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G. D. JOHNSON

A test is given for determining maximal intervals of
superadditivity for convexo-concave functions. The test is
then applied to several families of ogive-shaped functions.

1. Superadditive functions have been widely studied [8, 11] for
their own sake but have also found important applications in relia-
bility theory, e.g. [6]. However, tests for superadditivity were non
existent in the literature until Bruckner’s work [3] in 1962. A more
constructive (hence more readily applicable) test due to Boas was
given in 1964 in a paper by Beckenbach [2] on analytic inequalities,
an area where superadditivity is of use (see [2] for a derivation of
Whittaker’s inequality [12]). Boas’ test is here viewed in the light
of Bruckner’s result, strengthened, and applied to some families of
convexo-concave functions as suggested in [2].

2. Consider a continuous, real-valued function, f, of a real
variable, x€ R. Then f is called “superadditive” on [B, b]C R if

f@+ ) =@+

for every z,y, « + v in [B, b]. We normalize to the cases 3 =0, 5 >
0. In this event, superadditivity implies f(0) < 0. The following
sufficient condition for superadditivity is due to Boas [2]:

THEOREM (Boas’ Test). Assume f is nonnegative on [0, b] with
F(0) =0 and f has a continuous derivative on [0, b]. If there are
numbers o < b/2 and ¢ < a such that

(0) f s star-shaped' on [0, 2a],

(1) f s concave® and satisfies f(x/2) = f(x)/2 on [c, 0],

(i) f(0) < f'(b),

(iil)) f(x) — f'(b — x) has at most one zero in (0, a).

Then f is superadditive on [0, b].

A proof of the theorem can be made by considering separately
the cases:

1 fis “star-shaped” on [0, A] means for every z€[0, A], and every a€&[0, 1] it is
true that flax) < af(x). For feCY0, A] it is necessary and sufficient [4] that f/(x) =
Ax)/z for all xe(0, Al.

2 The function f is called “convex” on [a, b] if for every z, y €[a, b] it is true that
Ax+9)/2) = (f@)+fW)/2; f is called “concave” if —f is convex.

381



382 G. D. JOHNSON

D 022,05y =05

) z=zay=az+y=b

) s<a<y<be+y=h
It was conjectured that this test could be applied to finding super-
additivity intervals of such ogive-shaped functions as exp (— 1/ax)
O<a=1); In(l+ 2" and arctan z*(x > 1). But it is easy to show
that for some of these functions, Boas’ test does not apply: consider
In(1 + 2%. A simple calculation shows that 1 < ¢ < 21”2 whereas
2a < 2 and hence a < ¢. It is our primary goal to modify Boas’ test
so that it can be used to determine intervals of superadditivity for a
larger class of functions. Along the way we shall be able to determine
conditions giving maximal intervals of superadditivity, and finally a
tabulation of intervals of superadditivity is given for some of the
functions previously mentioned.

3. We are interested in determining intervals, [0, b], of super-
additivity for a special class of functions, the “convexo-concave” func-
tions [1]: f is called convexo-concave on [0, B] if it is convex on [0,
c] and concave on [¢, B],0 < c¢ =< B. Already, f is superadditive on
[0, ¢] [4]; that is, b = ¢. Bruckner has characterized superadditivity
of such functions in the following way:

THEOREM [3]. The convexo-concave fumnction, f, with f(0) < 0, is
superadditive on [0, b] if and only if maX,.,< [f(®) + (0 — 2)] < f(b).

The main difficulties in applying Bruckner’s test are first in
obtaining the quantity “b”, and second in taking the maximum on
the lefthand side. By requiring f € C0, 5] we can ameliorate the
second objection and turning to Boas’ test we obtain a candidate for
b: namely, let b be the smallest positive root of f(x) = 2f(x/2).

THEOREM. Let f e C'0, b] be convexo-concave on [0, b] (0 < b < <o)
with f(0) £ 0 and®

(i) f) =270/2),

(if) f'(0) < f'(b),

(iii-a) f'(x) = f'(b — x) nwo more than once on (0, b/2). Then f
18 superadditive on [0, b].

Proof. Consider the function g(x) = f(z) + f(b — x) — f(b). Then
f(0) = 0 implies g(0) < 0. By (i) and (ii), g(®»/2) = 0 and ¢'(0) < 0,
respectively. Suppose g is positive on (0, b/2). Then it has a positive

8 It is important for generalizing to higher dimensions that condition (0) in Boas’
test has been deleted. See [6].
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maximum on (0, b/2). Therefore g'(x) = f'(x) — f'(b — %) has at least
two zeros on (0, b/2), contrary to (iii-a). Finally, then, g(x) < 0 on
[0, b/2] and—by symmetry of g about » = b/2,

max [£(2) + /(b — &) = /()
which, by Bruckner’s theorem, shows f superadditive on [0, b].

For the function f(z) =In (1 + 2% it is easy to check that (i),
(ii) are satisfied for b = 21 2. Condition (iii-a) is also straight forward:
it is true by Descartes’ rule of signs.

Notice that for f(0) < 0, f is superadditive at least as long as it
is merely nondecreasing and nonpositive. This relatively arbitrary
state of affairs will be avoided by assuming f(0) = 0 in what follows.
For a further appreciation of (iii) we give a corollary to Bruckner’s
theorem.

COROLLARY. Suppose convexo-concave f, with f(0) =0, is continu-~
ously differentiable. Then [ is superadditive on [0, b] if and only
if for every =, in [0, b] such that f'(x) = f'(b — x,), it is true that
J @) + f(b — ) < f(B).

Thus we see how the maximizing duties in Bruckner’s theorem
have been replaced by a zero-counting operation in the other two
theorems. The fourth condition in Boas’ test is less restrictive than
(ili-a) above since b is not less than 2a¢. But it is not hard to see
that (iii-a) can be replaced by

(iii-b) f'(®) = f'(b — x) no more than once on the smaller of the
two intervals (0, ¢), (c, b),

which is a less restrictive condition than even Boas’ fourth condition.
(Here “c¢” is the inflection point of f.)

Perhaps a computational note is in order here. If we refer
generically to conditions (iii), (iii-a), (iii-b) as “root conditions”, then
in applications the root condition can often be tested by Sturm’s
theorem [7]. For example, the functions In(l + 2*) (n = 2,3, 4, «-+)
have as derivatives rational functions with denominators not vanishing
for positive arguments. Verifying a root condition is then a matter
of counting the number of zeros of polynomials in a finite interval.
Sturm sequences can also be readily computed for rational functions
[10], and Sturm’s idea can be extended to counting real zeros of
even more general functions [5]. Finally, upon observing that f’ is
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unimodal®, an optimum strategy for localizing the inflection point ¢
(as used in (iii-b)) is well-known [9].

4, Now it is quite striking that the choice of b as the smallest
positive root, o, of 2f(x/2) = f(x) often turns out to be maximal.
Certainly ¢ is an upper bound on the interval of superadditivity.
Consider the quantity min {0, t} where o, ¢ are the smallest positive,
odd zeros of 2f(x/2) — f(x), f'(0) — f'(x), respectively. Then we may
be assured of a maximal interval of superadditivity.

THEOREM. Suppose f e C'0,bd] is superadditive on [0, b] where
b=min{o, v} < co. Then f is not superadditive on any larger in-
terval, [0, B], B > b.

The proof is immediate by failure of superadditivity near = = 0
(b = 7 case) and © = B/2(b = o case) where B = b + ¢, ¢ > 0 arbitrary.
In our example, 21/ 2 is the largest value of b so that In (1 + a? is
superadditive on [0, b]. With this optimality result, then, we turn
to computing intervals of superadditivity in the next section.

5. Tables of b are now given where b is the largest 7D approxi-
mation smaller or equal to b and [0, b] is the maximum interval of
superadditivity for the function indicated.

P arctan x4 In(1 + 29 exp (— A/x) P
1.1 .5852351 .3425001 1.586964 1.1
1.2 .8532410 . 7280202 1.731234 1.2
1.3 1.051079 1.104767 1.875503 1.3
1.4 1.205188 1.452478 2.019773 1.4
1.5 1.328208 1.764139 2.164042 1.5
1.6 1.427957 2.039063 2.308312 1.6
1.7 1.509790 2.279467 2.452581 1.7
1.8 1.577572 2.488734 2.596851 1.8
1.9 1.634178 2.670539 2.741120 1.9
2 1.681792 2.828427 2.885390 2
3 1.906368 3.634241 4.328085 3
4 1.966894 3.868672 5.770780 4
5 1.987133 3.948700 7.213475 5
6 1.994715 3.978890 8.656170 6
7 1.997751 3.991011 10.09886 7
3 1.999019 3.996080 11.54156 8
9 1.999565 3.998260 12.98425 9

10 1.999804 3.999218 14.42695 10

1+ A funetion f(x) is “unimodal” if there is a & so that f is either strictly increasing
for x =< & and strictly decreasing for x > &, or else strictly increasing for x < & and
strictly decreasing for x = ¢.
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Entries above or to the left of the stepped line were unattainable by
Boas’ original test.

For exp(— Mx) (W= 1) it is easy to verify (in this case, Boas’
test is sufficient) that the intervals of superadditivity [0, b(\)] are
determined by b(\) = \/In 2.

In [2] it is suggested that maximum intervals of superadditivity
be computed not only for f = f, but also for the “average function
of f”, F=F,, and for the “inverse average function,” ¢ = ¢,, where

0 x:07

FZ ) -1
@ —1—8 Fa®di x>0;
x Jo

$:(x) = fi(@) + 2fi(x) x=0.

For the case f;(x) = exp(— Mx) we can give the following maximum
intervals of superadditivity:

Funetion I;(Z)—end point
91 2/1.116845
Ia 2/.6931472
F; 2/.4243251

where Boas’ test was inapplicable to the ¢,-case.

REFERENCES

1. E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54 (1948), 439-460.
2. ——— Superadditivity imequalities, Pacific J. Math., 14, (1964), 421-438.

3. A. M. Bruckner, Tests for the superadditivity of functzons, Proc. Amer. Math. Soc.,
13, (1962), 126-130.

4. A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex
functions, Pacific J. Math., 12 (1962), 1203-1215.

5. N. G. Chebotarev, On the methods of Sturm and Fourier for transcendent functions,
Comptes Rendus (Doklady) de I’Académie des Sciences de 'URSS, 34 (1942), 2-4.

6. J. D. Esary, A. W. Marshall and F. Proschan, Some reliability applications of the
hazard transform, SIAM J. Applied Math., 18 (1970), 849-860.

7. F. R. Gantmacher, Theory of Matrices, vol. II, Chelsea Pub. Co., New York, N. Y.,
(1959).

8. E. Hille and R. 8. Phillips, Functional analysis and semigroups, Amer. Math. Soc.
Colloquium Publications, vol. XXXI, rev. ed., Amer. Math. Soc., Providence, R. I. (1957).
9. J. Kiefer, Sequential minimax search for a maximum, Proc. Amer. Math. Soc., 4
(1953), 502-506.

10. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill Book Co., New
York, N.Y., (1965).

11. R. A. Rosenbaum, Subadditive Functions, Duke Math. J., 17 (1960), 227-247.

12. J. V. Whittaker, Problem 4712, Amer. Math. Monthly, 63 (1956), 669.

Received June 30, 1971.
UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER 8, B. C.
CANADA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007
C.R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH B.H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO

MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY * * *

UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol.39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,
3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.



Pacific Journal of Mathematics

Vol. 43, No. 2 April, 1972

Arne P. Baartz and Gary Glenn Miller, Souslin’s conjecture as a problem on

thereal line....... ... . o e 277
Joseph Barback, On solutions in the regressive isols ...................... 283
Barry H. Dayton, Homotopy and algebraic K-theory ..................... 297
William Richard Derrick, Weighted convergence in length ................ 307
M. V. Deshpande and N. E. Joshi, Collectively compact and semi-compact

sets of linear operators in topological vector spaces ................. 317
Samuel Ebenstein, Some HP spaces which are uncomplemented in L? . . ... 327
David Fremlin, On the completion of locally solid vector lattices . ......... 341
Herbert Paul Halpern, Essential central spectrum and range for elements of

avon Neumann algebra............ ... i .. 349
G. D. Johnson, Superadditivity intervals and Boas’ test................... 381
Norman Lloyd Johnson, Derivation in infinite planes . .................... 387
V. M. Klassen, The disappearing closed set property ..................... 403
B. Kuttner and B. N. Sahney, On the absolute matrix summability of Fourier

SCEIES « o v v et e et e e e e e e e 407
George Maxwell, Algebras of normal matrices........................... 421
Kelly Denis McKennon, Multipliers of type (P, P) cvvvveeeneinnennn.. 429
James Miller, Sequences of quasi-subordinate functions .................. 437

Leonhard Miller, The Hasse-Witt-matrix of special projec
Michael Cannon Mooney, A theorem on bounded analytic

M. Ann Piech, Differential equations on abstract Wiener s
Robert Piziak, Sesquilinear forms in infinite dimensions . .
Muril Lynn Robertson, The equation y'(t) = F(t, y(g(t))
Leland Edward Rogers, Continua in which only semi-apo
SUbCONtIiNUA Separate .................ccouuuueonn
Linda Preiss Rothschild, Bi-invariant pseudo-local operat
GEOUPS « o oo et et e e
Raymond Earl Smithson and L. E. Ward, The fixed point p
arcwise connected spaces: a correction. ...........
Linda Ruth Sons, Zeros of sums of series with Hadamard
Arne Stray, Interpolation sets for uniform algebras. . . . ..
Alessandro Figa-Talamanca and John Frederick Price, Ap
random Fourier series over compact groups to Fouri


http://dx.doi.org/10.2140/pjm.1972.43.277
http://dx.doi.org/10.2140/pjm.1972.43.277
http://dx.doi.org/10.2140/pjm.1972.43.283
http://dx.doi.org/10.2140/pjm.1972.43.297
http://dx.doi.org/10.2140/pjm.1972.43.307
http://dx.doi.org/10.2140/pjm.1972.43.317
http://dx.doi.org/10.2140/pjm.1972.43.317
http://dx.doi.org/10.2140/pjm.1972.43.327
http://dx.doi.org/10.2140/pjm.1972.43.341
http://dx.doi.org/10.2140/pjm.1972.43.349
http://dx.doi.org/10.2140/pjm.1972.43.349
http://dx.doi.org/10.2140/pjm.1972.43.387
http://dx.doi.org/10.2140/pjm.1972.43.403
http://dx.doi.org/10.2140/pjm.1972.43.407
http://dx.doi.org/10.2140/pjm.1972.43.407
http://dx.doi.org/10.2140/pjm.1972.43.421
http://dx.doi.org/10.2140/pjm.1972.43.429
http://dx.doi.org/10.2140/pjm.1972.43.437
http://dx.doi.org/10.2140/pjm.1972.43.443
http://dx.doi.org/10.2140/pjm.1972.43.457
http://dx.doi.org/10.2140/pjm.1972.43.465
http://dx.doi.org/10.2140/pjm.1972.43.475
http://dx.doi.org/10.2140/pjm.1972.43.483
http://dx.doi.org/10.2140/pjm.1972.43.493
http://dx.doi.org/10.2140/pjm.1972.43.493
http://dx.doi.org/10.2140/pjm.1972.43.503
http://dx.doi.org/10.2140/pjm.1972.43.503
http://dx.doi.org/10.2140/pjm.1972.43.511
http://dx.doi.org/10.2140/pjm.1972.43.511
http://dx.doi.org/10.2140/pjm.1972.43.515
http://dx.doi.org/10.2140/pjm.1972.43.525
http://dx.doi.org/10.2140/pjm.1972.43.531
http://dx.doi.org/10.2140/pjm.1972.43.531

	
	
	

