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TWO PRIMARY FACTOR INEQUALITIES
J. H. E. CouN

In the theory of integral functions, the expressions
¥4 T
(1) E<z,p>=<1—z>exp{zz7},p=1,2,-~-
1

called primary factors, are of some importance, and it is of
interest to find upper bounds for | E(z, p)|. Clearly E(z,p) =0
only for z=1, and so for other values, define f(z, p) =
log | E(z, p)|. It is known that for suitable constants a,, b,
the inequalities

(2) flz,p) = a,lzl?, 2] 21,2%#1
(3) fz,p) £ by lzle+, |z =1, 2+ 1

are satisfied; for instance Hille has shown that one may take
a,=14+>7?1/r=<2+logp and b, = 1.

In this paper, the smallest values of both a, and b, are
determined, the latter in closed form.

Throughout, we shall write z = pe’, where without loss of gen-
erality p =2 0,0 <6 <zw. Then

(4) f(z,p)=%10g(1~2pc0s6+,02)+ﬁ‘2r-cosr0.
Ty
Also, using the Taylor series for log (1 — z) gives from (1)

5 = — p+1°°_—‘0"‘— 16,
(5) f(z, p) o Zolp+y+1008(p+r+)

provided o <<1. A further expression is obtained by writing log E(z, p)
as an integral of its derivative and taking real parts, to give

Ptcos pf — cos{p + 14,
2, = tPdt
/& P g 1— 2t{cos + ¢

provided 6 5= 0 or p < 1.
The problem considered in this paper is the determination of the
maxima of the functions

(6) g9, p) = 07"f(2,p) for p =1
and

h(z,p) = 077" f(2,p) for p <1,
81
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and to show where these occur.

1. Summary of results. Henceforth we use a, and b, to denote
the smallest constants for which (2) and (8) hold. We shall show
that both a, and b, are monotone decreasing functions of p. The
value of @, is given by a, = log (0 — 1) where p is the solution of
the transcendental equation (0 — 1)log (0 — 1) = p, 0 > 1 and the
maximum occurs at z = po. Also a, =1, the maximum occuring at
z =2, and a, is given by the common value of ™' and

e-f(v + Sles —Lis + g”fids\ ,
s 1 g/

0

for the unique value of = which makes these expressions equal, v
denoting Euler’s constant. For each p = 2, the maximum occurs at
a point z on the real axis which satisfies 1 <2z < 2.

The 2z maximizing b, occur on 2| =1, with § = z/2p + 1), p = 1,
2,3,---. For p>1 the maximum is unique, but for p =1 it is
attained at every point of the arc |z — 1] =1,|2] <1. We derive
the explicit bounds

/2 .
Lgb,,>log7z'/2+7—§ l—coﬂda&,
2 0 x
and both bounds are sharp. We also have an explicit formula
b, = log (2 sin—l— 0\. + Zp’,i cos rd ,
2/ ror
where 6 = 7/(2p + 1). In particular these results give
1.2785 > a, > 0.7423, % > b, > 0.4719 .
Since a, = 1 we have therefore
IOg IE(Z, p)l § min (iz]p, Izip—%l)’ p= 2, 3) M )

and this is sharp.
The numerical values of a, and b, are as follows.

p Ay b,

1 1.2785 0.5000
2 1.0000 0.4823
3 0.9123 0.4771
4 0.8691 0.4752
5 0.8435 0.4741
oo 0.7423 0.4719
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2. Preliminaries. It is clear that for (2) and (3) to hold, both a,
and b, must be positive, since for example z = 2 and z = eexpi7/(p + 1)
with e sufficiently small give positive values of f(z, p). We see
therefore that not only the point z = 1, but also a neighbourhood of
this point can be excluded from the discussion. We find by elementary
means that

(8)y 29 _ plsin(p+ 1)0 — psin pb}

00 1—20cosf + 0°
(9) g _ {(p + 1) cos (p + 1)0 — ppcos pf} 20 sin 0 dg
06* 1— 20cos 8 + o 1-—2pcos @ + p* 30
_ )
(10) Q,(_J:_ﬂg+pcosp0 cos (p + 14
op 0 1—20cosf + 0*
(11) oh _ sin (p + 1)§ — o sin pd
ol 1—20cos@ + 0°
12) °h _ (p+ 1)cos(p + 1)6 — pocosd _ 20 sin oh
06* 1—2pcosb + @ 1— 2pcosf + p* 08
(13) B_kZ_(p+1)h+pcosp6-cos(p+21)6.
o0 0 o{1 — 2pcos 6 + 0°)

3. The case p = 1. We consider first the unit circle on which
of course f, g and h coincide, with 0 < 6 < 7. Then by (8) we find
that 0f/00 = 1/2cos (p + (1/2))8 cosec (1/2)4, and so local maxima occur
at 0 = 3,583,983, --- where B = 7/(2p + 1). We shall show that f(B) >
f(BB) > f(98) > --- and hence that f(B) is the largest value taken
by f(z, p) on [z| = 1. For, let n = 0 with (4n + 5)8 < 7. Then

f(@n +5)9) — f(ln + 1g) = | """ (6)a0

(4n+1)8
(4n+3)8 (4n+5)3
= ig cos ki cosec iﬁdﬁ + —l—g cos 0 cosec iz90l6'
2 Juntnp 28 2 2 28 2

.1 .1
sin —¢ sin
B 2r 2 B S2,~r 2 ¢

= de + o=
2 Jo . o\B 27 Jo

4 3 — = )&=

sm(n+ )2

(4n+3) B

sin <4n + 3+ %)g %

<0,

where we have substituted ¢ = (4n + 3)7 — 76/8 in the first integral,
and ¢ = — (dn + 3)7 + 7w6/B in the second.
Thus we obtain in view of (4), that for [z| = 1,

(14) f(z,p)§0p=10g<2sin 4p12>+i—i—c0s 2;:[_1 .



84 J. H. E. COHN

We now consider ¢,, and prove first that ¢, > d,,,. Define ¢ by
7 = 2(2p + 1)(2p + 3)d. Then

G, — G0, = log :Lg%{_%% +3 —{cos 2(2p + 3)rd — cos 2(2p + 1)rd)

1 T eos 2(2p + D(p + 1)o

= A\0), say.

Thus if A\Mg¢) is defined for 0 < ¢ <6 by the same formula with ¢
replaced by ¢, we find that as ¢ — 0,

2p+3 1

>0
2p + 1 p+1

Mg) — log

Also
N(8) = {(2p + 3) cosec 2p + 3)¢ — (2p + 1) cosec (2p + 1)¢} cos —— 7r¢
>0,

gince % cosec x is strictly increasing in (0, 7/2).
Thus M0) > 0, and so

(15) Op > Opyy »
Also as p— « we find that

. ° 1 rT
g, =1lo (2s1 T > 2 cos
n =08 n4p+2)+zl|"rco 2p + 1
= log + (1)+ﬁl+2pli{cos T _ }
2p 1 T or 2p + 1

Thus we find, since o, = 1/2, that for all p

(16) % > g, > 0.4719 .

4. The case p < 1. For p <1, we consider first p =1, where
the situation is slightly different from the remaining values of p.
Using (11) we see that if p = 1, then for fixed p, & has turning values,
regarded as a function of 4, only for # = 0,60 =7 and 2 cosd = p.
Using (12) we find that both § = 0 and 6 = # give minima, and so
for each p<€(0,1) we find that
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/1 1.\ 1
Me 1) = p($logl+ 20) = 1,
with equality if and only if 2 cos @ = p. Thus we have b, = 1/2 with
equality attained at every point of the arc |z — 1] =1, |z]| < 1.
For p = 2, the situation is quite different. Clearly whatever b,
with turn out to be, there will be equality in (3) for z = 0. But for
0 < p < 2/7, we find using (5) and (7) that

cos(p + » + 1)0

Iz, p) = 2 +1

P+
1 ”( _7
<< 3 ) =7z < 0p by (16) .
Thus the maximum of h(z, p) occurs in the closed annulus 2/7 <
o=1.
Again consider a fixed value of p < 1. By (11) the greatest
value of h, regarded as a function of 4, occurs at a solution of sin (p -+

1)0 = p sin pb. = 0 is impossible since then #h/06* > 0 by (12) and
= 7 can be neglected since then by (5) and (7) we get
” 1 1
h(— p, — 0 (== _<-<o,.
(—o,p) = Z +T+1( 1) ST T3

A glance at the sketch of y = sin (p + 1)x/sin px for x<(0, 7),
shown in Figure 1, reveals that there are precisely p other values of
0 to consider, since it is readily shown that each branch of the curve
is monotone strictly decreasing. Again we consider the sign of 9°h/062.
Since p < 1 we find that for given o, the intersection of y = 0 with
the rth. branch of the curve satisfies

2r — 1 rT

<O < —,
2p + 1 »+1

whence pde((r — Dz, rm) and (p + 1§ e((r — (1/2)7, rr). Thus at
such a point we find from (12) and substituting for p,

h _ sm pﬁ

o'

{sin pd cos (p + 1)§ — psin 6}
and so the second factor is negative. Thus 0%°4/06* < 0 only if sin pd >
0, i.e. if r is odd. Moreover at a local maximum we have using (13)

_ sin pf
(p+ 1)sin @

Thus if 6 < 7/2 we we find that except on the first branch ¢ > 2z/p
and so
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y=Sin(@+x
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since © cosec x increases over (0, 7/2).

Thus we need only consider the first branch. Let k(o) be the
value taken by Az, p) with pe(0,1) and 6 defined by psinpf =
sin (p 4+ 1)0, 6 e (0, w/(p + 1)). Then

dk _oh | ok [do

a7 do o0  96/do  dp
~(p+1)k+_1_sinpt9
0 o sing
Thus

p{pé% (o + Dep = (S 00)) 4 (sn (04 1)

>0,

since both (sin p8)/(sin §) and (sin (p + 1)0)/(sin pd) decrease over (0,
7/(p + 1)). Therefore

d(i){pm Zlu;} f"”“doi,{ﬁ’ 1+ l)k} >0,

and so p*** dk/dpo increases. Butas p— 0, 0— 7/(p + 1), and so using
(17) we see that o***dk/do — 0. Thus for o > 0, dk/dp > 0, whence
L increases over (0,1). Thus for all such z, h(z, p) < k(1) = 0, with
equality if and only if z = expin/(2p + 1). This concludes the dis-
cussion of this case.

5. The case p = 1. We find that

0
00

and so if p=2,1/2log (1 — 20cosf + 0°) + pcosd <log (0 — 1) + p,
whence for p = 2,

1 . 2 _ P*'sinf(2 cos d — o)
{ log (1 2pcos0+p)+pcos0}_ T 20cosd 1 0

g(z, p) = 0~ {-l log 1 — 20cos 0 + 0% + Z " cos 7"6'}

{log (0 — 1 + S} = 960, ).

Also g(p, 2) is decreasing for p > 2, for by (10) we find that

dg(0,2) _ — 21, p—2
= go—1) — :
do o oo — 1)
But we now see from the definition of g(z, p) that

1
p+1

go,p+1) = +%mAm
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and so by induction we see that g(o, p) decreases for p = 2 for each
p =2, Thus

(18) for p =2 2,p =2 g(z, p) <92, »),

with equality only for z = 2.

Consider first the case p = 1. If p £2, we find that for given
0,9 is greatest when 2cosfd =0, or gz, 1) =<p/2<1 for p<2.
For 2 < o, we know that g(z,1) < g(o,1) = p~*log (0 — 1) + 1, and it
is easily seen that this expression has precisely one turning value,
and that a maximum, which occurs where (0 — 1)log (0 — 1) = o:
This gives o = 4.5911 and then g(p, 1) = 1.2785. Thus a, = 1.2785.

Secondly, consider p = 2. For p < 2 we have

0°9(z, 2) = % log (1 — 20cos @ + p°) + pcos b + %pz cos 26

= —;—‘02 + %pg cos 260, as before

=0,
where equality occurs only if 0 = 2 cos @ and cos 20 = 1 are satisfied
simultaneously; this does occur and at the single point z = 2. Thus
a, = 1.

Finally we consider p = 3, and then in view of (18) we need only
consider the annulus 1 < [z] £ 2. At a local maximum, we obtain
from (8), osinpf =sin(p + 1)4. In view of (9) ¢ = 0 arises only if
0 =1+ p™, since otherwise d°g/00” is positive. ¢ = 7 can be dismissed,
since by (10) a local maximum at such a point would give g < p™' <
1/3 < 0,, by (16). Referring to the figure, we find therefore that we
need to consider three cases

(@ #6=0forp=1+ p7,

by 0<O=7m/@p+ 1 forl=p=1+p7,

(¢) values of 8 between 7/p and 7 — w/(p + 1).

As before the final case can be dismissed, since at such a local

maximum we find from (10) that
_sin(p + 1)@
g I S
psin g
T
p»+1
—PFl T osec—T
mp p+1 p+1

p+1 icoseclﬁ
P 4 4

< p~' cosec

=

< %cosec irc = %-21’2 < 0, in view of (16) .
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Now in the second case, let m(0) be the value taken by g(z, p)
when o sin pf = sin(p + 1)0 and 0 <0 < 7/(2p + 1). Then using (8)
and (10) we obtain similarly to (17),

dm — pm , sin pf

19 —_ = ’
(19) do 0 * sin 0
and so

A [pprdml _ g d [ dm

dp{p dp} o d,o{‘odp * pm}

_ p,,i{sin (p + 1)0}/_@_{sin (0 + 1)6}
de sin ¢ do sin pd

> 0, as before.

Thus p”*' dm/dp increases as p increases from 1 to 1 + p~'. But
using (19) we see that when p =1,

T
+1

dm . T / .
— = — PO, + sin sin
dp PO 2o+ 1/ 2p

1
= — p0o, + — cosec
Po» T ip+ 2

> — po, + 2p + L/x
> p@2/x — o,) > 0, in view of (16).

Thus m(p) is an increasing function of p as p increases from 1 to
1+ p™, and in particular g(1 + p™, p) 2 g(2, p) for |[z2] <1+ p7
Thus we need only consider case (a).

Let

dp=fAL+ 07, D)
(20) = — logp + ﬁ, i(l + —l—Y
T 7 p/
p (1+p—1
= — logp + Eljgo t dt
plee 1

dt .
0 t—1

:—logp+§

Thus
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dt

L@+ gp41
Ay — dy = — log BEL [T EZ 2 1

0 t—‘ 1
tl’ l
14p—1

wprn—t §— 1

- —1o p+1+ 1 j1+ 1 }p+l+lo »+1
£ p+ 11 +1 £

14+p—1
_S P t? dt

e+ — 1

=_1 {1—}- 1 }Hl-I,say.
p+1 p+1

To estimate I we observe that for t > 1+ (p + 1),

af PN _(@+ ey, o1 0
dt<t—1) (t — 1) \# -1 p+1>> ’

and so

7= S1+p—1 e dt

0= — 1 g2

1 }p+2 1+p—1 dt
»+1 Sl+(p+1)~1?{

1 ip+1 D
- +2{1+ } { - }
v ) p+1 p+2 p+1

1 1 }P“
= 1+ ,
p+ 11\ p+1

> (p+ 1){1 +

and so

(21) dyiy < 4, .

From (10) we see that if 6 = 0, dg/op = — pg/p + (0 — 1), and
so it is easily verified that dg/dp > 0 at z = 1 + p™*, and that dg/op <
0 at z = 2. Thus there exists at least one turning value of g on the
real axis between these two points. At such a point g = po/p(0 — 1)

and so
¢ . _pog v 1
op* paoo P (0—1)
1 1 _g,

To—1 (o-1)

and so there is exactly one such turning value, and that a maximum.

Now let
(22) U, p) =gl + xp™, p),x=1.
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Then using (20) we find

?

po, p) = (1+ %) {log— SH1+ ;)r}

= (1+ %‘)—”{AP + logw + 3 {( N 79 -+ %M }
(e 2) e £ )
¥

—p 1+ep—1 P —1
) {AP + log  + S dt}
=t — 1

fl

(1 +
(e 2o e 2 )
= A,(x) + B,(x), say.

Now, (1 + x/n)" is an increasing sequence and by (21) 4, is decres-
ing. Thus A4,.,(x) < 4,(x). We shall show that B,,,(x) < B,(x) too.

We find that for s < «,

<1+%)p (1+ pj—l)pﬂz(joJrs)l’(jo+1—§—w)“’+1
< > (1 p+1> @+ (+1+s)

\

+1+x{1 x— 8 }—1’
_|_
p+1+s P+ px+s+1) + s+ sz

p+1+w{1_ p(x — s) }
p+14+s PP+ plx+ s+ 1)+ s+ sz

_P+p@s+1) 454w
P+ p@2s+ 1)+ s+

b

since (1 + €)™ > 1 — pe for every positive ¢. Thus
- ! —p—1 p+1
L+ 2) (14 2) > (14 2 (14 2
( P ( P ( 1 P+ 1)

for 1 £ s < x, and so B,(x) = B,.,(x).
We see therefore that

g(1+p—il—,p+1><g(l+%,p>§ap,

and S0 @,y < @y
Also, since pu(x, p) > p(z, p + 1), we see that

@, p) > pla) = lim p(a, p) = {4 + [smeds)
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where 4 = lim,_,, 4, Now from (20) we find that

4, = ——Iogp—i—zp.l—kzp.}—{(lJrl)T——l}
1 r 1 r p

Il

—logp+ﬁi+ﬁg l(lJr—S—y_ds,
T T Jop D

= —logp+ﬁ—l—+ S{(1+i>p—1}@,
T 0 D S
and so
4=+ gl(es — 1)s'ds = 1.895118 .

Now
#@) = — pa) + o
p(@) = — @) — a7,
and so u(x) has precisely one maximum, and at this point z(x) =

2™, with

xe" = 4 + st‘lesds =44 27" — e + Sws_2e”ds ,
1

1

or
S”s~zesds — ¢ — 4 =0.823164

whence # = 1.3472 and so ft,,. = 0.7423.

Thus we find that since pu(z, p) > ¢(x), we can always choose «
such that p(x, p) > 0.7423, and so a, > 0.7423. Thus as p increases
from 2 to oo, a, decreases from 1 to 0.7423.
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