deshpande and N. E. Joshi, Collectively compact and semi-compact

sets of linear operators in topological vector spaces ................. 317
Samuel Ebenstein, Some HP spaces which are uncomplemented in L? . . ... 327
David Fremlin, On the completion of locally solid vector lattices . . ........ 341
Herbert Paul Halpern, Essential central spectrum and range for elements of

avon Neumann algebra............ ... oo .. 349
G. D. Johnson, Superadditivity intervals and Boas’ test................... 381
Norman Lloyd Johnson, Derivation in infinite planes . . ................... 387
V. M. Klassen, The disappearing closed set property ..................... 403
B. Kuttner and B. N. Sahney, On the absolute matrix summability of Fourier

2 2 7 407
George Maxwell, Algebras of normal matrices........................... 421
Kelly Denis McKennon, Multipliers of type (p, P) - vvvveveeiniiennna.. 429
James Miller, Sequences of quasi-subordinate functions .................. 437

Leonhard Miller, The Hasse-Witt-matrix of special projec
Michael Cannon Mooney, A theorem on bounded analytic

M. Ann Piech, Differential equations on abstract Wiener s
Robert Piziak, Sesquilinear forms in infinite dimensions . .
Muril Lynn Robertson, The equation y'(t) = F(t, y(g(t))
Leland Edward Rogers, Continua in which only semi-apo
subcontinua separate ..................cc.ooio..
Linda Preiss Rothschild, Bi-invariant pseudo-local operat
GFOUPS « oottt
Raymond Earl Smithson and L. E. Ward, The fixed point p
arcwise connected spaces: a correction. ...........
Linda Ruth Sons, Zeros of sums of series with Hadamard
Arne Stray, Interpolation sets for uniform algebras. . .. ..
Alessandro Figa-Talamanca and John Frederick Price, Ap
random Fourier series over compact groups to Fouri



	 vol. 43, no. 2, 1972
	Masthead and Copyright
	Arne P. Baartz and Gary Glenn Miller
	Joseph Barback
	Barry H. Dayton
	William Richard Derrick
	M. V. Deshpande and N. E. Joshi
	Samuel Ebenstein
	David Fremlin
	Herbert Paul Halpern
	G. D. Johnson
	Norman Lloyd Johnson
	V. M. Klassen
	B. Kuttner and B. N. Sahney
	George Maxwell
	Kelly Denis McKennon
	James Miller
	Leonhard Miller
	Michael Cannon Mooney
	M. Ann Piech
	Robert Piziak
	Muril Lynn Robertson
	Leland Edward Rogers
	Linda Preiss Rothschild
	Raymond Earl Smithson and L. E. Ward
	Linda Ruth Sons
	Arne Stray
	Alessandro Figà-Talamanca and John Frederick Price
	Guidelines for Authors
	Table of Contents

