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A topological space X is said to have the disappearing
closed set (DCS) property or to be a DCS space, if for every
proper closed subset C there is a family of open sets {Ui}T=i
such that Ui+ί Q χji and ΠΓ=i U% = 0 , and there is also a
sequence {hi} of homeomorphisms on X onto X such that
hi(C) £ Z7i, for all i. Properties of DCS spaces are studied
as are connections between this and other related definitions.

I Simple examples of sets with the DCS property are the
^-sphere, n > 0, and the open %-cell, n > 0. This definition was
formulated in an attempt to generalize the definition of invertible set
which has been extensively studied by Doyle, Hocking and others [1,
2, 3, 4, 6]. A space X is said to be invertible if for every proper
closed subset C of X there is a homeomorphism h on X onto X such
that h(C) £ X — C. Neither of these definitions implies the other.
For example, an open w-cell is not invertible, and on the other hand,
the 0-sphere is invertible but does not satisfy the DCS property.
However, both definitions require that closed sets can be made "small"
or "thin."

It is proved in [5] that compact ^-manifolds have the DCS pro-
perty. It is the purpose of this paper to investigate some other
topological properties of DCS spaces.

II* THEOREM 1. Any disconnected DCS space X must have an
infinite number of components.

Proof. Suppose X has a finite number of components, Ajf j —
1, •••, n. Each A5 is both open and closed. Consider the DCS pro-
perty applied to JJy=2 A? = By a closed set. There are open sets
{Ui}T=i and homeomorphisms {λJJLi such that h^B) £ Uh Ui+1 £ Ui9

and ΠΓ=i Ui — 0 . Since there are at most a finite number of com-
ponents Ai and since the Ui form a decreasing sequence of open sets
whose intersection is empty, there must be an m such that for each
3 ~ 1, , n, there are x5 e A3 such that xs £ Um. But X — Um £ hn{A^9

since hm(B) £ Um and X = A, (J B, A, Π B = 0 . Thus xό e h^A,), j =
1, •••,%• But this is a contradiction unless n = 1, since /^(A) is
connected, but intersects all components of X.

An example of a DCS space which is not connected is the product
space obtained by crossing the real numbers with the rationals.

One method of constructing DCS spaces is given by the following:
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THEOREM 2. If X and Y are DCS spaces, so is X x Y.

Proof. Let C be a proper closed subset of X x Y, and let P gΞ
X, Q S F be open sets in X and F, respectively, such that P x Q e
I x Γ - C . Let {Ui)T=i, {hi}T=ι and {F<}r=i, {&<}Π=i be the open sets and
homeomorphisms for X — P and F — Q in X and F, respectively. If
(x, y)eXxY, define fc(α?, y) = {Λ«(α>), fc,(y)}. Now {TF«}r~i = {(E7< x Γ) U
(X x Vi)}T=i is a decreasing sequence of open sets in X x F, with
empty intersection. Also, Φi{C) £ W» . Thus, X x F has the DCS
property.

The relation between invertible spaces and spaces with the DCS
property can be seen more clearly in the following analysis.

If an invertible Tγ space X has the property that the intersection
of all neighborhoods of any point is that point, and if any closed set
C in an open set U may be "moved" so as to miss any given x e U,
without moving outside U, then X has the DCS property. (If U is
open, U — {x} is also.)

Ill* This suggests a relationship with another concept, also
studied by Doyle and Hocking. A space X is near-homogeneous if for
any xeX and any open set U such that xe U, for every yeX
there is a homeomorphism on X onto X such that h(y) e U.

Once again, the 0-sphere is a space that does not satisfy the DCS
property, but is near-homogeneous. However, the following converse
is true:

THEOREM 3. Every DCS space X is near-homogeneous.

Proof. Let xe X and U an open set containing x. Let y e X.
Consider C — X — U, a proper closed subset of X. Since X has the
DCS property, there is a sequence of homeomorphisms {/̂ )Γ=i on X
onto Xsuch that Γ\T=ih(C) = 0 , a somewhat weaker statement than
the DCS property allows. There is some j such that y£hά{C). But
then yehj(U), so hjι{y)ε U. Thus, X is near-homogeneous.

In the preceding proof, it is seen that near-homogeneity does not
require that closed sets get "thin," but that they move around enough.
An equivalent form of the definition of near-homogeneity, related to
the DCS property, is of interest here.

THEOREM 4. Let H(X) be the family of all homeomorphisms on
X onto X. X is near-homogeneous iff, for every proper closed set

Γ - 0.

Proof. If X is near-homogeneous, let C be a closed subset of X,
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and let U' = X — C. Let yeC. Then there is an h e H{X) such that
h(y) e U, by near-homogeneity and thus Γ\heH(x) h{C) = 0 .

Conversely, let x, y e X, and let U be an open set such that x e U.
Let C = X — U. lίyίC, there is nothing to show, so suppose yeC.
Then there is an h e H(X) such that h(y) g C. Otherwise ΓUe^m MC)
would not be empty. But this is the desired homeomorphism.

IV* Another definition relating to invertibility that has been
studied is that of local invertibility. A space X is said to be inver-
tible at a point x e X if for every open set U containing x there is
a homeomorphism h on X onto X such that h(X — U) £ U. In [2]
it was proved that for such a space certain local properties become
global properties. For example, if X is invertible and locally compact
at x, then X is compact. The corresponding definition here is the
following. A space X has the DCS/x property for all closed sets
which miss x. It is evident that a space X has the DCS property,
iff it has the DCS/x property for each x e X. Examples of spaces
with the DCS/x property include the closed w-cell, the w-leafed rose
and, in fact any space that is invertible at x in such a way that the
inverting homeomorphism may be taken to fix x. A space that is
not invertible at any point but which does have the DCS/x property
is the "half-open" annuls [0, 1) x S l t It will have the DCS/x property
for every point of {0} x Sx.

Since the DCS/x definition cannot guarantee that any part of the
closed set will be carried close to x under any of the homeomorphisms,
theorems as sweeping as those of local invertibility cannot be obtained.
However, the following is true:

THEOREM 5. Let X be a space that has the DCS/x property at x
and suppose X is locally Tiy i — 0, 1, 2, in a neighborhood P of x.
Then X is T{.

Proof. Let y, zeX,y Φ z (perhaps one is x). Let {Ui}T=i and
{hi}T=ι be the open sets and homeomorphisms given by the DCS/x
property for the closed set X — P. There is a j such that y,zί U,.
Then y, z£hj(X — P), so y,zeh3-(P). But then hs(y) and h3(z) have
the separation property required and thus y and z do also.

Note that this kind of argument is an improvement on near-
homogeneity, since it makes it possible to bring two points (or any
finite number of points) into a neighborhood of x at once.
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