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Let S be the space of all complex sequences A such that
if £ is a complex number and | z | < 1 then ^ Anz

n converges.
We present three characterizations of the linear transforma-
tions from S to S which have matrix representations. We
also characterize the linear transformations from S to the
bounded sequences (or to the convergent sequences) which
have matrix representations. The characterizations are in
terms of natural topologies for the spaces.

These results are a blend of Kothe and Toeplitz' much quoted
study [3] of complex sequence spaces, Haplanov's beautiful characteriza-
tion [1] of those matrices which transform S to S, and some rather
natural norms for S which have been used by V. Ganapathy Iyer [2]
in his study of entire functions.

Kothe and Toeplitz study complex sequence spaces, matrices, and
linear transformations having a kind of continuity which is independent
of norms. A space is said to be normal provided that if x is in the
space and | yn | ^ | xn |, n = 0,1, , then y is also in the space. Kothe
and Toeplitz show that a continuous linear transformation from a
normal space to a normal space has a matrix representation, and con-
versely, provided that each space contains all the "finite" sequences.
Our space S is normal and the space of bounded sequences is also
normal. The continuity criteria used in our theorems (statement (2)
in each) are special cases of the continuity condition of Kothe and
Toeplitz. It follows from their work that the existence of a matrix
for a linear transformation L is necessary and sufficient for L to
have "analytic" continuity (see definition below).

Given a matrix transformation from S to S and a norm Nr (0 < r < 1:
if A is in S, Nr(A) = Σ*U \AP\ τp) for S, Haplanov's theorem provides
another such norm NB such that the transformation is continuous from
the normed linear space {S, Nr} to {S, NR}. Finally, to complete
Theorem 1, each linear transformation which is continuous relative
to some such pair of norms is represented by a matrix, even though
S is complete with respect to neither of the norms.

Our second theorem is like the first: the transformations are from
S to the bounded sequences (or convergent sequences).

In [6] Wilanski gives a result of a similar kind for convergence-
preserving transformations.
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For a topological approach to obtaining continuity for a trans-
formation from the existence of a matrix representation, see Wilanski's
Functional Analysis [5, p. 204].

The author is indebted to the referee for most of the references.

THEOREM 1. Suppose that L is a linear transformation from S
to S. These statements are equivalent:

(1) L has a matrix representation (there is a complex matrix M
such that if A is in S and n is a nonnegative integer then L(A)n =
Σ5UΛf *A4).

(2) If A is a sequence of sequences in S and A has limit 0
analytically (definition below), then the sequence {L(An)}~=Q has limit
0 analytically also.

(3) If 0 < R < 1 then there is a number r between 0 and 1 such
that L is a continuous transformation from the normed linear space
{S, Nr} to {S, NR}. (For p between 0 and 1 and A in S, NP(A) =

(4) There are numbers r and R between 0 and 1 such that L
is a continuous linear transformation from {S} Nr} to {S, NR}.

DEFINITION. If A is a sequence of sequences in S and / is a
sequence of analytic functions such that if n is a nonnegative integer
and \z\ < 1 then

/.(*) = Σ Ankz
k

and / converges uniformly with limit 0 on each closed subset of the
unit disc, then A is said to have limit 0 analytically.

HAPLANOV'S THEOREM. Suppose that M is an infinite complex
matrix. Then these statements are equivalent:

(1) If A is in S then M A is in S. ((M A)n = Σ?=o MnkAk.)
(2) There are numbers r and d such that 0 < r < 1 and d is a

positive integer such that if j and k are nonnegative integers and
k > jd + d then \Mjk\ < rk, and there is a sequence s in S such that

THEOREM 2. Suppose that L is a linear transformation from S
to the bounded sequences (convergent sequences). Then these statements
are equivalent:

(1) L has a matrix representation.
(2) If A is a sequence with values in S and has limit 0 analy-

tically, then {L(An)}~=0 is a sequence with limit 0 in the least upper
bound norm.

(3 ) There is a number r between 0 and 1 such that if 0 < R < 1



MATRIX REPRESENTATIONS FOR LINEAR TRANSFORMATIONS 387

then L is continuous from {S, Nr} to {S, NB}.
(4) There is a number r between 0 and 1 such that L is a

continuous transformation from {S, Nr) to the space of bounded sequences
(convergent sequences) under the least upper bound norm.

The matrix transformations from S to the bounded sequences
(convergent sequences) are characterized as follows [4]:

THEOREM A. Suppose that M is an infinite complex matrix. Then
these statements are equivalent:

(1) If A is in S, then M A is a bounded (convergent) sequence.
(2) Each column of M is a bounded (convergent) sequence and

there are numbers r and t such that 0 < r < 1 and if each of j and
k is a nonnegative integer then | Mjk | ^ trk.

The following notation and lemmas are useful in the proofs of
our theorems.

NOTATION. ΪX is the space of all sequences x such that Σ | xk \
converges, and N^ is its usual norm: if x is in lt then Nλ(x) —
Σ?=o l%l If each of x and y is a sequence, then x y is the sequence
such that if n is a nonnegative integer then (x y)n — xn yn

Cauchy's Inequalities. Suppose that A is in S, 0 < r < 1, and μ is
a number such that if \z\ = r then \Σn=oA.nz

n\ ^ μ. Then, for each
nonnegative integer ny \ An \ rn ^ μ.

LEMMA 0. If A is a sequence of sequences in S which has limit

0 analytically and B is the sequence such that

B(n)k - Bnk = max {\Anj\, j = 0, 1, , k) (n, fc = 0,1, . •) ,

then B has limit 0 analytically.

Proof. Let r be a number between 0 and 1. Let R be a number
between r and 1. Let ε be a positive number. Let m be a positive
integer such that if n is an integer exceeding m and \z\ ^ R then
1 ΣJ = 0 Ankz

k I < ε/(l — r/R). Let n be an integer exceeding m. By
Cauchy's inequalities, | Ank \ < εR~~k/(l — r/R), k = 0,1, . For each
nonnegative integer k let j k be a nonnegative integer such that j k ^
k and Bnk = \A(n, jk)\. If k is a nonnegative integer, R~k ^ R~jk.
Consequently,
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k=0 k=0

< Σ 2 2 r 6 .

k=o l — r/E

LEMMA 1. Suppose that A is a sequence (of sequences in S), A
has limit 0 analytically, and C is the sequence such that if each of
n and k is a nonnegative integer then C(n)k — Cnk = \Ank\. Then C
has limit 0 analytically.

Proof. This follows immediately from Lemma 0.

LEMMA 2. Suppose that A is a sequence, A has limit 0 analytically,
and s is in S. Let C be the sequence such that if each of n and k
is a nonnegative integer then C(n)k = Cnk = Anksk. Then C has limit
0 analytically.

Proof. Let r be a number between 0 and 1 and let R be a number
between r and 1. Recall the Cauchy-Hadamard characterization for
S: the sequence x belongs to S only in the case that limsup% |#J1/W ^
1. Therefore there is a number t such that if it is a nonnegative
integer then \skr

k\ < tRk. Then, if n is a nonnegative integer and

k=Q

1 Λ I %h I
fc=0

so that by Lemma 1, C has limit 0 analytically.

LEMMA 3. If A is a sequence which has limit 0 analytically, d
is a positive integer, and C is the sequence such that if each of n and
k is a nonnegative integer then C(n)k = Cnk — A(n, kd + d), then C
has limit 0 analytically. Furthermore, if 0 < r < 1 and R = rlld then

Proof. Let r be a number between 0 and 1. Let R be rίld and
let e be a positive number. By Lemma 1 there is is a positive integer
m such that if n is an integer exceeding m then Σ^=0\Ank\Rk < r ε.
Let n be an integer exceeding m. Then, if \z\ <; r,

- Σ \A(n, kd + d)\R-dRkd+d

k=0
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and

Nr{Cn) ^ R~dNR(An) = jNR(An) .

LEMMA 4. Suppose that 0 < a < 1, R = α2, s is m S,
sk ^ 0, & = 0,1, • Then s2 in S and NR(s2) ^ Na(s)\

Proof.

NR(s>) == NAs2) = Σ sl(ay = Σ *.-.e.a-
0

LEMMA 5. Suppose that 0 < r < 1 and A is in S and B is
the sequence such that if n is a nonnegative integer then Bn =
max {| Ak |, k = 0, , n}. Then

Nr(B) ^ Nr(A)/(l - r) .

Proof.

= Nr(A)/(X - r).

Proof of Theorem 1. (1 —> 2) Statement (2) follows statement (1)
as a consequence of Kothe and Toeplitz' Satz 2, §8 [3, p. 208]. Lemma
1 (above) is useful in showing that our "analytic" continuity is equi-
valent to their continuity. Alternately, one can cite a general theorem
concerning FK spaces [5, Cor. 5, p. 204], or else one can use Haplanov's
Theorem and Lemmas 0,1, 2, and 3.

(2—>1) Statement (1) follows from (2) as a consequence of Satz
7> §6 [3, p. 207]. This can also be done by modifying the argument
under the heading (4-->l) below.

(1 —> 3) Let R be a number between 0 and 1, and let M be the
matrix representation for L. Let s be the sequence such that if n is
a nonnegative integer then sn = Σ?=o I Af»*| By Haplanov's Theorem,
s is in St and there are numbers q and d such that 0 < q < 1 and d
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is a positive integer such that if j and k are nonnegative integers
and k>jd + d then \Mjk\< qk. Let r be a number between q and 1
and between Ruu and 1.

Let A be in S and suppose that each of B and C is a sequence
such that

5 # = max{| ^ [,i = 0,1, ---n] and C» = J S ^ f a = 0,1, .-•)

Each of B and C is in S, and, by Cauchy's inequality and Lemmas 4, 3,
and 5,

n=0 k=0

°° nd + d

^ Σ Σ \M.t

^ ±snBni+dR" + Σ Σ ^ Ί Λ l i e "
oo -ί oo

< V <? 7?nl2C! T?nt2 -4- x V I A
= Z-k ton*" K^n±x' iΓ — ^ J-l I -Ί&

+ Nq(A)/(l - B)

Nq(A)/(l - R)

+ Nr(A)/(l - R)

L is a continuous linear transformation from {S, Nr} to {<S,

(4 —> 1) For each nonnegative-integer pair {j, k) let Λfyfc be L(δk)j.
((dk)j = 1 if j = &, (5fc)j = 0 otherwise.) Let I? be a member of S and
let n be a nonnegative integer. Recall that lλ is a subset of the
ring S and let Γ be that linear transformation from lλ to the complex
plane such that if A is in lt then T{A) — L(B A)n. If A is a sequence
of sequences in ^ and the sequence {iNΓ1(AJ )}7=0 has limit 0, then
{iSΓr(J?.Ay)}7=0 has limit 0, so that {NB{L{B.Aό))}°°=0 has limit 0 and
{T(Aj)}γ=Q has limit 0 (by Cauchy's inequalities). T is a continuous
linear transformation from lx to the plane. Consequently, there is a
bounded complex sequence b such that if x is in lt then Γ(α?) = ΣAΓ=O&A

Furthermore, if fc is a nonnegative integer then

bk = T(δk) = L(B-δk)n = 1,(5*.$*). = Bk-L(δk)n = MnkBk .

Let A be the sequence whose only value is 1. A is in S. Let
x be the sequence with values in lx such that if each of j and k is
a nonnegative integer then xjk — 1 if j ^ & and #ifc — 0 if i < k. The
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sequence {Nr(B-(xά - A))}JU has limit 0. So {NR(L(B (Xj -
has limit 0, and, by Cauchy's inequalities, {L{B xs)^f^ has limit
L(B-A)n = £(£)„: the sequence {Γ(α?y)};U has limit L(B)n. But, if i is
a nonnegative integer,

T(Xi) = Σ M/* = Σ δ* = Σ MnkBk ,

and

so L has a matrix representation.
Statement (4) follows immediately from (3). So we have proved

Theorem 1.

Proof of Theorem 2. (1 —> 2) One can again quote [3, Satz 2, p.
208] or quote [5, Cor. 5, p. 204] or simply apply Theorem A and
Lemma 1.

(1 —> 4) Let M be the infinite matrix such that if x is a bounded
(convergent) sequence then L(x)n = Σ*k=oMnkxk (n — 0,1, •••)• There
are numbers r and t such that \Mik\ ^ trk (j, k = 0,1, •)• Let A be
in S and let j be a nonnegative integer.

*t±r*\Ak\ = tNf(A).

Hence, L is a continuous transformation from {S, Nr} to the space of
bounded sequences (convergent sequences) with least upper bound
norm.

(2—>1) Suppose that A is a sequence having limit 0 analytically
and 0 < r < 1. Let e be a positive number and let m be a positive
integer such that if n is an integer exceeding m then

\L(An)k\ < e(l - r) (k = 0,1, •) .

Then, if \z\ ^ r and n is an integer exceeding m,

Consequently, the sequence {L(An)}n=0 has limit 0 analytically, so that
by Theorem 1, L has a matrix representation.

(4—>3) Let r be a number between 0 and 1 such that L is a
continuous transformation from {S, Nr} to the space of bounded sequen-
ces (convergent sequences) under the least upper bound norm. Suppose
that 0 < R < 1.
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There is a number K such that if A is in S then

\L(A)j\<ίKNr(A) 0 = 0,1, •••)•

So, if A is in S,

NR(L(A)) = Σ I Ir(A), IR> «£ ̂ J ? — iSΓr(A) ,

and L is continuous from {S, Nr} to {S, NR} .
Statement (1) follows from statement (3) by Theorem 1, and so

we are finished with the proof of Theorem 2.
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