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Let G be a finite soluble completely reducible linear group
of degree n over a perfect field. It is shown that the Fitting
length l(G) of G satisfies the inequality

KG) ^ 3 + 21og3(^/2),

and that this bound is best possible for infinitely many values
of n.

Let G be a soluble completely reducible linear group of degree
n > 1 over a perfect field k. Huppert shows in [3], Satz 10, that the
derived length of G is at most 6 log2 n. This is therefore an upper
bound for the Fitting length l(G) of G as well. In this note we
assume in addition that G is finite and prove that

We show further that this bound is actually achieved for infinitely
many values of n.

LEMMA 1. Let K be a normal subgroup and M a maximal sub-
group of a finite soluble group G. Then l(M Π K) ^ l(K) — 2.

Proof. Let l(K) = I. The result is clearly true when I ̂  2;
therefore assume I > 2 and proceed by induction on \G\. Set F — F(K),
the Fitting subgroup of K. Since F is the direct product of its Sylow
subgroups, each of which is normal in G, we may assume by the
J?o-closure of the class L(l) of groups of Fitting length at most I that
F has a Sylow p-complement S such that l(K/S) = I. Suppose S Φ 1.
If S ̂  M, then M/S is maximal subgroup of G/S, and so by induction
l(M ΓΊ K/S) ̂  l(K/S) -2 = 1-2. But then l(MΓiK)^l- 2, as requir-
ed. On the other hand, if S S M, then Mn K/MΠS= S(Mn K)/S =
K/S has Fitting length I, whence l(M (Ί K) = I. Hence we may as-
sume that S = 1 and that F is a p-group. Set L/F = F(K/F). Then
1{K/L) =1 — 2 and L/F is a p'-group. There are two possibilities to
consider:

(a) L S M. In this case L(MΠ K) = if and therefore Mf] K/MΓ) L
s K/L has Fitting length I - 2. Hence Ϊ(M n K) ̂  ϊ - 2.

(b) L ^ M. In this case, denoting the Fitting subgroup of
M Π K by F, since F <* F and C^(F) ^ F, we see that F is a ̂ >-group.
But then F/F is a normal p-subgroup of M Π K/F> and so F
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CκlF(L/F) ^ L/F, a p'-group. Thus F = F and Z(AΓniΓ)=l +
Z(ilf Π K/F). By induction, ί ( I f l iΓ/F) ^ ίWί 7 ) - 2 = I - 3, and so
in this case too the conclusion of the lemma holds.

LEMMA 2. Let T be an extra-special group of order 27, and let
A be a soluble subgroup of Aut (T) acting irreducibly on T/Φ(T).
Then l(A) rg 4.

Proof. By Huppert, [4], IΠ.13.9 (b), A is a subgroup of an
orthogonal group of dimension 6 over the field of 2 elements; hence
by Dieudonne [2], p. 68, \A\ divides 27 32 5 7 or 27 34 5. Since
T/Φ(T) is an irreducible Z2[A]-module, 2 \ \ F(A) | and hence | F(A) \
is a divisor of 32 5 7 or 34 5. Let F(A)/Kbe a chief factor of A and
set A = A/CA(F(A)/K). If |F(A)/2Γ| = 3, 32, 5 or 7, examination of
the corresponding linear groups shows that l(A) <̂  3. If \F(A)/K\ =
33, A is isomorphic with a subgroup of GL(S, 3). Its order therefore
divides | GL(3, 3) | = 25 33 13. But its order also divides 27 34 5/33

and therefore divides 25 3. But then 02>3}2(A) = A and so we have
l(A) ^ 3. Since a Sylow 3-subgroup of GL(6, 2) has order 34 and is
non-Abelian, there are no other possibilities for the order of F(A)/K.
Hence A/F(A), which is a subdirect product of the groups A, has
Fitting length at most 3. Thus l(A) <̂  4, as claimed.

We state without proof the following elementary arithmetical
facts.

LEMMA 3. (a) If d ^ 3, 3<* ̂  cZτ/12;
(b) If d ̂  4, 2d ^ dτ/12;

We now come to our main result.

THEOREM. Let G be a finite soluble completely reducible linear
group of degree n over a perfect field k. Let l(G) = I > 1. Then

^^2.3 7 ? α ~ 3 ) / 2 ,

where η = 0 /or I — 2, 3 αraZ 37 = 1 /or £ ̂  4.

Proof. Since a linear group of degree one is Abelian, the theorem
is clearly true for I = 2, 3. Therefore assume Z ^ 4. We may sup-
pose there is an ^-dimensional Λ-space V on which G acts (faithfully
and completely reducibly). We proceed by induction on the integer
m = \G\ + dim*; {V), assuming the theorem has already been proved
for all groups G and all fields k giving smaller values of m. Let
V — ̂ 1 0 0 ^/r be a decomposition of V into irreducible com-
ponents ^ . Set Ki = ker (G on ^ ) . If G/iξj e i ( i - l ) for every i,
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we have, G e RQL(l — 1) = L(l — 1) since Πί=i Kt — l Since this is not
the case, we have l(G/Ki) = I for some i, and therefore when r > 1
we may apply induction to the triple (G/Kiy ^ , k) to give the result.
Therefore assume V is irreducible as a &[G]-module. Since G is finite
and k is perfect, we can find a finite extension k of k which is a
splitting field for G and its subgroups such that V — k ® fc V is com-
pletely reducible; in fact V — V1 0 0 Vs is the direct sum of
algebraically conjugate irreducible &[G]-modules. If s > 1, dim, (F4) <
dinifc (V) — dimfc (V). Since ker (G on V{) = ker (G on F) = 1, we can
apply induction to the triple (G, Vi9 k) to give the result. Therefore
we may assume that s = 1 and without loss of generality that k = k
is a splitting field for G and its subgroups.

Let H be a subgroup of G critical for the class L(l — 1); thus
HeL(l)\L(l — 1) and all proper subgroups of H belong to L(l — 1).
By Lemma 5.2 and Theorem 5.3 of [1] there is a prime q dividing
I F(G) I such that H has a special normal ^-subgroup Q such that
Q/Φ(Q) is a chief factor of if on which H induces a group of auto-
morphisms of Fitting length exactly I — 1. If k has finite character-
istic p, by the irreducibility of V we have OP(G) = 1; thus # ^ char
&. Hence there exists a composition factor F * of V\H not centraliz-
ed by Q. The subgroup Q* = CQ(V*) is proper and normal in H, and
therefore Q*Φ(Q) = Q or Φ(Q). But Q*Φ(Q) = Q implies Q* is not
proper. Therefore Q* ^ Φ(Q). But then l(H/Q*) = I. lί H < G, in-
duction applied to the triple (H/Q*, V*, k) gives the result. Therefore
we suppose H — G is critical for L(l).

Let A be an Abelian normal subgroup of G. Let V\A =
TΓi φ 0 T7t be the decomposition into homogeneous components
TΓi Suppose t > 1, and let Λί be a maximal subgroup of G contain-
ing the stabilizer S of TΓi By Clifford theory Wx is an irreducible
S-module and V=W? = (W?1)0. Furthermore, Y= W? is an irreducible
&[ikf]-module. Applying induction to the triple (M/ker (M on Y), Y, k)
gives dim f c(Γ)^2.3' ? / ( Z '- 3 ) / 2, where V = l(M). If | G : Λ f | = 2 , then
M<\ G and clearly V = I - 1. But then π = 2 dim, (Γ) ^ 2.2 3J?/(Z"4)/2 >

2.3?(«-3)/2β Therefore suppose | G: Λf | ^ 3. By Lemma 1 l(M) ^1-2,
and so again by induction we have n ^ 3 dim .̂ (Y) ^ 3.2 3'/(I"B)/2 ^
2.3*<*-8)/2# Therefore we may assume that t = 1, and, since & is a
splitting field for the subgroups of G, that every Abelian normal
subgroup of G is cyclic and contained in Z(G).

Thus Q is an extra-special group, say of order q2d+ί. By Huppert
[4], V.16.14, the faithful irreducible &[ζ>]-modules have dimension qd.
Since V is faithful for Q, we have n = dimfc (F) ^ grf. G induces on
U = Q/Φ(Q) a soluble irreducible group S of symplectic linear trans-
formations over Zq, and l(S) = 1-1. If ϊ = 4 or 5, gd ^ 6; for the ir-
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reducible soluble subgroups of Sp(2,2), Sp(2,3), Sp (2,5) and Sp (4,2) ^ Sβ

all have Fitting length at most 2. In these cases we have n ^ qd ^
6 ^ 2 3(Z-3)/2. If 1^6, induction applied to (G/ker (G on U), U, Zq)
shows that d ^ s{l~~4)l2 ̂  3. Thus, if q Φ 2, by induction and Lemma
3(a), we have

n ^ qd ^ 3d ^ di/Ϊ2 ^ 2 i/3" 3(Z-4)/2 - 2 3(*-3)/2 .

And if I Ξ> 6 and # = 2, by Lemma 2 and induction we have d ^
max {4, 3{ί~4)/2} Hence using Lemma 3(b) we have

This completes the proof.
The bound for this theorem can actually be achieved whenever I

is odd and k = Z8. For let I = 21' + 1 and let H be the holomorph
of an elementary Abelian group A of order 9. H/A = GL(2, 3) has
Fitting length 3. Let W = ( •(# ? S3) ? I S8), the successive
wreath product of H with V — 1 copies of the symmetric group of
degree 3 according to its natural representation. It is easy to check
that W has a self-centralizing elementary Abelian normal 3-subgroup
N such that l(W/N) - 2{V - 1) + 3 = I. N is a faithful irreducible
^ 3 [W/JSΓJ-module of Z3-dimension 2 3Z'"1 = 2 3(Z-3)/2.

We conclude by remarking that the above methods give better
bounds for l(G) in terms of n if the smallest prime divisor of | G \ is
greater than 2 or, more generally, if the 2-length of G is restricted.
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