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A weakly closed algebra of operators on a Hilbert space
is reductive if every subspace which is invariant for the
algebra reduces. If %7 is a reductive algebra, let _# be the
von Neumann algebra genenerated by the projections which
commute with %7, If _¥ is properly infinite, or it _# has
a cyclic vector, then % is self-adjoint. If _¥ has no direct
summand which is abelian and of infinite uniform multiplicity,
then _“ is the commutant of 7.

I. Introduction. In what follows, 5% denotes a Hilbert space
(all our Hilbert spaces are complex). The term operator is used to
refer to a bounded linear transformation, usually on £, and operator
algebra or simply algebra means a weakly closed algebra of operators
which contains the identity operator. The algebra of all operators on
57 is denoted by ~(5#), and if & is a subset of ¥ (5#), &’
is the algebra of all operators which commute with .&”. Finally, an
algebra & on 57 is called reductive if every invariant subspace is
reducing. The study of reductive algebras was initiated by Radjavi
and Rosenthal in [10] where they extend to reductive algebras many
of the known theorems about transitive algebras (algebras with no
proper invariant subspaces). Certainly every self-adjoint algebra is
reductive, and, as Radjavi and Rosenthal point out, the major ques-
tion in the theory of reductive algebras is, are there any non-self-
adjoint reductive algebras? A negative to this question would solve
all the well known invariant subspace questions. In §2 of this paper
we study a reductive algebra .o by borrowing conditions from the
theory of von Nemann algebras to impose on the lattice of projections
in 7.

Following Dyer, Pederson and Porcelli [7], we call an operator
reductive if the algebra it generates is reductive. In §3 we use the
results of §2 to show that every reductive operator is the direct
sum of a normal operator and a reductive operator of a special kind.

II. The invariant algebra. Let .o be a reductive algebra.
The invariant algebra for .o, writted _# () or simply .7, is
defined to be the algebra generated by the projections P, where _#
ranges over all the invariant subspaces of .o, and P_, denotes the
orthogonal projection onto .. Since the P, are self-adjoint, _# is
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a von Neumann (self-adjoint) algebra. Further, each _# reduces .o,
so the P, are in &7’ and thus .# is a subalgebra of .o7’. In fact,
.“ is the largest self-adjoint sub-algebra of .©7’. For any algebra
it is true that .o~ is in .. But since our .o~ is reductive, _# is
in .o’ or _#’ contains .o"”. Therefore .o &. 7', and _#’ is the
smallest self-adjoint algebra with this property. Thus we must dis-
cover when &7 = _#’,

The following corollary to a theorem of Douglas, Pearcy, Herrero
and Salinas [5], [8] will be useful throughout this paper.

COROLLARY 1. If .7 is a reductive algebra and if P is a pro-
jection in the center of _#, them P is im 7" = (7).

Proof. If Q is the projection onto any invariant subspace of .o,
then since P and @ commute, ||P — Q|| = 1. It follows by [8, Corol-
lary 4.4] that the range of P is invariant for .o#’. But the same is
true of 1 — P, so P(5#) reduces .o’ and P is in ..

If .o~ is any algebra and if P is a projection in .%7’, then .o%
denotes the restriction of .o to the range of P. We call .o a part
of .o7. If &7 is reductive, then the weak closure of .97 is too, and
if P is central in _# (&), then (_#Z(%))p = #(7p). Our plan is
to break up the algebra .~ into parts of pure type and watch what
happens to the corrosponding parts of .o~. Recall that if « is one of
the symbols I1,, IT., III or I, with 1 < n < dim (5#), then there is
a possibly zero central projection P, in _# such that _%_ is of type
«. Further, these projections are pairwise orthogonal and sum to 1.
The pertinent definitions and theorems may be found in [9].

Before we can prove our first theorem we need some more nota-
tion. If » is a cardinal number, S~ denotes the orthogonal direct
sum of n copies of the Hilbert space 5%, and for 4 in &7 (5#), A™
denotes the operator on '™ which is a direct sum of n copies of
A. For an algebra .o on 57, o™ is the algebra on S#™ consist-
ing of all A™ with A in .o7. Finally, M,(%) is used to denote
the algebra of » x » matrices with entries in .o~ where the elements
of M,(.o7) act on 5#™ in the usual fashion. (If » is infinite, then
M,(»7) consists only of those matrices which represent bounded
operators.) Standard computations show that (/™) = M,(.7’) and
(M (7)) = 7',

THEOREM 2. If &7 1is a reductive algebra and if its invariant
algebra _# 1is properly infinite (P, = 0 if o« = II, or I, with n < o)
then &7 s self-adjoint.
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Proof. By [10, Lemma 2|, it suffices to show that .o is reduc-
tive every finite n. According to [4, p.298, Corollary 2] there is a
sequence {P;} of pairwise orthogonal projections in . # such that
2P, = I and P, is equivalent to I in the sense of von Neumann (P; ~ I).
A routine argument now shows that .97, as a subalgebra of _#’, is
unitarily equivalent to .oz*. From this it follows that for every
finite », o7 is unitarily equivalent to .7, The property of being
reductive is preserved under unitary equivalence, so .&7™ is reductive
for every finite n and theorem is proved.

For our next theorem, we need more terminology. If <7 is a
maximal abelian self-adjoint algebra, then we say the algebra <™
has uniform multiplicity n. It is well known that any abelian von
Neumann algebra <Z can be written as an orthogonal direct sum
& = Y P <&, where n ranges over a subset of the set of cardinal
numbers between 1 and the dimension of Y, and <%, is of uniform
multiplicity =.

Observe that if an algebra .o is not only reductive but self-
adjoint, then _# = .o’

THEOREM 3. If .7 is a reductive algebra, and if its invariant
algebra 7 contains no central projection P such that % s abelion
and of infinite uniform multiplicity, then &' = 7.

Proof. By Corollary 1, if P is a projection in the center of _7,
then P is also in the center of .o#’. It follows that

= D= () D(p)
= (cl (.5%))" @ (cl (7 p))

where cl denotes the weak closure. Thus it suffices to consider the
special cases in which .7 is of pure type. 1f .7 is type III, II.,
or I, with = infinite, then by Theorem 2, .o is self-adjoint and
S =LA

If 7 is of type II,, then by [9, Theorem 49}, there are orthogonal
projections P, and P, in _# such that P, ~ P, and P, + P, = 1. Thus
-7 is unitarily equivalent to the algebra <2 where &% = .o, and
7" is My(<#'). We know that _# is the largest self-adjoint sub-
algebra of .o7’. Therefore to complete this case, it suffices to show
that .7’ is self-adjoint but this will be true if and only if <Z’ is
self-adjoint. Suppose T is an operator on P,(5%) = %  which com-
mutes with <Z. The subspace _# defined by

A = {(x,Tx): xe 5}
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is invariant for <Z® and, since <#® is reductive _# reduces ZF?.
That is, for every Bin &% and z in 2¢", (B*)®(x, T») = (B*xz, B*Tx)
77 . This can happen if and only if TB*x = B*Tx. But x is arbitrary
in 57, so for every B in &&, T commutes with B*. Thus T* is in
&' and this case is complete.

If 7 is of type I,,2 < n < o, we can use the same argument
given above, only we need n equivalent projections instead of just 2.

There remains the case in which .7 is type I, that is, .7 is
abelian. Here again it suffices to look at special cases separatly.
Therefore we assume .7 is of uniform multiplicity » with =» finite;
say ¥ = Z#™ where <& is a maximal abelian self-adjoint algebra
on a Hilbert space .7, and 57 = .22 ™. Suppose T is an operator
which commutes with .. By Corollary 1, and the fact that .7 is
abelian, T commutes with the projections in .7 and so T is in #’.
If n =1, so that _# is maximal abelian, then _# = _#’ and we are
done. If n >1, then .’ = M, (<) and in particular T = (T;;)7 ;-
with each T;; in &. By [3, Theorem 2], there is a unitary operator
U in _#’ such that UTU* is in upper triangular form; that is,
UTU* = (S;;)f;=, with S;; in &# and S;; = 0 for ¢ > j. The algebra
UsrU* ={UAU*, Ae 7} is also reductive with invariant algebra
U7U* = 7. Therefore, by replacing .o by U U*, we may
assume that T itself is upper triangular.

Let 7" =T —T®™. T is in S’ since both T and T/ are. It
follows that _#, the kernel of 7’ is invariant for .o. But 7" has
all zeros in the first column, so _# contains all vectors of the form
(x,0,---,0), 2 in .%". The only projection in _# which leaves such
vectors fixed is 1. Therefore 7 = 27, T’ =0 and T = T\ which
is in 7.

A set S in &7 is cyclic for .7 if the set {Bx: Be.”,ze S} is
dense in 57, and a vector x is cyclic if {#} is a cyclic set. The
following theorem and its proof are closely related to a theorem of
Sarason [12].

THEOREM 4. If &7 is a reductive algebra whose invariant algebra
7 has a cyelic vector, then &7 1s self-adjoint.

Proof. Let A be any operator in .o and let
U={T:||(T— A"z;|| < et =1+ n}

be any basic strong neighborhood of A*. The function ¢ which maps
T to >r, (Tx,;, x;) is a positive, normal linear functional on ..”’. But
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. has a cyclic vector, so .#' has a separating vector, and by [4,
p. 222, Theorem 4] there is a vector #, in 57 such that ¢(T) = (T, x,)
for each 7 in ..#’. Let _# be the smallest subspace of 5% which
is invariant for .o and which contains x,. The subspace _# reduces
&7, so that A*(_#)c . and in particular, A*z, is in _#. Thus
there is a B in .7 such that || Bz, — A*x,|| < e. On the other hand

e > || Bz, — A*x|| = (B — A*)*(B — A*),, )
= 3 (B — 4)*(B — Az, w)

|B — A*w|[ .

k2

Il

I
ipMe

Therefore ||(B — A*)z;|| < ¢ for each 4, B is in U, and the theorem
is proved.

COROLLARY 5. If the invariant algebra 7 of a reductive algebra
7 has a cyclic set S of cardinality n < o, and if 7™ 1s also re-
ductive, then &7 1s self-adjoint.

Proof. .o7'™ has invariant algebra M, (.#), and if S = {®,, « -+, 2,},
then the vector (x, ---,x,) is easily seen to be cyclic for M, (7).
By Theorem 4, .o7™ is self-adjoint and so is .o

It should be noted that Corollary 5 is still true if # is infinite
and the existance of the cyclic set S is not necessary. In this situa-
tion, .7 (.or™) is properly infinite so by Theorem 2 .o7™ is self-adjoint
and so is ..

III. Reductive operators. In this section we are interested in
reductive operators—operators which generate reductive algebras. If
A is a reductive operator and .o~ is the algebra generated by A, then
we write .7 (4) for .7 (7). Porcelli, Pederson and Dyer [7] have
shown that every reductive operator on a separable Hilbert space is
normal if and only if every operator has a proper invariant subspace.
Ando [1] has proved that compact reductive operators are normal,
and Rosenthal [11] has proved the same result for polynomially compact
operators.

THEOREM 6. If A is a reductive operator on a Hilbert space 57,
then A canm be written as a direct sum A, @ A, where A, is normal
A, is reductive and _7 (4,) 1s abelian and of uniform multiplicity
Woo  Furthermore, {AY = {A)} @D {A,) and all the invariant subspaces
of A, are hypervariant (invariant for {A.)).
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Proof. Let P, i =1,2,3 be the projections in the center of
# = .7 (A) such that _% has no central projection @ for which
(e = S is abelian and of infinite uniform multiplicity, .7, is
abelian and of uniform multiplicity W, and %, is abelian and has
no direct summand of countable uniform multiplicity. We let A,
be restriction of A to the range of P,. Clearly A=A P AP A,
each A; is reductive, and the invariant algebra .#(4,) is _%.
All the projections in %, have nonseparable ranges, so A, has no
nonzero separable invariant subspaces. On the other hand if = is a
nonzero vector in the range P, then the smallest subspace which
contains & and which is invariant for A, is separable. Thisis a con-
tradiction unless the direct summand A4, is missing. Certainly 4, is
in {A,}, but by Theorem 8, {4} is the self-adjoint algebra .7 (4,),
so that A7 is in {4} and A, is normal. Corollary 1 tells us that the
projections in .7, are also in {4,}”, so that all the invariant subspaces
of A, are invariant for {4,}’. Finally, P, is in the center of {4}, so
{4 = (A} {4}

The following corollary is a consequence of the first few lines of
the proof of Theorem 6.

COROLLARY 7. If .o~ 1s a reductive algebra whose invariant al-
gebra has no abelian part of infinite multiplicity, then every operator
wn the center of &7 is mormal.

COROLLARY 8. Let A = A, P A, be a reductive operator written
according to its decomposition given in Theorem 6. A subspace _#
18 hyperinvariant for A if and only if #7 = # @ 7 where _#; s
the range of a spectral projection for A, and _#, is invariant for A,.

Proof. Since {A) = {A,} D {4.}, a subspace .~ will be hyper-
invariant for A just in case it is the form _# P . _+# where _#; is
hyperinvariant for A;. We know that all the invariant subspaces of
A, are hyperinvariant, while the normal operator A, has the ranges of
its spectral projections for its hyperinvariant subspaces [5].

COROLLARY 9. A monscalar reductive operator A which has an
snvariant subspace, has a hyperinvariant subspace.

Proof. Write A as A, P A, according to Theorem 6. The oper-
ators A, and A, satisfy the conclusion of this corollary so A must
also.

IV. Remarks. A special kind of reductive algebra which is of
particular interest in the transitive algebra—an algebra with no proper
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invariant subspaces [2].

If .o is a transitive algebra on an infinite dimensional Hilbert
space, then the invariant algebra . (.97) is the algebra of all multiples
of the identity, which is an abelian algebra of uniform multiplicity
equal to the dimension of 5. Even to show that the commutant
of a transitive algebra is the invariant algebra would solve the hyper-
invariant subspace question [6]. Therefore it is not surprising that
we have learned nothing about reductive algebras with abelian invar-
iant algebras of infinite multiplicity.

There are, however, other special reductive algebras which offer
hope. Must a reductive algebra with an abelian invariant algebra of
finite uniform multiplicity be self-adjoint? What if the invariant
algebra is type II,? The case in which the invariant algebra is type
I,, n finite, is very close to the abelian case, and one would expect
the difficulties from the latter to carry over to the former.
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