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TESTING 3-MANIFOLDS FOR PROJECTIVE PLANES
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It is well known that a closed 3-manifold M contains a
(piecewise linearly embedded) essential separating 2-sphere if
and only if =;(M) is a nontrivial free product. In this paper
necessary and sufficient conditions, in terms of =:(}), are given
for the existence of a projective plane in M. If M is irre-
ducible this condition is that =;(M) be an extension of Z or
a nontrivial free product by Z;. In particular this provides
a criterion for deciding which irreducible closed 3-manifolds
are not P2-irreducible.

Piirreducible 3-manifolds have been studied in [2], [4]; if they
are sufficiently large then their covering spaces are also P*irreducible.
This property is not shared by irreducible but not P%irreducible
manifolds; in [9] such manifolds are constructed having non prime
covering spaces. This leads to the question as to which 3-manifolds
are irreducible but not P*irreducible.

0. Notation and definitions. We work in the piecewise linear
category. A 8-manifold M is a compact, connected 3-manifold. A
surface F' in M is a compact 2-manifold embedded in M.

We denote by U(X) a small regular neighborhood of X in M.

FclInt (M) is 2-sided in M if U(F') is homeomorphic to F x I.
M is irreducible if every 2-sphere in M bounds a 3-cell in M. M is
Pirreducible if M is irreducible and contains no 2-sided projective
planes. M is prime if it is not the connected sum of two manifolds each
different from the 3-sphere. (Here the connected sum M, £ M, is obtained
by removing a 3-ball in the interior of M, and M, and identifying the
boundary spheres under an orientation reversing homeomorphism.) F
in M is incompressible if the following holds:

(a) if D is a disc in M such that DN F = dD, then 6D bounds
a dise in F, and

(b) if F is a 2-sphere, then S does not bound a 3-ball in M.

A homotopy N is a manifold that is homotopy equivalent to the
manifold N.

Disjoint surfaces F' and G in M are pseudo parallel if there exists
an embedding of a homotopy (F x I) into M that has two boundary
components, one of which is mapped onto F, the other one onto G.
Finally, M is called #-trivial, if 7,(M) = 1.

REMARK. If the Poincaré conjecture is true, then pseudo parallel

139



140 WOLFGANG HEIL

is the same as parallel.

1. Preliminaries. Let S? P*® denote the 2-sphere and projective
plane, resp.

LEMMA 1. Let F be a closed surface, let M be an irreducible 3-
manifold.

(@) If F+ 8% P* then M is a homotopy (F x I) if and only if
M is homeomorphic to a line bundle over F.

(b) If M is nonorientable and w (M) = Z,, then oM consists of
two projective planes and M is a homotopy (P* x I).

() Ifn(M)=Z+ Z, then oM = QO and M is a homotopy (P* X SY).

Proof. Part (a) follows from [5, Proposition 1]. Part (b) follows
from [1, Theorem 5.1]. Part (c) follows from [11]: We map M onto
a circle such that the inverse image of a point is a projective plane P*
in M. Then, by (b), ¢l (M — U(P?) has as boundary two copies of
P? and is a homotopy (P? x I).

LEMMA 2. If M is irreducible and contains a 1-sided projective
plane, then M is P* (the 3-dim. projective space).

Proof. U(P? is the twisted line bundle over P?, with boundary
a 2-sphere. Since this 2-sphere bounds a 3-cell in M, the result follows.
The next lemma is due to J. Tollefson [13, Lemma 1]:

LEMMA 3. A mnon-irreducible closed 3-manifold M admitting a

fized point free involution T contains a 2-sphere S not bounding a
3-cell in M such that either T(S) =S or T(SY NS = @.

We will also need the following generalization of Tollefson’s
lemma.

LEMMA 4. Let M be a 3-mawnifold (with or without boundary)
admitting a fixed point free involution T. Suppose there exists a 2-
sphere in M that does mot separate M imto two components one of
which 18 w-trivial. Then there exists a 2-sphere S in M having the
same property and such that either T(S)NS = @ or T(S) = S.

Proof. Take a 2-sphere S in M with the following properties: S does
not separate M into two components one of which is z-trivial, T(S) N S
is a system of disjoint simple closed curves at which the intersection
is transversal, and the number n(T(S) N S) of components T(S)N S
is minimal. We show that either #n = 0 or there exists an S’ with
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the desired properties such that 7(S") = S'.

Suppose # > 0. Let D be an innermost disc on T(S), with 0D a
component of T(S)N S, (that is, int (D) NS = @). D separates S
into two dises D, D,. Let S,=DUD,S,=DUD, It is easy to
see that at least one of S, or S, does not separate M into two com-
ponents one of which is m-trivial. Suppose S, has this property. If
T(S,) = S,, we are done. If T(S) = S,, then a component S’ of dU(S))
(U is small wrt T) has the same property as S,, but n(7(S) N S’) <
#w(T(S) N S) (since the component 0D has vanished), a contradiction.

LEMMA 5. If M is closed and 7w (M) ~ Z, then M is a connected
sum of a homotopy 3-sphere and a S*-bundle over S'.

Proof. Write M~ M, % M, where M, is prime and (M) ~ Z,
(M, =1 (see §5). An irreducible manifold with fundamental group
Z is bounded (see e.g. [11]). Hence M, is not irreducible. Therefore
M, is an S’-bundle over S (see §5).

2. The closed case.

THEOREM 1. A closed irreducible 3-manifold M contains a 2-sided
projective plane if and only if w, (M) is an extension of Z or a non-
trivial free product by Z,.

Proof. Suppose M contains a 2-sided P?. Thus M is nonorientable
and we let p: M’ — M be the 2-fold orientable covering of M. Then
P?*c M lifts to an essential 2-sphere S*c— M’. If S? separates M’ into
M,, M, then 7,(M") = n,(M,) = 7,(M,), a nontrivial free product. (Other-
wise, if 7,(M) =1, say, from oM, = S* it would follow that S* is
contractible in M,). If S* does not separate M’, let & be a simple
closed curve that intersects S*® in exactly one point and let U =
US* U k). Then (M) = Z =+ m,(cl (M — U)).

Conversely, assume 7, (M) is an extension of Z or of a nontrivial
free product G by Z,. Let p: N— M be the covering of M associated
with Z or G, respectively, and let 7: N— N be the covering trans-
formation. By Lemma 5 and Kneser’s conjecture [12] there exists an
essential 2-sphere S* in N. Therefore, by Lemma 3 we can find a
2-sphere S — N not bounding a 38-cell, such that either T(S)N S = @
or T(S) = S. The first case cannot occur, since M is irreducible. In
the second case, p(S) is a projective plane in M that is 2-sided, by
Lemma 2.

3. The bounded case.
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THEOREM 2. Let M be an irreducible 3-manifold with (nonempty)
incompressible boundary. M contains a 2-sided P*? that is not pseudo
parallel to a component of oM if and only if = (M) is an extension
of a montrivial free product by Z,.

Proof. Suppose M contains a 2-sided P* that is not pseudo parallel
to a component of oM. Lift P* to S* in the 2-fold orientable cover
M of M, let T: M'— M’ be the covering transformation. If S*
separates M into M, M,, we have that T(M) = M,, T(M,) = M,, since
P?is 2-sided in M. If = (M) =1, say, then M, covers a submanifold
M,, having fundamental group Z,. By Lemma 1 (b), M. is a homotopy
(P* x I), hence P?* would be pseudo parallel to a component of oM,
a contradiction. Therefore, in this case, 7 (M') = 7, (M)=7,(M,), a
nontrivial free product.

If S* does not separate M’, then as in the proof of Theorem 1,
(M) = Zx«m(cl (M — U)). If mcl(M — U)) would be trivial, then
(M) = Z + Z,. By Lemma 1 (¢), M would be closed, a contradiction.

Conversely, suppose w,(M) is an extension of a nontrivial free

product G by Z,. Again, let N £, M be the covering of M corres-
ponding to G and let T be the covering transformation. By Kneser’s
conjecture for bounded 3-manifolds [6] there exists a 2-sphere S* in
N that separates N into N, N,, both not =m-trivial. By Lemma 4,
there exists a 2-sphere S that does not separate N into two components
one of which is zw-trivial and such that 7(S) = S (the case TSN S =
¢ cannot occur). By Lemma 2, S covers a 2-sided P* in M. If P*
were pseudo parallel to a component of dM, then lifting the corres-
ponding homotopy (P® x I) we see that S would separate N into two
components, one of which would be z-trivial, a contradiction.

PROPOSITION. Let M be irreducible and suppose w (M) is not Z,,
and not an extension of Z or of a nontrivial free product by Z,. Then
iof OM contains no P* (in particular, if M 1is closed) it follows that
M contains no P2,

Proof. If M is orientable and contains a P? then M = P3, by
Lemma 2. If M is nonorientable, let M’ be the 2-fold orientable
cover of M. If m,(M') + 0, then the sphere theorem [14] gives us
an essential 2-sphere in M’ and as in the proof of the preceding
theorems, we see that 7,(M’) = Z or a nontrivial free product. Therefore,
T,(M') = 0 and hence 7,(M) = 0. (In fact, M is aspherical.) But any
2-sided P*c M would be essential [1, Lemma 6.3].

REMARK. A 2-sided P?in M is incompressible in M. This follows
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from the loop theorem and Dehn’s lemma [10]. In particular 7,(P%) —
m,(M) is an injection.

4. A counterexample to Theorem 2 if M is not incompressible,
Let K be a solid Kleinbottle, T a solid torus. Choose n = 1 disjoint
dises D,, --+, D, on 0K and a disc D on 0T. Let M be the manifold
obtained from K by attaching n copies of T to K at D; and D (¢ =
1, .-+, n). Then M is irreducible and does not contain 2-sided pro-
jective planes (otherwise by the preceding remark, =, (M) would have
an element of order 2, but w,(M) = (n + 1)Z). However, the two-
fold orientable cover M’ of M has fundamental group 7,(M') = 2n +
1)Z, the free product of 2n + 1 copies of Z, and therefore 7, (M) is
an extension of the nontrivial free product 2n + 1)Z by Z,.

5. The general case. Suppose M is a compact 3-manifold such
that M contains no 2-gpheres. As in [8, Lemma 1] it follows that
if M is prime but not irreducible then M is a S*bundle over S'. If
M is not prime, then there exists a decomposition of M into a finite
number of prime manifolds

(%) M~M%M%---2M,,

(if M is nonorientable or with boundary see e.g. [3]). If K denotes
the nonorientable S*-bundle over S* then since K# K~ K#(S* x SY,
we say that the decomposition (#) is in normal form if at most one
M; ~ K. Then Milnor’s proof in [8] can be generalized to yield the
following:

PROPOSITION. Any compact 3-manifold M whose boundary contains
no 2-spheres has a unique normal decomposition () into prime mani-
folds. FEach summand M, is irreducible or S* x S* and at most one
M, ~ K.

In the decomposition (#) let m denote the number of prime mani-
folds which are not z-trivial (m < n).

THEOREM 3. Let M be a closed 3-manifold.

(@) If M contains a 2-sided P?, then w (M) is an extension of a
free product of 2m nontrivial factors or of a free product of 2m — 1
nontrivial factors one of which is Z, by Z,.

(b) If (M) is an extension of a free product of 2m mnontrivial
factors by Z, then M contains a 2-sided P°2.

Proof. Consider the decomposition (#). Let S;c M be the 2-
sphere at which M; and M,,, are amalgamated and let M/ be obtained
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from M, by removing the interiors of the 3-balls which are used in
the construction of the connected sum. We can assume that M N
M, =8G@=1 -+, n—1).

We first note that M contains a 2-sided P? if and only if one of
the M! contains a 2-sided P2 For, by general position we can assume
that PN U S, is a system of simple closed curves. If P*N S, = @
then an innermost intersection curve on S; bounds a disk on P* (since
P? is incompressible) and on S;. Replacing the disk on P?* by the
disk on S; and pushing it slightly off S;, we reduce the number of
intersection curves of P*N U S..

Second, we note that we can assume that in the decomposition
(#) no M; has trivial fundamental group i.e. that » = m. For otherwise
we consider the manifold M. obtained from M by deleting all the homo-
topy spheres M, which occur in (¥). Clearly, 7.(M.) = 7,(M) and M,
contains a 2-sided P? if and only if M does.

Now assume M contains a 2-sided P:. Let p: N— M be the 2-
fold orientable covering and let N; = p™*(M;). If N is connected then
7(N;) # 1, because otherwise 7,(M]) = Z,, and since dM] consists of
2-spheres only, M/ is orientable (Lemma 1(b)). But then M/ lifts
to two copies, hence N; would not be connected. Similarily, if N, is
not connected then no component of N; is w-trivial, because otherwise
M; would be z-trivial. Now each S;c M lifts to two 2-spheres S;, S7’
in N, and N is obtained from the N; by identifying N, and N,,, along
S;and S/ (¢ =1, -+, m — 1).

Construct a manifold N’ as follows. If both N, and N, are
connected, identify N, and N, along one 2-sphere only, say S.. Other-
wise identify N, and N, along both S; and S;. The result is a manifold
N®, If N, is connected, identify N and N, along S; only, otherwise
identify along S; and S}, ete. In this way we obtain a maximal
connected manifold N’ such that N is obtained from N’ by identifying
pairs of 2-spheres in ON’. Then 7, (N’) = G, x+++x G, (0 =k < 2m — 1),
where each G; is the fundamental group of a component of some N;.
We obtain N from N’ by adding (2m — 1) — k& handles S* x S*or K,
hence m(N) = G, *+++x G, x Z x---x Z is a free product of 2m — 1 non-
trivial factors.

Now P*c M, say 1 <j <m—1). Then M] is nonorientable
and N; is connected. Therefore by the above construction, =,(N),
is one of the groups G, in the above decomposition of 7,(N). Closing
the boundary spheres of N; with 3-balls we get a 2-fold covermg
N — M;, and it follows from the proof of Theorem 1 that 7r1(N ) and
hence 7,(N;) is Z or a nontrivial free product. This proves part (a)
of Theorem 3.

Now suppose 7,(M) is an extension of a product G of 2m nontrivial
groups by Z,. Let p: M— M be the covering associated to G. Then
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as above w, (M) = m,(M)* «++ »m(M)*Zx -+ xZ is a product of 2m — 1
groups, where each M; is a component of p~*(M]), for some j. (It is
possible that some =, (M;) = 1.) It follows from Kurosh’s Theorem
[7] that at least one factor, m,(M,) say, is a nontrivial free product.
If M, covers M], then either x,(M;) ~ m,(I,) or =,(M;) is an extension
of 77:1(1171) by Z,. In the first case M, can not be a handle and by
Kneser’s conjecture can not be irreducible, therefore this case can not
occur. In the second case we apply Theorem 1 to obtain a P in M,
and hence in M.

It should be noted that the hypothesis in case (a) of Theorem 3
can not be weakened: If M = (P®x S")#(S* x 8", then 7, (M) is not
an extension of a free product of 4 factors by Z,.

It is now easy to see how to obtain an analogous result for 3-
manifolds with incompressible boundary.
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