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The groups considered in this paper will be abelian pri-
mary groups. For λ a fixed but arbitrary countable limit
ordinal, C. K. Megibben studied that class Cx consisting of
all p-groups G such that G/paG is a direct sum of countable
groups for all a < λ.

Fundamental to the deτelopment of C\-theory was the
introduction of the concept of a /-basic subgroup, which
generalized the familiar concept of a basic subgroup, and
the following existence theorem: A primary group G contains
a Λ-basic subgroup if and only if G is a Cλ-group. This paper
extends, in a natural fashion, the concepts of "Cλ-group" and
"Λ-basic subgroup" to an arbitrary limit ordinal λ, and con-
siders the analogous question of existence. This is used to
examine the structure of pλ-pure subgroups of Cλ-groups for
limit ordinals λ such that λ Φ β + ω for any ordinal β. For
an ordinal λ of this type, if H is a pλ-pure subgroup of the
Cλ-group G then both H and G/H are Cλ-groups.

The classical theory of torsion abelian groups corresponds to
Megibben's Cω-theory, in that the class of all p-groups coincides with

cω.

1* Preliminaries* In this section we assemble the basic con-
cepts which are crucial in the following development. For pertinent
results related to these concepts, we refer the reader to [2].

A subgroup H of the p-group G is said to be a pa-pure subgroup
if H>-*->G--+-+ G/H represents an element of paExt (G/H, H). This
notion is due to Nunke and shall assume the same role in our theory
as that played by ordinary purity (i.e. pω-purity for p-groups) in
the classical theory.

The subgroup H is said to be a pa-high subgroup of G if H is
maximal among the subgroups of G that intersect paG trivially.
From [5] or [7], if H is a pα-pure subgroup of G then Hf] pβG =
pΉ for all β ^ a and p*(G/H)[p] - (pβG)[p] + H/H for all β < a.

Moreover, if G/H is divisible, where H is a p*-pure subgroup of G
and a is a limit ordinal, then H + pβG/pβG = G/pβG for all β < a.
If H is a pα-high subgroup of G, then H is a pα+I-pure subgroup of
G and H+ paG/paG is pα-pure in G/paG (see [3]).
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A subgroup H of the p-group G is neat if pG Π H = piϊ. From
[3], if if is a neat subgroup of the p-group G and

for each β < a, then i ί is pα-pure in G. Moreover, if A is a neat
subgroup of paG and if fiai is maximal in G with respect to
B n 2>αG = A, then 5 is p"+1-pure in G.

A subgroup if of the p-group G is nice in G if each coset g+H
contains an element g + h that has maximal height in G. If g has
maximal height in the coset g + H, we say # is proper with respect
to fl.

Totally projective groups as introduced by Nunke provide a
generalization of the concept of a direct sum of countable reduced
groups. A p-group G is pa-projective if pαExt (G, C) = 0 for all
groups C. A reduced p-group G is totally projective if GpαG is pa-
projective for every ordinal a. The following characterization of
totally projective groups, given and utilized by Hill [4] to show that
the Ulm invariants suffice to classify totally projective p-groups, is
used extensively.

THEOREM A. A reduced p-group G is totally projective if and
only if G has a collection ^G of nice subgroups satisfying the follow-
ing conditions:

(0) 0 is a member of ^G.
(1) ^Q is closed with respect to group-theoretic union.
(2) If Ae ^Q and H is a subgroup of G such that (H + A)/A

is countable, there exists B e ^G such that B Ξ2 H + A and B/A is
countable.

In the sequel, we shall refer to these conditions as the third axiom of
countability and to condition (2) as the countable extension property.

An ordinal λ is said to be confinal with ω if λ is the limit of a
countable ascending sequence of ordinals. From [7], if ex. is confinal
with ω then every pα-pure subgroup of a pα-projective group is pa-
projective.

To extend the concepts of Crgroup and λ-basic subgroup to an
arbitrary limit ordinal, we introduce the following definitions. For
a fixed but arbitrary limit ordinal λ, Cλ shall designate that class of
all ^-groups G such that G/paG is totally projective for all a < λ.
Groups in the class Cλ will be referred to as Crgroups. B is said to
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be a X-basic subgroup of G if
(1) B is totally protective of length at most λ,
(2) B is a £>;-pure subgroup of G, and
(3) G/B is divisible.
For B a λ-basic subgroup of G and a < λ, a routine argument

yields that the α-th Ulm invariant of B coincides with the a-th Ulm
invariant of G. Hence, by HilPs version of Ulm's Theorem, we ob-
tain the following analogue to a well-known property of ordinary
basic subgroups

PROPOSITION 1.1. If B and B are X-basic subgroups of G then

We shall require for technical convenience the notion of a λ-high
conίinal tower. Let λ be an ordinal confinal with ω, and G an
abelian p-group. A X-high confinal tower of G is an ascending
sequence {Gn} of subgroups of G such that:

(1) For each positive integer n, Gn is a pa{n)-high subgroup of G;
(2) X = sup {a(ri)}, a(n) < a(n + 1);
(3) If X = β + ω for some limit ordinal β, then a(ri) — β + m

for some positive integer m;
(4) If X Φ β + α> for any ordinal /3, then a(ri) = β(n) + α> for

some limit ordinal β(n).

2* The existence theorem* In this section we determine, for
an arbitrary but fixed limit ordinal λ, that class of all abelian p-
groups G such that G contains a λ-basic subgroup (see Theorem 2.7).

LEMMA 2.1. Suppose GjpβG is totally protective and B is a basic
subgroup of pβG. If H is a subgroup of G such that

G/B = HIB@pβGjB

then H is totally protective.

Proof. If H is a subgroup of G such that GIB = H/BφpβG/B,
then G = H + pβG and H is maximal in G with respect to
Jϊ n p?G = £. Thus if is ^+ 1-pure in G. Consequently paH =
pαG Off for all α ^ /3 + 1, and in particular pβH = pβG f] H = B.
We now observe that H/pβH is totally projective since

H/pβH = H/pβG ΠH~(H+ pβG)/pβG = G/pβG ,

and pβH = B is a direct sum of cyclic groups.



802 KYLE D. WALLACE

LEMMA 2.2. Let X be a limit ordinal confinal with o) such that
X Φ β + (o for any ordinal β. Suppose G = \JGn with {Gn} a X-high
confinal tower of G. If A £ G satisfies the conditions:

(1) A is the union of an ascending sequence of subgroups
Aί £ A2 £ such that An is nice in Gn for each n,

(2) A £ paG + An for all a < a(n);
then A is nice in G.

Proof. We show that each coset x + A contains an element x + a
that is proper with respect to A.

Let xeG — A, and choose n such that xeGn. Let

β = hG(x) < a(n) .

For k ^ n, there exists ak e Ak such that hG(x + ak) — hGk(x + ak) ^
hGfc(x + α') = hG(x + α') for any a' e Ak. It suffices to show that the
sequence hG(x + an) ^ /̂ (a? -f an+1) ̂  cannot be strictly increasing.

Suppose for some m ̂  n that feσ(a? + am) > β = hG{x). Then
hG(am+i) = Λσ(a?) for i = 1, 2, . Let 7 = hG(x + αm) and observe
7 < tf(ra) since α; + am e Gm. Moreover 7 + 1 < a{m) since a{m) is a
limit ordinal. We shall show that x + αm is proper with respect to A.
Suppose x + αw is not proper with respect to A. Then for some k,
hG{xΛ-am+k) > hG(x + am) = 7 and & + αw+A; e ^ + 1 G . Since A £ p r + 1G + Aw

we have αm+/b = grfc + am,k with r̂fc e pr+1G and αm,fc e Am. Hence

and a? + am>k e pr+1G. This however is absurd since

hG(x 4- am,k) ̂  feG(a; + αm) = 7 .

Consequently a? + am is proper with respect to A and A is nice in G
With X and G as in Lemma 2.2, we shall now restrict our atten-

tion to the case where Gn is totally projective for each n. Let ξfn

denote a collection of nice subgroups of Gn satisfying the third axiom
of countability. Let ^ be the collection of all subgroups A of G
such that

(1) A = (J An with ΛL £ A2 § and ^ e ^ for each w,
(2) A S PαG + An for all α < a(n).

The members of ^ are nice by Lemma 2.2.

LEMMA 2.3. ^ has the countable extension property.

Proof. For each n, we have a(n) = /9(w) + <w with β(n) a limit
ordinal. Thus λ = sup {α(w)} = sup {β(n}}. We observe that to show
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B g paG + Bn for each ordinal a < a(n), it suffices to show

B £ pβ{n)+kG + £„ for each ft < ω .

Let i e g 7 and if a subgroup of G such that H/A is countable.
Let S = {Xi}i<ω be such that H = <A, S> and let Sn = S Π Gn. By
induction, we shall construct, for each positive integer n, subgroups

Bin) s Bin) g . . . g 5^) S U ch that
(0) A, £ B<(Λ) for i^n,
(1) B ^ s B,*10 for k^n,
(2) B^e&t,
(3) B#ί S p^(«+*G + Bi(n) for k < α>,
(4) B ^ a ^ ,
(5) Bi{n)/Ai is countable for i <^ n.
We now show that the existence of subgroups B}n) satisfying the

above conditions (0) — (5) will suffice to establish the lemma. For
each i< ω, let JŜ  = \Jn^ Bt] and observe that Bte g7^ and BiSBi+1.
Moreover Bi+ί - U^*+A?l S U ^ + i ί ^ ^ ^ ^ + B ^ ) - p^ ) + *G + B4 for
fe < ώ>, and by induction Bi+m S pβ{i)+kG + .B̂  for all m< ω, k< ω.
Let 5 = Ui<ω -Bί. Clearly 5 3 H and B/A is countable. Moreover
5 G ^ since B £ pβ^+kG + B4 for each i and Λ.

Suppose we have constructed B»ίn), 1 ^ i ^ w, satisfying (0) — (5)
above. We shall now construct BίίΛ+1) for 1 <Zi <^n + 1.

For l ^ i ^ n , let B4f0 - A, and B i f l = B/n). Set Bn + l f 0 = An+ι

and let BΛ + l f l be a member of <g^+1 such that

and Bn+1JAn+1 is countable. By induction, we shall construct a
family of subgroups Biyj, with 1 <= i <L n + 1 and i < ω, satisfying
the conditions

( i ) Bu £ Bi>Λ for j ^ ft,
(ii) ^ e ^ ,
(iii) Bitj+1/Bifj is countable,
(iv) B ί + l f 2 i S pβ{ί)+kG + Bi,2i for all 1 g i ^ w and i, ft < ω;
(v) B i f 2 i + 1 £ Bi+1>2j+1 for all 1 ^ i ^ w and i < ω.
We define JB/%+1) = \Jj<ω Bu and observe that

U τ> _ r>(Λ+i) _ a I τ>

i < ω i < ω

By (iv), we see that

B&ΐv> - U Bi+lttί S U (^< ί ) +*G + J?<f2y) = j>^ί)+*G + Bj( + ι }

for all A;<ω, 1 ̂  i g n. By (v), IB4'»
+1) = \J3<ω BtM+ι £ Ui<- 5 i + l f ί y + 1 =

Bι+tι) for all 1 g i ^ « . It is now easy to see that conditions
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(0) - (4) are satisfied by the subgroups Bl5), l £ i ^ j ^ n + l. Since
Btj+JBij is countable for each

j < ω, Bt^/At = Bt+l)IB^ = JJ Bu+JBit0
j<a>

is countable for all 1 ̂ ίί <* n + 1 and condition (5) is satisfied.

Suppose we have constructed Biyj satisfying (i) — (v), for all
1 <; i <̂  n + 1 and all j ^ 2m + 1. We shall now construct Bif2m+2

for 1 :g i ^ n + 1. Define Bn+1>27n+2 — Bn+1)2m+1. Assuming, for some
positive integer I ̂  n, that Bi>2m+2 has been constructed for each
l + l ^ i ^ n + ly we let {Xj}j<ω £ Bι+ι>2m+2 be such t h a t Bι+U2m+2 =
(Bι+U2m, {Xj}j<ω}. Since G £ p?{l)+kG + Gz we obtain decompositions
% = ft-,* + #y,*> with gJtkepβ{l)+kG and $,-,*€ Gz, for each i , k < ω.
Let Γz,2m+2 = {%,fc}i,fc<ω £ G> Let Bh2m+2 be a member of <ĝ  such
t h a t JBZ, 2 W + 2 2 <Sι,2*+i, r z, 8 m + 2> and Bltim+JBlt2m+1 is countable. Observe,
for each fc < ω, Bι+ί>2m+2 £ pβ(l)+kG + J5*,2m+2 since

and

Blt2

To conclude the proof, it suffices to construct Bij2m+3 for
1 <Ξ i <£ ̂  + 1, having been given a collection S< f i satisfying
(i) - (v), for all 1 ^ i ^ n + 1 and all j ^ 2m + 2. Define i? l f2m+8 =
Blt2m+2 and assume, for some positive integer I ̂  n, that Bi>2m+B has
been constructed for each 1 <̂  i <g Z. Since Bι>2m+3fBι>2m+1 is countable
and Bl)2m+1 £ J?ι+i,2m+i £ Bι+U2m2, (Blf2m+3 + Bι+U2m+2)/Bι+U2m+2 is countable.
Thus there exists £ m , 2 m + 3 e ^ + 1 such that Bι+1,2m+, 2 5Ϊ+I,2»+S + #m,2m+2
and Bι+ι>2m+s/Bι+u2m+2 is countable. The collection of subgroups 2?<fi,
for 1 ̂  i g 7i + 1 and 0 ̂  i ^ 2m + 3, clearly satisfies conditions
(i) - (v).

LEMMA 2.4. If a is confinal with ω and G/paG is totally pro-
jective, then every pa-high subgroup of G is totally projective.

Proof. Let a be an ordinal confinal with ω, and H a pα-high
subgroup of G. Since H = (H + paG)/paG and (H + paG)/paG is im-
pure in the pα-projective group G/paG, H is pα-projective. Since a
is a limit ordinal, H/pβH = G/p̂ G is p^-projective for all β < a.
Consequently H is totally projective.

PROPOSITION 2.5. Let X be a limit ordinal confinal with ω, and
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{Gn} a X-high confinal tower of G. If G is a Cλ-group then (J Gn is
totally projective of length at most λ.

Proof. Clearly U Gn is an isotype subgroup of G and hence has
length at most λ. The proof that U Gn is totally projective shall
consist of two cases.

Case 1. λ = β + ω.

Consider the subgroup (U Gn) Π pβG of pβC, and observe that

Gn D pβ+ωG = 0

for each n. Consequently pω((\J Gn) n PβG) = \J{Gn Π pβ+(ϋG) = 0 and thus
(U G«) Π PβG is a p-group without elements of infinite height. Since

(U G«) n pβG = u (Gw n P^G) = U pβG«

is the union of an ascending sequence of bounded subgroups, it follows,
by the Kulikov criterion, that (U Gn) Π pβG is a direct sum of cyclic
groups. It is easy to see that (U Gn) Π pβG is a pure subgroup of
pβG and that \J Gn + pβG = G. Consequently ((J G%) Π pβG is a basic
subgroup of p^G. Since G is a C^-group, G/pβG is totally projective
and, by Lemma 2.1, it follows that \J Gn is totally projective.

Case 2. λ Φ β + ω for any ordinal /3.

By Lemma 2.4, it follows that in this case Gn is totally projective
for each n. To show that \J Gn contains a collection of nice sub-
groups satisfying the third axiom of countability, let <& denote the
collection of nice subgroups of \J Gn as defined preceding Lemma 2.3.
Clearly 0 e ^ . By Lemma 2.3, ^ has the countable extension pro-
perty. Thus it suffices to show that g" is closed with respect to
group-theoretic union. Suppose {Ar}reI £ ^ with Ar — \Jn<ω An,r

where
(1) An>r £ Ak>r for n ^ k,
(2) An,re ξfn for each n.
(3) For each n and a < a(ri), Ar £ paG + Ar,w.

Then Σre/ Ar = Σrβ/(U <-Λ.,r) - UnίΣrβ/A.J With

Σ Λ»,r £ Σ AktT ίor n <: k ,
γel γei

and Σre/^L,r e ^ Moreover, for each n and α < α(^), we have

Σ 4 S Σ (P*G + An>r) = p«G + (Σ A,,r) .
re/ re/ re/
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Consequently Σ r e / Λ e < ^

LEMMA 2.6. Let {Gn} be a X-high confinal tower of G. If H =
U Gn then H is pλ-pure in G.

Proof. Let a < λ, and recall that H is an isotype, and hence a
neat, subgroup of G. There exists a positive integer n such that
a < a(n), and G[p] - Gn[p] + (2>βG)[p] = H[p] + (

THEOREM 2.7. (a) If G is a Cλ-group with X confinal with ω
then G contains a X-basic subgroup.

(b) If G is a reduced p-group which contains a proper X-basic
subgroup then G is a Cλ-group and X is confinal with ύ).

Proof. Part (a) follows from Proposition 2.5 and Lemma 2.6.

Conversely, suppose H is a proper λ-basic subgroup of the reduced
p-group G. For a < λ,

G/paG =(H+ paG)/paG ~ H/(HΠ PaG) - H/p«H

is totally protective. Thus G is a CV-group. That λ must be confinal
with ω is immediate from (3.7) of [1] and (3.10) of [7].

3* C pGroups for X Φ β + ω. The purpose of this section is to
examine the structure of p^-pure subgroups of (^-groups. We shall
restrict our attention to ordinals that cannot be expressed in the
form β + ω for any ordinal β. The techniques utilized are essential-
ly those of Megibben in [6] and rely upon the existence of λ-basic
subgroups as established in § 2.

The proofs given for Lemma 3 in [6] can, with the aid of § 2, be
reproduced to yield the following lemmas.

LEMMA 3.1. Let X be an ordinal confinal with co. Suppose H
is a pλ-pure subgroup of G and that {IIn} is a X-high confinal tower
of H. Then there exists a X-high confinal tower {Gn} of G such that,
for each n, Hn £ Gn and Hn = H Π Gn.

LEMMA 3.2. Let X be an ordinal confinal with ω such that
X Φ β + a) for any β. Suppose G is totally protective and that G —
U Gn where {Gn} is a X-high confinal tower. If H is a px-pure sub-
group of G such that, for each n, H Π Gn is a pain)~high subgroup of
H, then H is a direct summand of G.



^-GROUPS AND Λ-BASIC SUBGROUPS 807

THEOREM 3.3. Let X be any limit ordinal such that X Φ β + ω
for any β, and let G be a Cx-group. If H is a px-pure subgroup of
G then H is a Cλ-group.

Proof. It suffices to establish the proposition for ordinals λ such
that λ is confinal with ω and λ Φ β + ω for and ordinal β. For
such an ordinal λ, let {Hn} be a λ-high confinal tower of H. By
Lemma 3.1, there exists a λ-high confinal tower {G*} of G such that
Hn — H Π Gn for each n. Since G is a Crgroup, \J Gn is totally
protective, by Proposition 2.5. By Lemma 3.2, it follows that U Hn

is a λ-basic subgroup of H and consequently, by Theorem 2.7, H is
a Crgroup.

LEMMA 3.4. Let λ be confinal with o), λ Φ β + (o for any β.
Let A be a totally protective group of length at most λ and suppose
A is a pλ-pure subgroup of the Cχ-group G. Then there exists a
subgroup C of G such that AφC is a X-basic subgroup of G.

Proof. Since A is a totally protective group of length at most
λ, it follows from Proposition 1.1 that A is the union of a λ-high
confinal tower {An} of itself. By Lemma 3.1, there exists a λ-high
confinal tower {Gn} of G such that An = A Π Gn for each n. Let
B = U Gn. By the proof of Theorem 2.7, B is a λ-basic subgroup
of G. But {Gn} is also a λ-high confinal tower of B and, by Lemma
3.2, we have the desired decomposition B = A φ C .

THEOREM 3.5. Let X be a limit ordinal such that X Φ β + ω
for any ordinal β, and let G be a Cλ-group. If H is a pλ-pure sub-
group of G then G/H is a Cλ-group.

Proof. It suffices to establish the result for an arbitrary but
fixed ordinal λ satisfying the conditions that λ is confinal with co
and X Φ β + a) for any ordinal β. Let λ be such an ordinal and H
a p^-pure subgroup of the Crgroup G. By Theorem 3.3, H is a C r

group and thus, by Theorem 2.7, contains a λ-basic subgroup. Let
A be a λ-basic subgroup of H and choose C, by Lemma 3.4, such
that A φ C is a λ-basic subgroup of G. If xe(HΓ) C)[p], we can
write, for each a < λ, x = aa + za where aa e A[p] and za e paH. Thus
-aa + x e pa{A 0 C) = paA 0 paC and xef) PaC = pλC = 0. We then
have a direct decomposition £Γ0C. If pg e H($C, then

pg — a + ph + c

where aeA,heH and ceC. Since pG Π (4 φ C) = p(4 0 C), we
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conclude that pG Π (-ffφ C) = p(H® C) and H@C is neat in G.
Moreover, G[p] S(AφC)[p] + paG s (H@C)[p\ + paG for all a<X
and therefore Hζ&C is a p^-pure subgroup of G. Consequently,
(HψC)/H is p;-pure in G/H. Also (HφC)/H~C is totally pro-
jective of length at most λ, and

(G/H)/(H® C/H) = (G/A © C)/(H@ C/A 0 C)

is divisible. We have constructed a λ-basic subgroup of G/H and we
conclude that G/H is indeed a Cλ-group.

As easy consequences of Theorem 3.5, we have the following
analogues of familiar properties of pure subgroups.

COROLLARY 3.6. Suppose λ is a limit ordinal such that

X Φ β + ω

for any ordinal β. A subgroup H of a Cλ-group G is a pλ-pure
subgroup if and only if (H + paG)/paG is a direct summand of G/paG
for all a < λ.

COROLLARY 3.7. Suppose X is a limit ordinal such that

\φ β + Q)

for any ordinal β. If H is a pλ-pure subgroup of the Cλ-group G
and if paH = 0 for some a < λ, then H is a direct summand of G.

4* Remark* As noted above, we have not dealt with the prob-
lems of pλ-pure subgroups of Crgroups where λ is a limit ordinal
which may be expressed in the form λ = β + ω. It would not be
surprising, however, if the results of § 3 fail to hold for certain of
such ordinals.
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