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The side approximation theorem proved by R. H. Bing
and later improved by F. M. Lister states that a sphere S
topologically embedded in Euclidean three space can be e
approximated with polyhedral spheres ¢g(S) and A(S) such that
98— uG) cIntS, 9(Gi)) n Sc Gi, S— UH,) < ExtS, and
h(H;) n S c H; where {G;} and {H;} are respectively finite collec-
tions of disjoint s-disks in S. In this article the theorem is
strengthened by showing that the sets UG; and UH; may
also be taken to be disjoint.

The theorem is a generalization of R. H. Bing’s side approxima-
tion theorem [2], [3] and is used [7], [8] to distinguish certain de-
composition spaces from 3-manifolds.

The proof is divided into two main parts. In §2, Theorem 2.1
is reduced to Corollary 6.1 of §6 using techniques that are con-
sequences of Bing’s side approximation theorem. The proof of
Corollary 6.1 is the main topic of this paper. The proof depends
on Lemma 5.15 and Theorem 5.16 of §5 which give the combinatorial
structure of collections of components associated with the general
position of two 2-spheres in a 3-manifold. The proofs of Lemma 5.15
and Theorem 5.16 depend in turn on the concepts of separation com-
plexes and winding functions introduced, respectively, in §§3 and 4.

2. Reduction to geometry. The main result of this paper is
Theorem 2.1 stated below. The purpose of this section is to reduce
the proof of Theorem 2.1 to Corollary 6.1 of §86.

THEOREM 2.1. If S %s o 2-sphere in E°® and ¢ is a positive
number then there exists a finite collection {G,, ---, G,, H,, ++-, H,}
of disjoint e-disks in S and e-homeomorphisms ¢, h: S — E° such that

2.1.1) ¢g(S— UIntG) cIntsS,

2.1.2) ¢g(G) n ScInt G,

2.1.3) (S — Ulnt H) c ExtS, and

(2.1.4) MH)NScInt H,.

Furthermore, g(S) and h(S) may be chosen to be polyhedral and
disjoint.

Proof. It follows from F. M. Lister’s approximation theorem
[9] that there exists a disjoint collection of (¢/8)-disks C,, --+, C, in
S and (¢/3)-homeomorphisms g, k,: S — E°* such that g,(S — UIntC)c
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Int S, (S — UInt C;) c Ext S, ¢,(C) N S Int C;, h(C)) NS < IntC,,
and g,(S), h(S) are polyhedral. Let V, .-, V, be a collection of
disjoint open e-subsets of E*® such that C; U ¢,(C;) U h(C;) © V; There
is no loss in generality [4] in assuming that BdC, is tame.

The required disks G, H; will be disjoint subdisks of C; and the
required homeomorphisms g, » will have the properties that

9IS=UCi=g|S—UC,g(C)CV, kS — UC; =h|S— UC;

and n(C;) c V,. All of the adjusting is done in the V,’s one-at-a-time
and independently. Let 7 be fixed and to simplify notation let C =
C,and V=V, Let E, = h(C) and E, = ¢g(C). By standard scissor-
and-paste techniques we may assume that E,N E, = .

By the polyhedral approximation theorem [1] we may polyhedrally
approximate C to obtain a disk E’ such that 22N (S — Int C) = BdE' =
BdC, FcCV, Enh(S)cIntE, and E Ng(S)cIntE,. We may
assume that E’ and E,U E, are in general position. Let E” be the
component of E' — (E,U E) that contains BdE’. By filling in the
holes of E” with disks in ‘E, U E, pushed slightly to the sides of
E,U E,, we obtain a polyhedral disk E such that EN (S — IntC) =
BdE =BdC, EcC V, and ENh(S) = ENgS) = @.

Let 6 = (1/9)po(FE, E,U E)). By [5, Theorem 9.1] there exists a
tame Sierpinski curve X < C such that BdC < X and the components
X, X;, +++ of C — X each have diameter less than 6. By the poly-
hedral approximation theorem [1], there exist disks Y; such that
BdY;=BdX;,, D=XU (U Y;) is a disk, Diam Y, <9, Y;C V, X; N Y;=
@ if 1~ 35, and Y; is locally polyhedral modulo BdY,. It follows
from [5] that D is tame. Keeping points of E* — V, g,(S) — Int E,,
S — Int F, and A,(S) — Int E, fixed and moving no point as far as 9,
we first move E,U E U E, into general position with respect to D
with BdE = BdD and then with a move “parallel” to D, we push
((E, U EU E)N D) — BAE to the inaccessible part of X (see [6] for
more details).

The preceding adjustments enable us assume without loss of
generality that E, E, E, are polyhedral and disjoint, E,U E U E, is
in general position with respect to D with (E,U EU E) N D) — BdE
in the inaccessible part of X and

(2.2) no Cl X; intersects more than one of E, E, E, .

In order to apply Corollary 6.1 we add the ideal point o to E?,
let T be the 2-sphere (S — C)U D, U; be the component of S*— T
containing BdE,, and let E, E, E, of Corollary 6.1 be as above. Let
D,, D, be the singular disks of the conclusion of Corollary 6.1.

Since (E,U E)N D lies in the inaccessible part of X there is a
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natural open disk-with-holes B* in S associated with each Be &
namely, let B* be obtained from B by replacing each Y; B with
ClX,, If o*={B*|Be 2} then Df = U{CIB|Be 2*U &;} are
clearly singular disks, and D N D¥ = ¢ sinece D, N D, = ¢ and each
X, intersects at most one of E;, and E,. Some of the X;’s may pass
through elements of &,;; thus, D may not lie in the closure of a
complementary domain of S. In the next paragraph we adjust the
D}’s so that each does lie in the closure of a complementary domain
of S while retaining the property D N Df = @. We first observe
that no element of 2*, intersects an element of ;. For suppose
that X; c B*e g*,Ac &, and X; N A+ @ then, since X; is con-
nected and X;NY, =@ if k+j, there exists a component K of
X; N U, such that KN A+ @ and Y;NCl K= @. Since Y; C Band
E separates A from B in Cl U; by (6.1.2), Cl K intersects E. Thus,
Cl X, intersects both E and E, and this contradicts (2.2).

For 7=0,1, let f* be a map on E; with the property that
[ (E) = D} and f*|BdE, = 1. Let Ef be the component of

E, N (fHCLEXtS) N DY)
that contains BdE, and let E be the component of
E, N (f*)™Cl (Int S) N Df)

that contains BdE,. By the observations of the previous paragraph
there exist subsequences {X7}, {X}}, of {X;} such that Cl(U Xp)nN
Cl(U X}) = @ and f*((BdE]) — BdE) < Cl(U X3), f*((BAdE} — BdE,) C
Cl(uXj). Also, if C, is a component of E, — Ef then there exists a
unique X} such that f*(BdC,) < Xp. Let Ef = Cl(U {C,|f*(BdC,) < X3}).
We apply the Tietze-Extension-Theorem to normal space E/, closed
set BAE:, map f* | BAE¥, and disk Cl X} to extend f;*| Eff to Ef U Ef.
Since {Cl X}} is a null-sequence, extending f;*| E; to each E} in the
above manner and piecing together the resulting maps yeilds a map
fi: E,—Cl (ExtS). In the same way, we construct a map f/: E,—
Cl (Int S). The maps fy: F,— Cl (Ext S), f/: E, —Cl (Int S) have the
following properties f;|BdE; =1, fi(E, — BdE) N k(S — Int C) = @,
JIE, — BdE) N gy(S — Int C) = @, f/(E)CV, and most importantly
foy(Eo) N fll(El) = Q.

By the results of [5], for each positive number 6 there exist o-
maps «: Cl (Int S) — Cl (Int S), B: Cl (Ext ) — Cl (Ext S) such that SN
a(Cl (Int S)), SN B(C1(Int S)) are 0-dimensional and «a|(IntS) — N =
1, B|(Ext S) — N =1 where N is an arbitrary neighborhood of S. By
choosing § and N appropriately, in particular 6 less than (1/2)o(f; (&),
fI(E)), we select maps a, 8 so that af/(E) < Cl(Int S), af!|BdE, =
1, af/(E,— BdE) N ¢S — Int C) = @, af(E) < V, gf(E,) < Cl (Ext S),
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Bfs|BAE, = 1, Bf/(E, — BdE) N k(S — Int C) = @, BfJ(E) <V, and
afy(E) NS, gfs () NS are disjoint compact 0-dimensional subsets of
Int C.

Let G, H be disjoint disks in Int C such that af/(E) NS < IntG
and gBfJ(E) NS cInt H We apply Dehn’s lemma [10] to each of
af!(E) and Bf;(E,) in a small neighborhood and each to obtain real
disks E! and E;, respectively. We obtain the maps ¢, & of the con-
clusion by adjusting g, &, in V so that ¢,G) = E! and h(H) = EJ.

3. Separation complexes. In §2 we reduced Theorem 2.1 to
Corollary 6.1 of Theorem 5.16 in §§6 and 5, respectively. In this
section we develop the concept of a separation complex which is used
extensively in 884, 5, and 6. We begin by reminding the reader of
the definition of a collar and then defining a separation complex.

DEFINITION 3.1. If Mis a PL manifold and N is a PL manifold
in BdM then a collar of N in M is a PL embedding 2 of N x I into
M such that A(y x 0) =y, and A(N x (0, 1])  Int M.

DEeFINITION 3.2. If N is a compact, connected, orientable 2-mani-
fold in S* with nonempty boundary and U is a side of N (i.e., U
is the interior of a compact, connected 3-manifold M in S® such that
N c BdM) then a collar of N to the U side of N is a PL embed-
ding 2 of N x I into ClU such that A(y x 0) =y, and A(N X
0,1 c U.

DEFINITION 3.3. A separation complex is a finite collection K =
K, U K, U K, of sets in S° such that

(8.3.1) K, is a collection of disjoint PL simple closed curves, called
separation 1-simplices,

(3.3.2) K, is a collection of compact, connected, orientable, PL
2-manifolds with nonempty boundary, call separation
2-stmplices, such that

(8.3.2.1) if ce K, and ¢ is the collection of separation 1-sim-
plices of K intersecting o, then Bde = U {t|7red}
and each element of ¢ is called a 1-face of o,

3.3.2.2) if 0, 0,¢ K, then o, 0, is a union of faces of each,

(8.3.3) K, is a collection of compact, connected, PL 3-manifolds
with nonempty boundary, called separation 3-simplices,
such that

(8.3.3.1) if ce K, and ¢ is the collection of separation 2-sim-
plices of K intersecting ¢, then Bdo = U {r|r €5} and
each element ¢ of ¢ is called a 2-face of o; each
separation 1-simplex which intersects ¢ lies in Bdo
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and is called a 1-face of o,
(8.3.3.2) if 0, 0.€ K, then ¢, N0, is a union of 1 and 2 faces
of each.

DEFINITION 3.4. A subcomplex of a separation complex K is a
subcollection L < K that is also a separation complex.

LeEMMA 8.5. If K is a separation complex then L C K is a sub-
complex of K if and only if oe L implies ¢ < L.

NotaTioN. If K is a separation complex then |K| = U,.x 0, and
if oe K then & denotes the subcomplex of K consisting of ¢ and
its faces.

DeriniTiON 3.6. If K=K, UK, UK,, L=L, U L, U L, are separa-
tion complexes, then a function f: | K|—|L| is a separation isomor-
phism from K to L if f is one-to-one onto, ¢ ¢ K, implies f(0) € L;,
and o ¢ K implies f(Bdo) = Bdf(s). Note that the function floce K
need not be a homeomorphism or even continuous. In general ¢ and
f(0) are necessarily homeomorphic only if ¢ € K,, in which case they
are both simple closed curves.

DerFINITION 3.7. If K, K’ are separation complexes then K’ is a
subdivision of K if |K'| = |K| and each element of K is a union of
elements of K'.

Suppose K, L are separation complexes, f is a separation isomor-
phism from K to L, and K' is a subdivision of K. Does there exist
a subdivision L’ of L such that K’ and L’ are separation isomorphic?
In general the answer is no as Figure 1 indicates. However, for
suitably restricted subdivisions K’ the answer is yes.

DerFINITION 3.8. If K = K, U K, U K, is a separation complex then
a subdivision K’ = K] U K; U K, of K is a separation subdivision of
K if
(8.8.1) if oe K/ then there exists 7€ K, such that €7 or ¢ C
Int ¢ and separates 7,
(3.8.2) if oe K, then (a) there exists a 7e K, such that ¢ C 7
or (b) there exists a 7 € K, such that 0 c 7z, ¢ N Bdr = Bdo,
and o separates 7.
One easily verifies the equivalence of Definition 3.8 with the
following:

DerFiNITION 3.9. If K= K, U K,U K, is a separation complex,
then a subdivision K’' = K] U K, U K, is an elementary separation
subdivision of K if there are separation simplices o K} (t = 1 or 2),
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a1, 02, 03, 04, 05} L = {03, 07}
o1, 04 U o5}
FIGURE 1

7, T, € K/.,, and e K;,, such that

3.9.1) K' =(K - {z) U {zy, 7., 0}

8.9.2) T=r7,Ur7, and

3.9.3) 0 =7,NT,.
(Note that if 7 = 2, then each face of o lies not only in K, but also
in K,.) A subdivision K” of K is a separation subdivision if there is
a sequence K = K,, K,, --+, K, = K” such that, for each 7+ > 0, K is
an elementary separation subdivision of K,_,.

REMARK. The conditions of Definition 3.8 are often easier to
check then those of Definition 3.9. On the other hand, the conditions
of Definition 3.9 are easier to use in proofs about separation subdivi-
sions (e.g., see the proof of Lemma 3.10). Separation subdivisions
will be obtained in this paper by the methods outlined in Lemmas
3.10, 3.13, and 3.14.

LemmA 3.10. Suppose K=K, U K,U K;, L=L, U L, U L, are sepa-
ration complexes, f 1s a separation isomorphism from K to L, and
K = K/'UK, UK, s a separation subdivision of K. Then there
exists a separation subdivision L' = LU L, U L; of L and a separation
isomorphism f' of K' to L’ such that f'(o) = f(o) of e K.

Proof. By induction on the number of elementary subdivisions
required to change K to K’, it suffices to prove Lemma 3.10 when
K’ is an elementary separation subdivision of K. Let og,, 7, 7,, and
7 be as (3.9) with (Case A) ce K/ or (Case B) 0c K.

Case A. Let M be a collar of f((Bdr,) — o) in f(r) and let M’
be a 2-manifold-with-boundary in f{(7) obtained by connecting up the
components of M with 2-dimensional tubes in Int f(zr). The boundary
of M’ is f((Bdr,) — 0) UJ where J is a PL simple closed curve in
Intf(r). Let L' = LU L,U L, be defined by L, =L, U{J}, L, =
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(L, — {f@OH u{M’, Cl(f(r) — M')}, and L; = L,. Let f’ be defined by
f'IIK| — Intt = f||K| — Intz, f’|g is any one-to-one function onto
J, f'|Int 7, is any one-to-one function onto Int A’, and f’|Int 7, is any
one-to-one function onto (Intf(7)) — M'.

Case B. This case is handled in much the same way as Case A.
Let M be a collar of f((Bdz,)) — Int o) in f(z) and let M’ be a 3-mani-
fold-with-boundary in f(z) obtained by connecting up the components
of M with 3-dimensional tubes in Intf(zr). The boundary of M’ is
f((Bdz) — o) UJ where J is a connected PL 2-manifold in f(z) such
that J N Bdf(z) = BdJ = f(Bdo). Let L' = L;U L;U L; be defined by
L =L, L;=L, U {J}, and L;= (L, — {f(0)}) U{M’, Cl(f{r) — M)}
Let f’ be defined by f’||K| — Intz = f||K| — Intz, f'|Into is any
one-to-one function onto Int.J, f'|Int 7, is any one-to-one function onto
Int M’, and f’|Int<, is any one-to-one function onto (Intf(r)) — M’.

NotaTION. If K is a separation complex, L subcomplex of K and
K’ a subdivision of K then L’ denotes a subdivision of L induced
by K’ given by L' = {ce K'|c c |L|}. Note that if K’ is a separa-
tion subdivision of K then L’ is separation subdivision of L.

We are greatly indebted to the referee for the notation K mod W
in definition 3.12. This concept has simplified our earlier exposition
considerably.

DerFINITION 3.11. Let K = K, U K, U K, denote a separation com-
plex in S®and W a compact PL 2-manifold-with-boundary in S®. We
shall say that K and W are in general position if the following condi-
tions are satisfied:
3.11.1) WnlK|=@.
(8.11.2) If re K, and J is a component of W N |r|, then either
J is a component of BAdW, or J is a simple closed curve
in Int W and 7 and W locally cross each other at J.

(8.11.3) If o€ K,, then Bd W N Intc = @ and each component of
W N |o| intersects Bdo.

DerFINITION 3.12. If K and W are in general position, then we
define K mod W = K] U K] U K, as follows:

8.12.1) K/ = K,U {t|there exists a 7 e K, such that ¢ is a com-
ponent of Wn|t|}.

(8.12.2) K, = {ClY|there exists a ¢ ¢ K, such that Y is a com-
ponent of W N Into} U {Cl Y|there exists a e K, such
that Y is a component of |7| — W}.

(8.12.3) K; = {Cl Z|there exists a o ¢ K, such that Z is a com-
ponent of |¢| — W}.

It is not necessarily true that K mod W is even a separation com-
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plex (a 2-simplex might intersect the interior of a 3-simplex or a
1-simplex the interior of a 2-simplex). However, we do have the
following.

LEMMA 3.13. Let K denote a separation complex in S*® and W a
compact PL 2-manifold-with-boundary in S® such that K and W are
i general position. Then K mod W is a separation subdivision of
K if and only if the following two conditions are satisfied:

(8.18.1) If re K, and J is a (nonempty) component of WnN ||,
then J separates t.

3.138.2) If o€ K; and Y 1is a (nonempty) component of W N Int o,
them Cl Y separates o.

Proof. First check that K mod W is a separation complex.
Conditions (3.8.1) and (3.8.2) follow respectively from (3.13.1) and
(3.13.2).

LeMMA 3.14. Suppose the following are given:
(3.14.1) @ is a PL 2-sphere in S°.
(8.14.2) U s a component of S* — Q.
(8.14.3) K 1is a separation complex such that |K |C @ and
N{Intoloce K} U.
(8.14.4) W 1is a compact PL 2-manifold-with-boundary such that
WcU and W and K are in general position (3.12).
Then K mod W s a separation subdivision of K if condition (3.13.1)
18 satisfied.

Proof. We check that (3.13.2) is also satisfied. Let ce K,, Y be
a nonempty component of W N Int o, and J be a nonempty component
of BdY. By (3.13.1) J separates the member = of K, that includes
J. Thus, let (J) be the closure of a component of = — J. By (3.14.3),
(Bdz(J)) — Jc Q. For each component K of (Bdz(J)) —J we add
to 7(J) a disk in @ bounded by K, thus we obtain a singular 2-
manifold M(J) with boundary J. By (3.14.8), M(J) NInto = ¢ for
each component J of Bd Y. Thus, since the singular 2-manifold
(U{M(J)|J is a component of Bd Y}) U Y separates Int o, Y separates
Int 0.

4. Winding functions. In this section we discuss the concept of
a winding function which is used extensively in §§5 and 6. We begin
by introducding notation that we use later for labeling abstract trees.

DEFINITION 4.1. A tree labeling system is a collection I” of finite
sequences (a,, @, *++, @,) of nonnegative integers such that
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(4.1.1) (0) eI and is the only one element sequence in I,

4.1.2) if (a, @y +--,a, €l then (a, a, +++,a,_)el” if n=1,
and (a, @y, *»+@,_y, a, — V) el if a, = 0.

(4.1.3) A maximal element of I” is finite sequence (a,, @, *+-, @,) €
I" such that there does not exist a nonnegative integer
a such that (a,, @, +--a,, a)el.

(4.1.4) the lexicographical ordering of I' is 0, 00, 01, 02, -- -, 000,
001, --., etc.

(4.1.5) a tree labeling system for set B is a one-to-one function
from I" onto B.

NotATioN. If I' is a tree labeling system for set B then we use
lower case greek letters to refer to elements of I” and denote the image
of acl’" in B by b,eB. If a ={a,,a,-++,a,)el” and (¢, +-+,%;) is a
sequence of nonnegative integers such that (a,, -+, a,, %, «+-,9;) e’
then we write a,---a,el’, ait, -++i;€ 17, respectively, If a =
(ay, sy =+, a,) €l then |a] =0 if n is an even integer and [a| =1
if # is an odd integer.

In items (4.2) through (4.9), R is a PL 2-sphere in S° H is a
disk-with-holes in R, V is a component of S® — R, and M = h(H x I)
is a collar of H in CIV.

DEFINITION 4.2. A corner of M is h(E x [0,t]) where E is a
collar of BdH in H and 0 < ¢ < 1.

DEFINITION 4.3. A compact, orientable, PL 2-manifold S in M
partitions M if for each component Y of S we have YN BdM =
YN ({(BAM) - H) = BdY = ¢.

The next lemma shows that a partition of M induces a special
type of separation subdivision of the separation complex M = {J|J is
a component BAdH} U {H, BdAM — Int H} U {M}.

LEMMA 4.4. If S partitions M then M mod S = K, U K, U K,
18 a separation complex having the property that the intersection of
each pair of elements of K, is either empty or a single component of
S. Furthermore, there exists a tree labeling system I' for K, such
that H < Bdo, and o, 65 is nonempty of and only if either B = i
or o = Bi for some monnegative integer t.

Proof. Let Y be component of S and J a component of BdY.
Since BAM — Int H is a disk-with-holes and J < (BdM) — H, J separates
BdM — Int H. Thus, by Lemma 3.14, M mod S is a separation com-
plex. The other properties of M mod S follow by induction on the
number of components of S.
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DEFINITION 4.5. If S partitions M then we call i/ mod S the
separation complex supported by S in M.

DEFINITION 4.6. If R is a PL 2-sphere in S3 V is a component
of S* — R, H is a disk-with-holes in R, M is a collar of Hin C1V, S
partitions M, and K= K, U K, U K, is the separation complex supported
by S in M then function P: M — S? is a winding function with respect
to (M, S, H, R) if
(4.6.1) P|H =1 and P is the identity on a corner of M,
(4.6.2) if oe K then {P(r)|7 €5} = P(o) is a separation complex
and P|o is a separation isomorphism from & to P(o),
(4.6.3) if o e K, then Plc—(SU H)) c S*— Rand PleN (SU H))C
R,
(4.6.4) if 0,,0,€ K, and g,N o, is a component of S then P(s,—
(SU H)), Plo, — (SU H)) lie in different components of
St — R, and
(4.8.5) if 0,, 0,¢ K,, 0,% 0,, but P(g,— (S U H)) N Plo,—(SU H))+#
@ then for ¢ =0, or 1, P(o;, — (SU H)) C Int P(s,_;) and
P, N (SU H)) < Int Plo,_; N (SU H)).
We now establish several properties of a winding function.

LemMmA 4.7. If P: M— S® is a winding function with respect to
M, S,H, R), K=K, UK,UK, is the separation complex supported
by S in M, and I" is a tree labeling system for K, satisfying Lemma
4.4. Then it is tmpossible to have P(g;) C P(o,) where o = Biy ++++ 1,
for some positive integer n. In particular, P(o,) C P(0,) zmplws a=0.

Proof. Suppose the contrary, then there exist a smallest positive
integer n» with the property that there exist «, g€ I" such that a =
Bi -+ 1, and P(o,) < P(o,). By (4.6.3), (4.6.4), and (4.6.5) either
P(os;) © P(gg;,--5, ) or there exists a nonnegative integer 7,., such
that P(os,) < P(0gi,--ip6,,,)- Suppose P(og) C P(og.;, ) then since
n is minimal, we must have n = 2 and o4 = 04,4, ,. But by (4.6.5)
P(os N 04,) < Int P(64:5, N 04;), thus we have distinet 2-faces of oy,
pinched together by P contradicting (4.6.2). Hence we must have
P(og;) < P(0gi,i,.,)-

The above argument is repeated to P(c;) < P(0s,--,,,) to find a
nonnegative integer 4,,, such that P(o,;) < P(04,-i,,,i,,,), and then
repeated over again. Eventually a nonnegative integer 4,,, is found
such that P(04,5,) C P(0gi,.-,,,) and Bi ««» 1y, I8 maximal in 7.
One more application of the argument yields a contradiction.

LEMMA 4.8. If P is a winding function with respect to (M, S,
H, R) then
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(4.8.1) H — P(M — H) separates P(M) — P(BAM) from S®— P(M)
wn S* — P(BAM — H), and

(4.8.2) P(M) contains a collar of P(BAM — Int H) to the side of
PBAM — Int H) that contains a corner of M.

Proof. Suppose pq is an arc from pe S* — P(M) to qge P(M) —
P(BdM) that lies in S* — P(BAM — H). Let r be the first point of
pq that intersect the compact set P(M). Since r is a boundary point
of the 3-manifold P(¢) for some ce K, and pg N PBAM — H) = ¢ it
follows that reInt P(SU H)  R. By (4.6.2) and (4.6.4) since » is
the first point of intersection with P(M), » ¢ P(S). Hence re P(H) —
P(S) = H— P(M— H) by (4.6.1) and (4.6.3), and the proof of (4.8.1)
is complete.

Let I be the tree labeling system for K, in Lemma 4.4. The
collar required in (4.8.2) is constructed in P(M) by induction on the
elements of I". The set P(c,) — (U P(o,)) contains a collar N, of
Cl((BdP{c,))— R) in P(g,) such that N, contains a corner of M by (4.6.1),
(4.6.2) and Lemma 4.7. We may assume that N, N P(g, N S) is a collar
of BdP(g,N S) in P(o,N S). Let N, be a collar of Cl((BdP(s,)) — R)
in P(0o;)— (Uuxer,; P(0.) Where a € I'y; if and only if P(s,)— R CInt P(o,,)
by (4.6.2) and (4.6.5). We may assume that N, N PloyNS) is a
collar of BdP(g,; N S) in P(g,NS) and N, N P(g, N 0,) = N,; N Plo,Naoy).
The induction step from o, to o,; is similar. The required collar is
U{N.lael}.

The next lemma gives a lifting property for winding functions.

LEMMA 4.9. If P: M— S® is a winding function with respect to
(M, S, H, R), W is a compact 2-manifold such that each component of
W has nonempty boundary, W is in general position with respect to
R, Int W P(M) — P(BAM — Int H), and BAW < P(H) — P(S). Then
there exists a compact PL 2-manifold W in M and o function P': M —
S¢ such that
(4.9.1) P'|H=P H=1andif K= K, U K, U K, is the separation
complex supported by S in M then P’(c) = P(o) if 0K,
(4.9.2) W and K are in general position and if W, is a com-
ponent of W then WoNBdM = W,N H = BdW, = ©Q,
(4.9.3) K'=K mod W = KU K]UK/] is a separation subdivi-
ston of K,
(4.9.4) if ce K, then P'|c is a separation isomorphism from &'
to {P'(r)|te€d’},
(4.9.5) P’|W is a separation isomorphism from W mod (S U H)
to W mod R,
(4.9.8) if 0y, 0,.€ K, and 0, = 0, but P(o,) < P(0,) then there exists
o, € K, such that o, C o, and P(o,) < P'(a,).
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Proof. Let I' be the tree labeling system for K, of Lemma 4.4.
For oce K, let I'(0) = {aeI"'| P(o,) is a proper subset of P(c)} and
let W(o) = WN(Plo) — U{P(e,)|ael(0)}). It is clear that W =
U{W(o)|loce K} and W(s,) N W(o,) = @ if c.Nos, =2 by (4.6.5).
Also, W(o,) N W(0.,) = WN (P(e, N0 — U{Pop)|gel(0)}) = WN
(P(o, N0y — U{Pop)|Be(0.)}) by (4.6.4) and the fact that W is
in general position with respect to R. By hypothesis on W, each
component W;(o) of W(o) is a compact 2-manifold with @ = Bd W,(o)C
Int PconN(SU H)) c R. The 2-manifold W;(o) separates the 38-cell
bounded by R and containing W;(c): consequently, W,(o) separates
P(g). If t is a boundary component of W;(o) then there exists a
component Y of oN(SUH) such that ¢c Int P(Y)C R. Since
P(Y) is a disk-with-holes, t separates P(Y). It now follows by Lemma
8.18 that L(o) = L,(0) U L,(06) U Ls(0) = P(6) mod W(o) is a separation
subdivision of {P(z)|r €&} = P(0).

We use Lemma 3.10 to lift the {separation subdivision L(o) of
P(o) to 6. By Lemma 3.10 there exists a subdivision &, of &, and
a separation isomorphism P’|¢, from &; to L(o,) such that (P'|o,)(7) =
P(7) if 7 € 0,, and (P’|0,)| H=P|H. Proceeding inductively, we assume
that separation subdivision &, of &, and separation isomorphism P’|o,
from &, to L(o,) have been defined such that (P'|o.)(7) = P(r) if
T€d, Let ¢ be a nonnegative integer such that aie”, as we have
observed before WN(P(o,N0)— U{P(0s)|Bel(0)}=WN(P(O,NC)—
U {P(os)|gel'(0.)}) so by Lemma 3.10 there exists a separation sub-
division &); of &,; and a separation isomorphism P’|¢, from &, to
L(o,;) such that (P'|o,)(t) = P(z) if t€6, and (P'|0,)|0, N0 =
(P'10,)|0. N us. i

Let P'=Uuex, (P'10), W= Uaex, (P'|0)(W(0)), and K'=Uuecx, 0+
Properties (4.9.1), ---, (4.9.5) are straight forward consequences of
the construction. Property (4.9.6) follows since P{o,) C P(c,) implies
that P(g)) N W(o) = @ and the latter implies P(g,) is included in an
element of L.(o,) since P(g,) is connected.

5. Structure theorems. The purpose of this section is to prove
the combinatorial structure theorems (Lemma 5.15 and Theorem 5.16)
for components associated with the general position of two arbitrary
PL 2-spheres in E®. Throughout this section an arbitrary PL 2-sphere
R in S® is fixed. Also, a choice function g on the collection of non-
empty sets of simple closed curves in R is fixed. Some of the objects
defined below depend on R or g, but to save notation no special
attention is called to this fact.

DEFINITION 5.1. Let . be the collection of all 4-tuples (X, U,
q, m) such that
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(5.1.1) X is a compact, connected, PL 2-manifold in S* without
boundary and in general position with respect to R such
that if ¢ is a component (simple closed curve) of RN X
then ¢ separates X,
(56.1.2) U is one of the two components of S® — X,
(5.1.3) q is a point of X — R, and
(5.1.4) m is a component (simple closed curve) of RN X.
For a = (X, U, q, m) € & the existence of the following objects
is clear and we use the following notation.
(5.2) A, is the closure of the component of X — m that does not
contain gq,
(6.3) YV, is the component of S®* — R that contains the interior
of a collar of m in A4,
(5.4) B, is the disk in R bounded by m that contains a collar
of m in RNClU,
(6.5) C, is the closure of the component of A, — R that containg
m in its boundary,
(5.6) D, is the closure of the component of B, — C, that contains
m in its boundary,
(5.7 |al| is the number of components of 4, — R, and
(5.8) L, is the collection of all components ¢ of BdC, — BdD,
such that B,N D, = @ where b = (X, U, q, t).
Since C, separates ClV, and R is a 2-sphere, the following lemma
is easily established.

LEMMA 5.9 The sets C,, D,, and L, have the following properties:
(6.9.1) BdD, c BdC,,

(5.9.2) there exists a collar of BdD, in D, N ClU, and

(5.9.3) if BdC, — BdD, « @ then L, #+ O&.

The existence of the following objects associated with a =
(X, U, q, m) €.~ will be established by induction on |a| in Lemma
5.15. See Figure 2.
(5.10a) H, is a disk-with-holes in D, such that
(5.10.1a) m c BdH,, and BdH, c XN R,
(5.10.2a) there exists a collar of BdH, in H, N ClU,
(5.10.3a) BdH, is the boundary of a compact, connected, 2-
manifold J, in A,.
(5.11a) M, = h(H, x I) is a collar of H, in C1V, such that
(5.11.1a) R(BdH, x I) is a collar of BdJ, in J,,
(5.11.2a) M, intersects a component Y of XN V, if and only
if C1 Y intersects H,,
(5.12a) S, is a partition of M, and K, = K,(a) U K,(a) U K,(a) is
the separation complex supported by S, in M,
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(X, U,q,m)

FIGURE 2

(5.18a) X, is compact, connected, PL 2-manifold in S* without
boundary and in general position with respect to RU S,

such that
(5.18.1a) X, contains G, = (BdM,) — Int H,,
(5.13.2a) if ¢ is a component of (R U S,) N X, then ¢ separates
Xos
(5.18.3a) if t is a component of (X, — G,) N S, then ¢ separates

the component of S, containing ¢.

From (5.13.3a), the fact that (R — H,) UG, is a 2-sphere, and
Lemma 3.14 it follows that K, = K, mod (X, — Int G,) = K/(a) U K;(a) U
K(a) is a separation subdivision of K,.

(5.14a) P, is a function from S*® to S* such that

(5.14.1a)
(5.14.2a)

(5.14.32)
(5.14.42)
(5.14.52)
(5.14.62)

(5.14.7a)

P,|S*— (M, - H,) =1,

P,| M, is a winding function with respect to (M, S,,
H,, R),

P,| X, is a separation isomorphism from X, = X,
mod (RU S,) to X = Xmod R.

P.(G,) = J,,

P,(M)N (X, — M,) = @,

if o€ K,(a) then P,|o is a separation isomorphism
from ¢’ to {P,(r)|r€d’}, and

if 0y, 0,€ K;(@) and o, # o, but P,(o,) < P,(0,) then
there exists o, ¢ K/(a) such that ¢, < 0, and P,(c,) C
P, (0,).

LemMmA 5.15. If a = (X, U, q, m) € & where & 1is given by (5.1)
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then there ewxists a 5-tuple (H,, M,, S,, X., P,) that satisfies (5.10a),
(5.11a), - -+, (5.14a).

Proof. The proof is by induction on |a| given by (5.7). We use
the notation given by (5.1), ---, (5.8).

Suppose a = (X, U, q, m)e & and |a| = 1. It is clear that C,=
A,, D, =B, and BdC, = BdD,. Let H, =D, ,J, = C, and let & be a
PL embedding of H, x I into Cl1V, such that Ay x 0) = y, h(H, X
0,1 c V,, h(BAdH, x I) is a collar of BdJ, in J,, and h(H, x I)
intersects a component Y of X N V, if and only if ClY intersects H,.
Let M, = h(H, x I) and let S, = @. A one-to-one function P, given
by P|H, =1, P(G,) = J,, P(Int M,) = Int L where L is the 3-manifold
bounded by H, U J, and containing a collar of J, in ClU, is a trivial
winding function with respect to (M,, S,, H,, R). Let W=Xn (L—J,)
and apply Lemma 4.9 to P and W and let X, = WU (X — L) U G,
P,|M, = P’ where W, P’ are as in the conclusion of Lemma 4.9. It
is straight forward to check that (H,, M,, S,, X,, P,) satisfies (5.10a),
.+, (5.14a).

Inductively, we suppose that the 5-tuple (H,, M;, S,, X;, P,) exists
with properties (5.10b), ---, (5.14b) provided that |b] < k. Let a =
(X, U, q, m) e & with |a| = k. By Lemma 5.9.1 we have that BdD, =
BdC, or BdC, — BdD, = @ and we accordingly, break the induction
step into two cases.

Case A. BdD, = BdC,. In this case we do not need the indue-
tion hypothesis and we proceed formally as above for |a| = 1. That
is, we let H, = D,,J, = C,, M, be a collar of H, in C1V,, S, = @, L
be the 3-manifold bounded by H, U J, and containing a collar of J,
in C1U, and let X,, P, be obtained by the same application of Lemma
4.9 as was used above.

Case B. BdC, — BdD, # @. See Figure 3. By Lemma 5.9.3,
L, # @ and we let m,=p(L,) where g is the choice function mentioned
in the first paragraph of §5. Let b = (X, U, ¢, m,). Since m, C A4,
we have that A, 4, and |b| < |a| = k. By the induction hypothesis
a 5-tuple (H,, M,, S,, X;, P,) exists with properties (5.10b), - - -, (5.14b).
By (5.6), m < D,. by (5.10b), (5.6), (5.9), H, C D, C B,: and by (5.8)
B,ND,=@. Hence, D,NHy, =@, mNH, =@ and M,Nm = Q@ by
(5.11b). Also, by (5.14.1b) and (5.14.8b) we have that m < X,. Let
g be a PL homeomorphism of S* onto S°® that is fixed outside a thin
shell neighborhood of M, and pushes M, across R to S* — C1V,. Since
D,NH,=®»,mNH, =@ it follows that no point near D, is moved
by g and g(m) = m. Let ¢ = (¢9(Xy), 9(U,), 9(q;), m) where U, is the
component of S® — X, such that H, N Cl U, contains the collar of BdH,
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b=(X, U, q,m,)

FIGURE 3

given in (5.10.2b), and ¢, = (P,| X;)"*(g). Since g removes components
of RN X, in particular m,, and by property (5.14.3b), it follows that
le] < |b] <|a] = k. By the induction hypothesis, a 5-tuple (H,, M,,
S,, X,, P,) exists with properties (5.10c), ---, (5.14¢).

Let H, = H, M, = M,, and J, = P,g~'(J,). By pushing M, into a
smaller neighborhood of H, if necessary, we may assume that (5.11.2a) is
satisfied and ¢g7'| M,=1. Properties (5.10a), (5.10.1a), (5.10.2a), (5.10.3a),
(5.11a), (5.11.1a) are consequences of the corresponding properties for
¢ and the facts that P,(M, =1 and ¢g7'|M, = 1.

It follows from (4.7) that P,(M, misses the interior of a collar
of m in Cl1(S*— V,). Since H, is in the same component of S°® —
P,(BdM, — H,) that contains the interior of such a collar of m in
C1(S®* — V), it follows from (4.8.1) and (4.7) that H, N P, (M, = @.

Let 0 € K,(c). Since g~ is a homeomorphism that only moves points
near H, into M, and H, N P,(M,)= @ we have by (5.14.2¢), (4.6.2), (4.6.3)
that ¢~'P.|o is a separation isomorphism from & to {97'P,(ct)|t €6} =
9 'P,(o) such that g7'P,(cNS,)Cc R— H,. Let W=S,UH, and let
@ be the 2-sphere obtained from (R — H,) U G, by pushing G, slightly
away from M,. Since ¢g7'P,((Bdo) — S,) C X, and X, satisfies (5.13b),
(5.13.2b), (5.13.3b) it follows that each component ¢ of ¢~'P,((Bdo) —
S,) N W separates the component of W containing ¢ or ¢t € BAW, and
t separates the {2-face of ¢g~'P,(¢) containing ¢{. By Lemma 3.14
applied to @ and W, g~'P.(6) mod W is a separation subdivision of
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g~'P (o). By Lemma 3.10 we assume without loss of generality that
S(o) is a compact PL 2-manifold in ¢ such that if Y is a component
of S(g) then YNBdo = YN (Bdo) - S,) =BdY=# @ and ¢g'P,(Y)
is a component of W N g~'P,(0).

Let S,=8S, U (U {S(o)|0o € Ki(c)}). It is clear that S, satisfies (5.12)
and g~'P,|o € K,(a) is a separation isomorphism from & to {g7'P.(7)|t € 7}
that satisfies property (4.6.5).

Let P = Pyg'P,|M,. We now show that P is a winding function
with respect to (M,, S,, H,, B). Property (4.6.1) is satisfied since P,
satisfies (4.6.1), and ¢, P,, as pointed out previously, are the identity
on a neighborhood of H,. Property (4.6.2) is established by obser-
ving that, by the way K, was constructed in the previous two para-
graphs, if oe¢K,(a) then M,NIntg'P. (o) =2 or ¢g'P,o) =|L]|
where L is a subcomplex of 4, for some o, K;(b) (G, is the
induced subdivision of &, by K;). In the former case, (4.6.2) follows
gince P,|S* — (M, — H,) = 1. In the latter case, (4.6.2) follows by
(5.14.6b). Properties (4.6.3) and (4.6.4) are easy consequences of the
corresponding propertis for P, and P, and the way S, was constructed
in the previous two paragraphs. We now establish property (4.6.5).
Suppose ¢, 0, € K,(a), 0, # 6, and P(o, — S,) N P(o, — S,) # @, then
(a) MynIntg—*P,(o;)) =@ for i =0,1 or (b) ¢g7'P.lo;) c M,, M, N
Intg7'P,(0,_)) = @ for i+ =0,1 or (¢) g*P.(c;) T M,,2=0,1. In Case
(a), (4.6.5) follows from the corresponding property for P, and the
fact that ¢~ is a homeomorphism. In Case (b), P(o; — S,) < Int P(5,_))
since P(o; — S,) is connected and fails to contain any point in BdP(o,_;)
by (5.14.5b). In Case (c), either (c.l1) there exists a o* € K,;(b) such
that 9g~'P,(0;) < o* for 1 = 0,1 or (c.2) there exists distinct o7, of ¢
K,(b) such that ¢g~*P,(0;) < of. In Case (c.1), (4.6.5) follows from the
corresponding property for P, and the fact that ¢~' is a homeomor-
phism and (5.14.6b). In Case (c.2), (4.6.5) follows from (5.14.7b) since
we must have P,(c}) C Pyoif,) for © = 0 or 1, by property (4.6.5) for P,.

Let W= XnP(M,) — PBdM, — Int H,)). Apply Lemma 4.9 to
P and W to obtain W and P’ satisfying (4.9.1), «--, (4.9.6).

Let X, = WU G, U (X — P'(M,)) and let P, be given by P,| M, =
P and P,|S*— (M, — H,) =1. We now varify the remaining pro-
perties of the conclusion of the Lemma 5.15 to complete the induc-
tion step. Properties (5.14.1a), (5.14.2a) are clear by (4.9.1) applied
to P’. Property (5.14.3a) follows from (4.9.5) applied to P’, the defini-
tion given previously of J,, and the fact that P|S®*— (M, — H,) = 1.
Property (5.14.4a) is a consequence of the definition of J,. Property
(5.14.5a) follows since X, — M, = X — P'(M,). Properties (5.14.6a)
and (5.14.7a) are consequences of (4.9.4) and (4.9.6) respectively, applied
to P’. Properties (5.13.1a), (5.13.2a), and (5.13.3a) follow from the
definition of X, and (4.9.3), (4.9.5).
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The following theorem gives the combinatorial structure of the
collection of components of RN T, R~ T,T— R, S* — (T U R) where
R and T are PL 2-spheres in general position in S®. The reader is
referred to Definition 4.1 for some of the notation used. See Figure
4 for an illustration.

Theorem 5.16. Suppose R, T are PL 2-spheres in S® that are in
general position and m 1s a simple closed curve in RN T such that
m bounds a disk D in T and a disk Ein R suchthat RN Tc DN E.
Let B be the 3-cell bounded by Cl (T— D) U Cl (R—FE) such that Int BN
Int D =Int BNInt £ = @ and let U,, U, and V,, V. be respectively the
components of S®— T, and S* — R and such that Int BC U,, Int Bc V,.
Then there exists a finite tree labeling system I', a 4-tuple (m,, H,,
M,, S,) for each acl’y, and a function P from S* to S* such that

(5.16.1) m, is a component (a stmple closed curve) of D N E with

m, = m = BdD = BdE,
(5.16.2) H, is a disk-with-holes in E such that
(5.16.2.1) BdH, = m, U Mao U Moy U Mg U =+ -
(5.16.2.2) EF = U{H,|lael}, H,N H,; = Mg,
(5.16.2.3) H, contains a collar of BAdH, in Cl (U,),

(5.16.3) M, is a collar of H, in ClV,, such that if |a| = |B]|

and o = B then M, N M, = &,

(5.16.4) S, is a partition of M, that supports the separation

b
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complex K(a) = K () U Ky(a) U Ky(at), and
if D* = Ugser BAM, — Int H,), S = Uuer Say and K = K, U K, U K, D*,
D are the separation complexes given respectively by K; = Uuer Ki(@),
D* = D*mod (SU E) and D = Dmod E then
(56.16.5) P|S*— (K| — E) =1, and P s the identity on a corner
of M, for each ael,
(5.16.6) P|D* is a separation isomorphism from D* to D, and
a homeomorphism from D* onto D,
(5.16.7) if o€ K then {P(z)|t €&} = P(o) is a separation complex
and Plo is a separation isomorphism from & to P(c),
(5.16.8) if o€ K, then Pc—(SU E))CS*— R and PlecN(SU E))CE,
(56.16.9) if 0, 0.€ K, and o,N 0, s a component of S then P(o, —
(SU E)), Plo, — (SU E)) lie in different components of
S*— R, and
(6.16.10) if 0y, 0. ¢ K;, 0, 0, but Plo,—(SUE)) N P{o,—(SU E))
@ then for 1 =0, or 1, Plo;— (SU E)) C Int P(o,_;)
and P(o; N (SU E)) < Int P(o,_; N (SU E)).

Proof. The sets m,, H,, M,, S,, and function P are constructed
inductively using Lemma 5.15, Lemma 3.14 and the properties of
winding functions given in (4.6), (4.7), (4.8), and (4.9). Let ¢ be a
point in T — D and identify the 2-sphere R of the hypothesis and
the 2-sphere R of §5.

The 4-tuple a, = (T, U, q, m) is in & of Definition 5.1. Let
(H,, M,, S,, X,, P,) be the 5-tuple of the conclusion of Lemma 5.15
with K(0) = K,(0) U K,(0) U K,(0) the seperation complex supported by
S, in M, with K/(0) U K,(0) U K;(0) the separation subdivision of K(0)
of Lemma 5.15. Let m, = m, and let m, My, My, -+ be the other
components of BdH,. Since by (4.6.1), (4.8.1), (4.7) and (5.14.5) we
have BN Py(M,) = m, we let U, U} be the components of S*®— X,
with Int B U and let 77, = {0}. From the conclusion of Lemma 5.15
it follows that I, 4-tuple (m,, H, M, S,), and function P, satisfy
(5.16.1), (5.16.3), (5.16.4), (5.16.5), (5.16.7), (5.16.8), (5.16.9), and
(5.16.10). Condition (5.16.2) is satisfied with the exception of the
requirement E = uer, H. and condition (5.16.6) is satisfied for P|Dg
where Df = X, — (T — D) and Df = Df mod S, U E. The conclusion
of Lemma 5.15 shows that the following properties are also satisfied.

(ao) Po(Mo) N (Xo - Mo) = @,

(b)) if o€ K,(0) then P,|o is a separation isomorphism from &' to

{Pf7)|r €d'}, and

(¢} if 0., 0,€ K, (0) and o, o, but P,o,) < P(o,) then there

exists 0, € K;(0) such that o, C g, and P,(0,) C Py(0,).

We proceed inductively up the lexicograpical ordering of the m,’s.
Suppose for each element « of a tree labeling system [I',, a 4-tuple
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(Mo, H,y M,, S.), and function P, from S*® to S°® exist that satisfy
(5.16.1), (5.16.2) as modified above, (5.16.3), ---, (5.16.5), (5.16.6) as
modified above, (5.16.7), -+, (5.16.10), and,

(@) PlU{Mael) N (X, — U{Mlael}) =@

(b,) if oe K, (k) then P,|c is a separation isomorphism from &

to {P,(t)|7ted’}, and

(¢,) if 04,0, ¢ K,(k) and 0,5 o, but P,(g,) C P,(0,) then there exists

0, € K](k) such that o, C o, and P,(o,) < P,(0,),
where K(k) = Ki(k) U Ky(k) U Ky(k) = U {K(a)|a e}, K'(k) = K/(k) U
KJ(k) U K;(k) is the subdivision of K(k) given by K(k) mod (X, — U
(BAM,—1Int H,|a e I"\}), Di=X,—(T—D), and Di=D; mod (U{S,|la¢c
') U E. Let U}, U! be the components of S* — X, where Int B c Uk.

Let Iy, = I'"U {B} where g is the next element in the lexico-
graphical ordering of the m,’s. That is, if @« = 44, -+ 4, is the last
element of ", then g = 44, +++ 4,.,(i, + 1) or B8 = 4,3, +++ 1,0 depending
on which of these is the lowest subscript among the symbols labeling
the boundary components of the desk-with-holes U {H,|ae",}. Let
Uis = (X, Uk, q, m;) and apply Lemma 5.15 to obtain 5- tuple (Hp, M,
S, X,,+1, P) that satisfies the conclusion of Lemma 5.15 with K = K, U
K, U K, the separation complex supported by S in M,. Properties
(5.16.1), (5.16.2) as modified above, and (5.16.3) and (5.16.3) are easily
established and we leave this to the reader. Label the components
(if there are any) of (BdH;) — m,; with mgs, ms, <« -.

It follows by (5.14.2), (4.6.1), (4.8.1), (4.7), (5.16.2), and (5.16.4) that
(BU(U{G.laeI'})NP(M,)=m,and P|(BU(U{G,|aeTI})=1 where
G, = BAM,— Int H,. Hence, X,., contains (T — D) U (U {G.|a e Iyy}).

For ge K,, P(o) may intersect U {Int M,|a e I',}: however, P(o)
may intersect at most one of the sets Int M,, e I",* Let a(s) be the
subscript such that ﬁ(a) NInt M,., #+ @. Proceeding as in Case B,
paragraph 4, of the induction step in the proof of Lemma 5.15 we
may apply Lemma 3.14 and Lemma 3.10 and assume without loss of
generality that S(o) is a compact PL 2-manifold in ¢ such that if ¥
is a component of S(os) then YN Bde = Y N ((Bdo) — S) =BdY = &
and B(Y) is a component of S,,, N P(c). Let S;=S U (U {S(0)|0 ¢ K3}).
It is clear that S, partitions M; and let K(g) = K\(B) U K.(B) U K, (B)
be the separation complex that S, supports in M;, thus (5.16.4) is
satisfied. It is clear that P satisfies (5.16.7) and (5.16.10) for o, o,
o, ¢ K,(8) since P satisfied (4.6.2) and (4.6.5) for g, 0,, 0, ¢ K, and the
applications of Lemma 8.14 and Lemma 3.10 haven’t altered these
properties. Let K(k+1) = Ki(k + 1)U K;(k+1) U K;(k+1) = U{K(a)|a e
'y} = K(k) U K(B), and LeE S = UlSsla el = S, U S,

We now show that P,-P|M, is winding function with respect to
(M,, S;, Hs;, R). Property (4.6.1) is satisfied since by (5.14.2), and
(5.16.5), respectively, P, P, satisfy (4.6.1). Property (4.6.2) is estab-
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lished by observing that, by the way K(G) was constructed, if oe
K, (B) then (U {M,|ael}) NInt P(o) = @ or P(o) = |L| where L is a
subcomplex of &; for some o,c K(k) (0; is the induced subdivision of
g, by K'(k)). In the former case, (4.6.2) follows by (5.16.5) and in
the latter case by (b,). Properties (4.6.3) and (4.6.4) are straight
forward consequences of the corresponding properties for P, (5.16.8)
and (5.16.9) for P,, and the way S; was constructed. We now establish
property (4.6.5). Suppose o, 0, € Ky(B), 0, # 0,, and P,P{c, — S:) N
P.P(o, — S;) + @ then (a) M, NInt P(o;) = @ fori=10,1 and all @€
I, or (b) Plo,) < M,, M, N Int P(s,_;) = @ for some «, and all ye I,
or (¢) P(o)) c M,, 13(01_,-) C M, for some a,veI',. In Case (a), (4.6.5)
follows from the corresponding properties for P, the way S, was
constructed, and (5.16.5). In Case (b), P.P(o; — S;) C Int P.P(o.)
since P,P(o,_; — S;) c X, — (U {M,|laeI)), P.Po; — S;) is connected,
and by (a,). In Case (c), either (c.1) there exists a o* ¢ K,(k) such
that P(s;) C o* for ¢ = 0,1 or (c.2) there exist distinet o¢, o} € Ky(k)
such that P(s;) c o#. In Case (c.1), (4.6.5) follows from the corre-
sponding property for P and (b,). In Case (c.2), (4.6.5) follows from
(c), sice we must have P.(¢}) C P, (o) for ¢ =0, or 1 by (5.16.10).

Let P,,, = P,P. We showed in the previous paragraph that
f’k+1|Mﬂ is a winding function with respect to (M;, S;, Hs;, R). This,
combined with (5.16.5), (5.16.7), (5.16.8) and (5.16.9) for P, establishes
(5.16.5), (5 16.7), (5.16.8), and (5.16.9) for P,,Jrl Property, (5.16. 6) is
valid for P,,, since it is valid for P,, P| U {G.lae '} =1, and P]G,g
Is a separation isomorphism onto J,, ., of Lemma 5.15.

Property (5.16.10) follows by the corresponding property for P,
or P if either 0,, 0, € K,(k) or 0,, 0, € K;(8). The other cases are (a)o, €
Ky(k), 0, € K,(8), and P(o) NInt M, = @ forallae I, or (b) o, € K,(k),
0, € K;(B), and P(o)) € M, for some aeI',. In Case (@), Prri(0o—Sis) C
Int ﬁkﬂ(al): and Pk+1(00 N (Sis: U E)) C Int pk+1(01 N (Sgr U E)) since
Pk+1(01 — Si) C X — (U {(Mo|ael}), pk+1(00 — Si+) is connected and
by (a;). In Case (b) either (b.1) P(s) C o, or (b.2) there exists a o* €
K,(k) such that P(s) c o*. In Case (b.1) (5.16.10) follows by b, since
P(0,) must be the underlying set of a subcomplex of K'(k) in o*. In
Case (b.2), (5.16.10) follows from ¢,, since we must have either P,(c*)C
P.(o,), or P,(o,) < P,(0*) by (5.16.10) for P,.

The properties remaining to be varified are (a;.,), (8,:.), and (¢,..).
We establish these by using the lifting property for winding functions
in Lemma 4.9. For o ¢ K,(k+1) let N(0) ={r € Ky(k+1)| P,..(¢) cﬁ,,+1(a)
and 7 = 0} and let W(0) = P,( Ry — (U {Gul@e Iu) N (Pras(o) —
{P,.i(7)|T e N(o)}). Itis clear that P UM, lae Iy )) — Poii(U{G, ja e
FeoD)NPeoi(Xee) = U{W(0) |0 € Ky(k+1)} and if 6, o, then Int W(a,) N
Int W(o,) = @. Also, by (5.16.8), (5.16.9), and (5.16.10), if ¢, N0,
is a component of S,., then W(s) N W(o) = P, (Xsy — U {Gul e
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I N (Pooona) — U{P,.(t)|t e N(o))) for i = 0 or 1. It follows
that for each ey, W, = U{W(o)|o e K,(a)} is a compact 2-mani-
fold that satisfies the hypothesis of Lemma 4.9 along with winding
function P,.,| M, with respect to (M,, S., H,, R). Apply Lemma 4.9
for each awe ., and let W, be the resulting compact 2-manifold,
K'(a) the resulting subdivision of K(a) satisfying 4.9.8 and P,.,| M,
the resulting function that satisfies (4.9.1), ---, (4.9.6).

Let X, = (U{W,|lael,) U(U{G.lael . ,})U (X-k+1 - Pk+1(U
{M,\cel.}), let Po|U{Mdael )} = U{(Pen| M) e l,,,)} and
let K'(k+1) =K/k+ DHUK,(kE+ DUK(E+ 1) = U{K'(@|ael .}
By (4.9.1), P,., satisfies (5.16.5), - -+, (5.16.10), thus it is only necessary
to varify (a,..), (bi+1), and (c,.,). Property (a,.,) follows since X, ., —
U{M,lael.} = Xis, — Poo(U (M,Jae I",,.}). Property (b,..,) follows
by (4.9.4). Property (c,) is established by observing that if P,..(¢,) C
P, (o) then P,. (o, is in a component Z of P, (o) — W(os,) since
P,..(0,) is connected and Wi(o) N P...(0) = @ by definition of W(o).
The lift of Cl Z is the required o,, that is, 0, = (P,,.|0) " (Cl Z).

The induction step is now complete. The above process terminates
when U{H,|ael",} is the disk FE, thus completing property (5.16.2).
The reason for not including properties (a.), (b.), (¢;) in the conclusion
to Theorem 5.16 is that they are “empty” in the sense that (DU
(T—D)ynNnU{Int M,|lxel}) = Q.

6. Disjoint singular disks. We now prove the following corol-
lary to §§3, 4, and 5.

COROLLARY 6.1. Suppose T is a 2-sphere is S°, D s a PL sub-
disk of T, and E is a PL disk in S® in general position with respect
to T such that ENTC D and BAE = BdD. Let U, U, be the com-
ponents of S® — T and suppose that E(i = 0, 1) is a PL disk in general
position with respect to D such that BAdE; c U, E; fails to intersect
the 2-sphere E U (T — D), and T — D, BAE;, BAdE, are in the same
component of S* — (DU E). Let F; (i =0,1) be the component of
E, N\ U, that contains BAE;,. Then for i = 0,1 there ewist collections
i, &; of components of D — E; and of E; N U; respectively such that
6.1.1) 4f Ae o, Be &, then C1ANCIB = @,
6.1.2) of Ae &, and Be &2,_; then E separates A from B in
ClU;, and

(6.1.3) the set D; = U{ClA|Aec 2, U &} is a singular disk with
BdD,; = BAdE,; obtained by pasting in the sense that there
exists a map fi2 E;— D; such that f;|F; =1 and if K is
any component of fiYCl A) for Aec &, U &, then f;|K 1is
a PL homeomorphism onto Cl A.
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Proof. It follows from the polyhedral approximation theorem of
Bing [1] that we may assume that the 2-sphere T is piecewise linear.
In order to use Theorem 5.16, we assume that the component of
S® — T have been labeled so that Cl (U,) contains a collar of BdE in
E and B is a collar of C1(T — D) in ClU, such that BN E = BdE,
and for 1 =0, or 1, BN E; = @. Let R be the 2-sphere defined by
R =FU (BdB) — (T — D)) and let the components of S® — R be V,,
V, where Int B V,. It follows that B — m, BdE, BdE, are in the
same component of S* — (DU E). We use the notation of Theorem
5.16, in particular let I, m,, H,, M,, S,, K(e), K and P be as in the
conclusion. The map f; is found by cutting E; off on U{P((BdM,) —
H)lael, |a| =1 — i}, but first we observe some useful facts.

It follows from (5.16.2), (5.16.3) that

(6.1.4) M, contains a corner in Cl (U, N Via)-

Also, by (5.16.5), (4.8.2) we have that

(6.1.5) P(M,) contains a collar of P(BdM, — Int H,) in Cl U,,.

By (5.16.5), (5.16.7), ---, (5.16.10), respectively, we have, respec-
tively, (4.6.1), (4.6.2), ---, (4.6.5). Thus P|M, is a winding function
with respect to (M,, S., H,, R); consequently, by (4.8.1) we have

(6.1.6) ((B— m)UBdE,UBdE)N PM,) = @ for all el

We wish to establish that

6.1.77 ENU_cENPU{M|acl')c ENP(U{M,|laxel,|a|=

1—24}) for 2 =0 or 1.

Let A ={Y]|Y is a component of F; N U,_; such that there does
not exist a o€ K, such that Y P(o)} and let B ={Z|Z is a com-
ponent of E; N Int P(c) where e U{K)(a)|ael, |a| =1} and there
does not exist a 7€ U {Ky(@)|a e, |a| =1 — i} such that P(o) C P(7)}.
Suppose A U B = ¢, then there exists an outermost element of A U B
in E;. That is, there exists an element We A U B such that W' fails
to separate W from BdE, in E;, for all W e AU B. Let w be the
outermost component of BAW and let X be the component of E; — T
such that wc BdX but XN W=g. If We A then, since w < P(Bdo —
(SU E)) for some o ¢ K, and because of (6.1.5), it follows that there
exists a Ze B such that X C Z contradicting that W is an outermost
member of AU B in E,. If WeB, then, by (6.1.5) since W is also
an outermost member of B, it follows that X e A contradicting that
W is an outermost member of AU B in E,. Hence we must have
AUB = @ and (6.1.7) is established.

We wish now to establish that

(6.1.8) FE separates K, — P(U{M,|lael, |a| =1— 1}) from P(U

{(BdM,) — H,Jael, |a] = 1}) in Cl U,.

Suppose (6.1.8) is false, then by (6.1.7) there exists an arc ab
from a to b such that ac K, — P(U{M,|laecl}), be P(BIM, — H,)
for some @ e I with |&| = 1, and Intab C U; — E. However, by (6.1.5)
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there exists a point ¢ in ab near b such that ce (P(M,) — P(BAdM,))N
U;,. But this contradicts (4.8.1), thus (6.1.8) is established.

The collections &;, 2; (¢ = 0, 1) of the conclusion will be chosen
such that U{A|Ae L}CE,—~P(U{M,Jael, |a|=1—1})and U{ClA|4 e
;) c P(U{BAM,)— H|a eI, |a|=1—1}). Properties (6.1.2) and (6.1.1)
will then follow by (6.1.8) and the fact that P(U {(BdM,) — H,|a e
Iy |al =) N P(U{BAM,) — Hy|ael', |a| =1—1}) = O.

If m is a component of DN E; then we let E;(m) be the disk m bounds
is E;, Let &/ ={X|X is a component of E; — P(U{M,|laecl, |a| =
1—1}). Each member of &/ is an open disk-with-holes whose boundary
consists of one “outer” simple closed curve and perhaps several “inner”
simple closed curves. We accordingly let & = {m|m is a component
of BdX for some Xe &/, and X Cc E;(m)} and % = {m|m is a com-
ponent of BdX for some Xe &/, and XN E;(m) = @}. For each me
% we find a disk-with-holes D(m) c P(U {(BdM,) — H,|ael, |a| =
1 — 4}) such that m < BdD(m) and if  is a component of (BdD(m)) —
m then u e Z; and u C E;(m). The D(m)’s bridge the gaps between
elements of &/ and enable us to define the map f; of the conclusion
(see Figure 5).

fo(Eo)
==
] g
T ]
A i ! \ B
o 11 | A
AN SRR | \=—D
/ k (| I 1L \\{
| =< A ‘ICSD_),‘
[ D ! {
1IEZ N\ STV \\ 1 T/\
/ N -/
N
FIGURE 5

Let m € _#; then m < P(Bdo — (S U E)) for a unique ¢ € K,(a) with
€| =1— 1. Let Y be the component of P(s) N E; that contains m.
Clearly Y c E,(m), and since there does not exist a 7 e K, such that
P(0) C Int P(7) it follows by (6.1.5) that each component of (BdY) — m
is in 7. Since each component ¢ of BdY separates T, we have that ¢
separates the 2-face ¢ of {P(7)|r € } that contains . By Lemma 3.14,
Y separates P(c), and by Lemma 3.10 we may assume without loss
of generality that there exists a compact, connected PL 2-manifold
0,C o such that ¢,N Bdo = o, N ((Bdo) — (SU E)) = Bdg, and P|o, is
a separation isomorphism from &, to {¢|¢ is a component of BdY}U{Y}.
Let m’ be the component of Bdo such that P(m’) = m. The 2-mani-
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fold o, separates M(a) so let D’(m) be the component of (BdM(«)) — o,
that contains m’ in its boundary but does not contain H(x). It follows
that BdD'(m) C Bdo,. Let D(m) = P(D'(m)).

For m, e &7, let X(m,) be the element of &/ that contains m, in
its boundary and let mi,, M, <<+ be the remaining components of
BdX(m,). Also, let mg, m;s, -«- be the components of (BdD(m;)) — m;.
Let mi = BdE;, then for 7+ =0, 1, f;, &, &; of conclusion are given
respectively by

FAE) = XGmi) U(U DOnee) ) U (U Kmase) U U, Dl ) )U -

i1ty 159283

& = {X(m)} U {X(moiliz)} U {X(moilizisi)} Uee:

That there exists no circularity in f,(E,) follows from the fact that
BdD(m,) < E;(m,) or, in other words, we proceed always from the
“outside” to the “inside” along E..
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