Pacific Journal of Mathematics

STARLIKE AND CONVEX MAPPINGS IN SEVERAL COMPLEX VARIABLES

Keizō Kikuchi

Vol. 44, No. 2

June 1973

STARLIKE AND CONVEX MAPPINGS IN SEVERAL COMPLEX VARIABLES

KEIZO KIKUCHI

In this paper, using the Bergman kernel function $K_D(z, \bar{z})$, we give necessary and sufficient conditions that a pseudoconformal mapping f(z) be starlike or convex in some bounded schlicht domain D for which the kernel function $K_D(z, \bar{z})$ becomes infinitely large when the point $z \in D$ approaches the boundary of D in any way. We also consider starlike and convex mappings from the polydisk or unit hypersphere into C^n .

Generalizing the results obtained by M. S. Robertson [10] using the principle of subordination, T. J. Suffridge has established necessary and sufficient conditions that a function be univalent and map the polydisk or

$$D_p = \left\{ z ext{:} \left[\sum\limits_{j=1}^n |z_j|^p
ight]^{1/p} < 1, \ p \ge 1
ight\}$$

onto a starlike or convex domain [11].

Similar problems have been considered by T. Matsuno [8] to the hypershere. In this paper we deal with the same problems in terms of the Bergman kernel function $K_D(z, \bar{z})$, and show the results are equivalent to theorems of Suffridge in case of polydisk or hypersphere.

The author wishes to thank Professor S. Ozaki for helpful discussions on the preparation of the paper.

1. Preliminaries. We consider bounded schlicht domains D in C^n for which the kernel function becomes infinite everywhere on the boundary ∂D , i.e., it is the union of an increasing sequence of strictly pseudo-convex domains

(1.1)
$$D_t = [z: \varphi_t(z) \equiv K_D(z, \overline{z}) - t < 0, z \in D]$$

for some number t > 0, where $z = (z_1, \dots, z_n)'$. (See [3]). First we have

LEMMA 1.1. If D is a bounded domain, the Bergman kernel function $K_D(z, \overline{z})$ is strictly plurisubharmonic and

(1.2)
$$1/\omega(D) \leq K_D(z, \bar{z}) \leq 1/\pi^n (l(z))^{2n}$$
,

where $l(z) = \min_{\tau \in \partial D} \rho(\tau, z)$, $\rho(\tau, z) = \max_{j} \{ |\tau_j - z_j|, j = 1, \dots, n \}$ and $\omega(D)$ signifies the euclidean volume of D.

Proof. The minimum value of the integral $||f||_D^2 = \int_D |f(\zeta)|^2 dv_{\zeta}$ for functions $f(\zeta) \in \mathscr{L}^2(D)$ satisfying the condition $df(z)/d\zeta \cdot u = 1$, where $u = (u_1, \dots, u_n)'$ is an arbitrary nonzero column vector, is

(1.3)
$$1/u^* \frac{\partial^2 K_D(z, \overline{z})}{\partial \zeta^* \partial \zeta} u = \int_D \left| \frac{u^* \frac{\partial K_D(\zeta, \overline{z})}{\partial \zeta^*}}{u^* \frac{\partial^2 K_D(z, \overline{z})}{\partial \zeta^* \partial \zeta} u} \right|^2 dv_{\zeta} . \quad (\text{See [1], [2].})$$

Here we define partial derivatives of a function $g(\zeta, \overline{\tau})$ as

(1.4)
$$\begin{array}{l} \partial^2 g(\zeta,\,\overline{\tau})/\partial\tau^*\partial\zeta &= (\partial/\partial\overline{\tau}_1,\,\cdots,\,\partial/\partial\overline{\tau}_n)'\times(\partial/\partial\zeta_1,\,\cdots,\,\partial/\partial\zeta_n)\times g(\zeta,\,\overline{\tau}) \\ &= \begin{pmatrix} \partial^2/\partial\overline{\tau}_1\partial\zeta_1,\,\cdots,\,\partial^2/\partial\overline{\tau}_1\partial\zeta_n \\ \\ \\ \partial^2/\partial\overline{\tau}_n\partial\zeta_1,\,\cdots,\,\partial^2/\partial\overline{\tau}_n\partial\zeta_n \end{pmatrix} \times g(\zeta,\,\overline{\tau}) , \end{array}$$

and if $g(\zeta)$ is a function of only ζ , we denote $dg(\zeta)/d\zeta = (\partial/\partial\zeta_1, \cdots, \partial/\partial\zeta_n) \times g(\zeta)$, where the sign \times designates the Kronecker product and the sign * denotes the transposed conjugate matrix. (Cf. [7].)

On the other hand, if we put $f(\zeta) = u^*(\zeta - z)/|u|^2$, then

$$rac{df(z)}{d\zeta} u = u^* u / ert \, u \, ert^2 = 1$$
 ,

therefore

(1.5)
$$1/u^* \frac{\partial^2 K_D(z, \overline{z})}{\partial \zeta^* \partial \zeta} u \leq \int_D \left| \frac{u^*(\zeta - z)}{|u|^2} \right|^2 dv_{\zeta} \leq \frac{1}{|u|^2} \int_D |\zeta - z|^2 dv_{\zeta} \leq \frac{L^2 \omega(D)}{|u|^2} ,$$

where $L = \max_{\tau \in \partial D} |\tau - z|$ and $|u| = (\sum_{j=1}^{n} |u_j|^2)^{1/2}$. Thus

$$u*rac{\partial^2 K_{_D}(z,\,ar z)}{\partial\zeta*\partial\zeta}u>0$$

for all $z \in D$, that is, $K_D(z, \overline{z})$ is strictly plurisubharmonic (see [3]). Next it is well known that the minimum value of the integral $||f||_D^2$ under the condition $f(z) = 1, z \in D$, becomes $1/K_D(z, \overline{z})$. Then, for the function $f(\zeta) \equiv 1$, we have

$$(1.6) \qquad 1/K_{\scriptscriptstyle D}(z,\,\overline{z}) = \int_{\scriptscriptstyle D} |K_{\scriptscriptstyle D}(\zeta,\,\overline{z})/K_{\scriptscriptstyle D}(z,\,\overline{z})|^2 dv_{\zeta} \leq \int_{\scriptscriptstyle D} dv_{\zeta} = \omega(D) \,\,.$$

Also, using the Cauchy integral formula, we obtain

(1.7)
$$\begin{aligned} &\left| \left(\frac{K_D(\zeta, \bar{z})}{K_D(z, \bar{z})} \right)_{\zeta=z} \right| \\ & \leq \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} \frac{|K_D(\zeta, \bar{z})/K_D(z, \bar{z})|}{r_1 \cdots r_n} r_1 d\theta_1 \cdots r_n d\theta_n \right|, \end{aligned}$$

where $\zeta_j - z_j = r_j e^{i\theta_j}$, $0 < r_j < l(z)$, $(j = 1, \dots, n)$. We get therefore by the Schwarz integral inequality

$$(1.8) l^{2n}/2^n \leq \frac{1}{(2\pi)^n} \int_{\rho(\zeta,z) < l} \int \left| \frac{K_D(\zeta,\overline{z})}{K_D(z,\overline{z})} \right| dv_{\zeta} \\ \leq \frac{1}{(2\pi)^n} \left[(\pi l^2)^n \int_{\rho(\zeta,z) < l} \int \left| \frac{K_D(\zeta,\overline{z})}{K_D(z,\overline{z})} \right|^2 dv_{\zeta} \right]^{1/2}.$$

Then

(1.9)
$$\pi^{n/2} l^n \leq \left[\int_D \left| \frac{K_D(\zeta, \bar{z})}{K_D(z, \bar{z})} \right|^2 dv_{\zeta} \right]^{1/2} = (1/K_D(z, \bar{z}))^{1/2},$$

hence we have (1.2) from (1.6) and (1.9).

2. Convex mappings. We consider the above mentioned domains D and D_t , and suppose that $\partial K_D(z, \overline{z})/\partial z \approx 0$, $z \approx 0$, in D, and $K_D(0, 0) = \min_{z \in D} K_D(z, \overline{z})$ at only z = 0. For a holomorphic univalent function w = f(z) of D, let

(2.1)
$$\varphi_t(z) = \varphi_t(f^{-1}(w)) \equiv \Phi_t(w), t > K_D(0, 0)$$
,

and let $\Delta = f(D)$, $\Delta_t = f(D_t)$. Then we have

corresponding to (1.1). On the boundary $\partial D_i: \varphi_i(z) = 0$, the total differential of $\varphi_i(z)$ becomes

(2.3)
$$d\varphi_t = \frac{\partial \varphi_t}{\partial z} dz + dz^* \frac{\partial \varphi_t}{\partial z^*} = 2 \mathscr{R} \left[\frac{\partial \varphi_t}{\partial z} dz \right] = 0 ,$$

where $dz = (dz_1, \dots, dz_n)'$. Consequently, since $\partial \varphi_t / \partial z^* = \partial K_D(z, \overline{z}) / \partial z^*$ is perpendicular to all tangential vectors dz of the boundary ∂D_t at $z, \partial \varphi_t / \partial z^*$ is a normal vector of ∂D_t at z. And we can derive

(2.4)
$$\mathscr{R}\left[\frac{\partial \Phi_t}{\partial w}dw\right] = \mathscr{R}\left[\frac{\partial \Phi_t}{\partial z}\left(\frac{dz}{dw}\right)\left(\frac{dw}{dz}\right)dz\right] = \mathscr{R}\left[\frac{\partial \varphi_t}{\partial z}dz\right] = 0$$
,

hence $\partial \Phi_t / \partial w^*$ is also a normal vector of the boundary $\partial \Delta_t : \Phi_t(w) = 0$ at w = f(z). (See [5], [6].)

We can expand $\Phi_t(w + dw)$ into a Taylor series:

(2.5)
$$\begin{split} \varPhi_t(w + dw) &= \varPhi_t(w) + 2\mathscr{R} \Big[\frac{\partial \varPhi_t}{\partial w} dw \Big] \\ &+ 2\mathscr{R} \Big[\frac{\partial^2 \varPhi_t}{\partial w^2} dw^2 + dw^* \frac{\partial^2 \varPhi_t}{\partial w^* \partial w} dw \Big] + 0(|dw|^2) , \end{split}$$

where $dw^2 = (dw_1, \dots, dw_n)' \times (dw_1, \dots, dw_n)'$. (See [3], Chap. IX.) Since

$$\mathscr{R}\Big[rac{\partial \varPhi_t}{\partial w}dw\Big]=0$$

at $w \in \partial \mathcal{A}_i$, it follows that

$$(2.6) \quad \Phi_t(w+dw) = 2\mathscr{R}\left[\frac{\partial^2 \Phi_t}{\partial w^2}dw^2 + dw^* \frac{\partial^2 \Phi_t}{\partial w^* \partial w}dw\right] + 0(|dw|^2) \ .$$

If the point (w + dw) lie always the outside of Δ_t for all $w \in \partial \Delta_t$ and tangential vectors dw at w, i.e., $\Phi_t(w + dw) > 0$, then Δ_t is convex. From (2.6), we must have the following condition in order to consist always $\Phi_t(w + dw) > 0$:

(2.7)
$$\mathscr{R}\left[\frac{\partial^2 \Phi_t}{\partial w^2} dw^2 + dw^* \frac{\partial^2 \Phi_t}{\partial w^* \partial w} dw\right] > 0.$$

Now we can calculate as follows by formulas of matrix derivatives described in [7]:

$$rac{\partial^2 \Phi_t}{\partial w^2} = rac{\partial}{\partial w} \Big(rac{\partial arphi_t}{\partial z} \Big(rac{dw}{dz} \Big)^{-1} \Big) = rac{\partial}{\partial z} \Big(rac{\partial arphi_t}{\partial z} \Big(rac{dw}{dz} \Big)^{-1} \Big) \Big(\Big(rac{dw}{dz} \Big)^{-1} imes E \Big)$$

$$(2.8) = rac{\partial^2 arphi_t}{\partial z^2} \Big(\Big(rac{dw}{dz} \Big)^{-1} imes \Big(rac{dw}{dz} \Big) \Big)^{-1} - rac{\partial arphi_t}{\partial z} \Big(rac{dw}{dz} \Big)^{-1} rac{d^2 w}{dz^2} \Big(\Big(rac{dw}{dz} \Big)^{-1} imes \Big(rac{dw}{dz} \Big)^{-1} \Big),$$

(2.9)
$$\frac{\partial^2 \Phi_t}{\partial w^2} dw^2 = \left\{ \frac{\partial^2 \varphi_t}{\partial z^2} - \frac{\partial \varphi_t}{\partial z} \left(\frac{dw}{dz} \right)^{-1} \frac{d^2 w}{dz^2} \right\} dz^2 + \frac{\partial^2 \Phi_t}{\partial z^2} + \frac{\partial^2 \Phi_t}$$

$$(2.10) \quad dw^* \frac{\partial^2 \Phi_t}{\partial w^* \partial w} dw = dw^* \left\{ \begin{pmatrix} dw \\ dz \end{pmatrix}^{-1} * \frac{\partial^2 \varphi_t}{\partial z^* \partial z} \left(\frac{dw}{dz} \right)^{-1} \right\} dw = dz^* \frac{\partial^2 \varphi_t}{\partial z^* \partial z} dz .$$

Then, substituting (2.9) and (2.10) into (2.7), we obtain

$$(2.11) \qquad \mathscr{R}\bigg[\Big\{\frac{\partial^2 \varphi_t}{\partial z^2} - \frac{\partial \varphi_t}{\partial z}\Big(\frac{dw}{dz}\Big)^{-1}\frac{d^2w}{dz^2}\Big\}dz^2 + dz^*\frac{\partial^2 \varphi_t}{\partial z^*\partial z}dz\bigg] > 0.$$

Thus we have the following Lemma.

LEMMA 2.1. For a fixed value t, a holomorphic univalent function w = f(z) of D have convex image Δ_t of D_t defined by (1.1) if and only if at every point z on the boundary ∂D_t

$$(2.12) \quad \mathscr{R} \bigg[\alpha^* \frac{\partial^2 K_{\scriptscriptstyle D}(z,\,\bar{z})}{\partial z^* \partial z} \alpha + \Big\{ \frac{\partial^2 K_{\scriptscriptstyle D}(z,\,\bar{z})}{\partial z^2} - \frac{\partial K_{\scriptscriptstyle D}(z,\,\bar{z})}{\partial z} \Big(\frac{df}{dz} \Big)^{-1} \frac{d^2 f}{dz^2} \Big\} \alpha^2 \bigg] > 0$$

for all unit vectors α satisfying

$$\mathscr{R}\left[rac{\partial K_{\scriptscriptstyle D}(z,\,ar{z})}{\partial z}lpha
ight]=0$$
 .

DEFINITION. We define the class \mathscr{D} of bounded schlicht domains D for which the kernel function $K_D(z, \bar{z})$ becomes infinite everywhere on the boundary ∂D , $K_D(0, 0) = \min_{z \in D} K_D(z, \bar{z})$ only at z = 0, $\partial K_D(z, \bar{z})/\partial z \approx 0$, $z \approx 0$, in D, and there is the holomorphic mapping g(z) of D into D satisfying g(0) = 0, for some one $z^{(1)}$ of two arbitrary points $z^{(1)}$, $z^{(2)}(\approx 0)$ in $D g(z^{(1)}) = z^{(2)}$, and $K_D(z, \bar{z}) \geq K_D(g(z), \overline{g(z)})$.

For example, let D be a minimal domain or representative domain with center at the origin which is the image domain of $E = \{\zeta : |\zeta| = (\sum_{j=1}^{n} |\zeta_j|^2)^{1/2} < 1\}$ under the biholomorphic mapping $z = \varphi(\zeta)$ satisfying $0 = \varphi(0)$. Then det $(d\varphi(\zeta)/d\zeta) \equiv \text{const.}$ when D is a minimal, domain and $d\varphi(\zeta)/d\zeta \equiv \text{const.}$ when D is a representative domain (see [4], Theorem 3.1). Hence, for any holomorphic mapping g(z) of D into Dsatisfying g(0) = 0, we have $K_D(z, \overline{z}) \geq K_D(g(z), \overline{g(z)})$ because $K_E(\zeta, \overline{\zeta}) \geq K_E(\Phi(\zeta), \overline{\Phi(\zeta)})$ under the holomorphic mapping $\Phi(\zeta) \equiv \varphi^{-1}[g(\varphi(\zeta))], \Phi(0) = 0$, of E into E. Also we have $K_D(0, 0) = \min_{z \in D} K_D(z, \overline{z})$ at only the origin. Moreover, for arbitrary points $z^{(1)}, z^{(2)} \in D$, if $|\varphi^{-1}(z^{(2)})| \leq |\varphi^{-1}(z^{(1)})|$, then

$$g(\pmb{z}) \, \equiv \, arphi \Bigl(rac{| arphi^{-1}(\pmb{z}^{(2)}) \, |}{| \, arphi^{-1}(\pmb{z}^{(1)}) \, |} \, \, U_2 \, U_1^{\, st} arphi^{-1}(\pmb{z}) \Bigr)$$

is a holomorphic mapping of D into D satisfying g(0) = 0 and $g(z^{(1)}) = z^{(2)}$ where

and U_1 , U_2 are unitary matrices. And we observe

$$\partial K_{\scriptscriptstyle D}(z,\,ar z)/\partial z\,=\,\partial K_{\scriptscriptstyle E}(\zeta,\,ar \zeta)/\partial \zeta \cdot (darphi(\zeta)/d\zeta)^{-1} \rightleftharpoons 0,\,z \rightleftharpoons 0\;,$$

because

$$\partial K_{\scriptscriptstyle E}(\zeta,\,ar\zeta)/\partial\zeta = (n\,+\,1)\zeta^*K_{\scriptscriptstyle E}(\zeta,\,ar\zeta)/(1\,-\,|\zeta|^2) \rightleftharpoons 0,\,\zeta \rightleftharpoons 0$$
 .

THEOREM 2.1. Let D be a bounded schlicht domain of the class \mathscr{D} . Suppose $f: D \to C^n$ is holomorphic, f(0) = 0, and $\det(df/dz) \rightleftharpoons 0$ for all $z \in D$. Then f is a univalent map of D onto a convex domain if and only if

$$(2.13) \quad \mathscr{R}\left[\alpha^* \frac{\partial^2 K_D(z, \bar{z})}{\partial z^* \partial z} \alpha + \left\{ \frac{\partial^2 K_D(z, \bar{z})}{\partial z^2} - \frac{\partial K_D(z, \bar{z})}{\partial z} \left(\frac{df}{dz} \right)^{-1} \frac{d^2 f}{dz^2} \right\} \alpha^2 \right] > 0$$

for all unit vectors α satisfying

$$\mathscr{R}\left[rac{\partial K_{\scriptscriptstyle D}(z,\,ar{z})}{\partial z}lpha
ight]=0$$
 .

Proof. The Bergman kernel function $K_D(z, \overline{z})$ of this domain D becomes infinite on ∂D . Then we define D_t and Δ_t by (1.1) and (2.2) respectively. If $\Delta = f(D)$ is schlicht and convex, then all Δ_t also become convex, i.e., for any $w^{(1)}$, $w^{(2)} \in \partial \Delta_t$,

$$(2.14) w^{\scriptscriptstyle (0)} = \tau w^{\scriptscriptstyle (2)} + (1-\tau) w^{\scriptscriptstyle (1)} \in {\mathcal A}_t, \quad 0 < \tau < 1 \; .$$

In fact, if we put $z^{(1)} = f^{-1}(w^{(1)}), z^{(2)} = f^{-1}(w^{(2)})$, then $K_D(z^{(1)}, \overline{z^{(1)}}) = K_D(z^{(2)}, \overline{z^{(2)}}) = t$. Setting

(2.15)
$$F(z) \equiv \tau f(g(z)) + (1 - \tau) f(z)$$

where g(z) is a holomorphic mapping of D into D satisfying g(0) = 0and $g(z^{(1)}) = z^{(2)}$, we observe that F(0) = 0 and $F(z) \prec f(z)$ because the mapping $f: D \to C^n$ is convex. Hence

$$\psi(z) \equiv f^{-1}(F(z))$$

is a holomorphic mapping of D into D, so we have

$$K_{\scriptscriptstyle D}(\pmb{z}^{\scriptscriptstyle (1)}, \overline{\pmb{z}^{\scriptscriptstyle (1)}}) \geqq K_{\scriptscriptstyle D}(\psi(\pmb{z}^{\scriptscriptstyle (1)}), \overline{\psi(\pmb{z}^{\scriptscriptstyle (1)})}) = K_{\scriptscriptstyle D}(f^{-1}(w^{\scriptscriptstyle (0)}), \overline{f^{-1}(w^{\scriptscriptstyle (0)})})$$
 .

Consequently $f^{-1}(w^{(0)}) \in D_i$, so $w^{(0)} \in \Delta_i$. Thus, by Lemma 2.1, (2.13) holds for all $z \in D$. Contrary, if (2.13) is realized for all $z \in D$, every Δ_i is convex. Therefore we can conclude that the mapped domain Δ is convex.

Particularly if D is a unit hypersphere, then

$$K_{_D} \,\, (\pmb{z},\, \overline{\pmb{z}}) = rac{n!}{\pi^n (1-|\pmb{z}|^2)^{n+1}} \,\, .$$

Thus we have the following result by Theorem 2.1.

THEOREM 2.2. Let D be the unit hypersphere and let $f: D \rightarrow C^n$ be holomorphic, f(0) = 0 and $det(df/dz) \neq 0$ for all $z \in D$. Then f(D) is convex if and only if

$$(2.17) \qquad \qquad \mathscr{R}\bigg[|Az|^2 + z^* \Big(\frac{df}{dz}\Big)^{-1} \frac{d^2f}{dz^2} (Az \times Az)\bigg] \ge 0 ,$$

where

$$A=egin{pmatrix} A_1&0\&\ddots\&0&A_n \end{pmatrix}$$
, $A_j\geqq 0, j=1,\,\cdots,\,n$,

and the equality holds only if Az = 0.

Proof. We can compute as follows setting $K = K_D(z, \bar{z})$:

(2.18)
$$\partial K/\partial z = (n+1)\frac{z^*}{1-|z|^2}K$$
,

(2.19)
$$\partial^2 K / \partial z^2 = (n+1)(n+2) \frac{(z imes z)^*}{(1-|z|^2)^2} K$$
,

(2.20)
$$\partial^2 K / \partial z^* \partial z = (n+1) \frac{(1-|z|^2)E + (n+2)zz^*}{(1-|z|^2)^2} K$$
.

Then, from (2.13), we have

$$\begin{aligned} \mathscr{R} \bigg[(n+2)\{|z^*\alpha|^2+(z^*\alpha)^2\} \\ &+(1-|z|^2)\Big\{1-z^*\Big(\frac{df}{dz}\Big)^{-1}\frac{d^2f}{dz^2}\alpha^2\Big\} \bigg] > 0 \;. \end{aligned}$$

Since

$$|z^*\alpha|^2 + \mathscr{R}(z^*\alpha)^2 = 0$$

from

$$\mathscr{R}\left[rac{\partial K}{\partial z}lpha
ight]=0, \, \mathrm{i.e.}, \, \mathscr{R}[z^*lpha]=0$$
 ,

we conclude

(2.22)
$$\mathscr{R}\left[1-z^*\left(\frac{df}{dz}\right)^{-1}\frac{d^2f}{dz^2}\alpha^2\right]>0.$$

Moreover, under the condition $\mathscr{R}[z^*\alpha] = 0$ it becomes that $z^*\alpha = ip(p \ge 0, i = \sqrt{-1})$, because both α and $-\alpha$ are satisfy (2.22). Therefore we can put $\alpha = i(Az/|Az|)$ when $Az \ge 0$, where

$$A = \begin{pmatrix} A_1 & 0 \\ \ddots & \\ 0 & A_n \end{pmatrix}, \ A_j \ge 0, (j = 1, \dots, n),$$

are chosen arbitrarily. Thus we obtain (2.17) from (2.22).

REMARK 1. Suffridge's Theorem 5 [11] shows that

$$F=rac{df}{dz}\Big[A^2z+\Big(rac{df}{dz}\Big)^{\!-\!1}rac{d^2f}{dz^2}(Az imes Az)\Big]\!ig/2,\ w=\Big(rac{df}{dz}\Big)^{\!-\!1}F\!\in\!\mathscr{P}_2$$
 ,

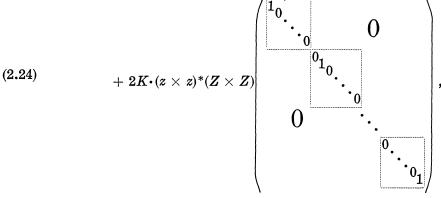
i.e.,

is the necessary and sufficient condition for convexity.

Next, if D is the polydisk $\{z \in C^n : |z_j| < 1, j = 1, \dots, n\}$, the kernel function $K_D(z, \overline{z})$ becomes $1/\pi^n (1 - |z_1|^2)^2 \cdots (1 - |z_n|^2)^2$. Hence

$$(2.23) \qquad \qquad \partial K/\partial z = 2K \cdot z^* Z ,$$

 $\partial^2 K / \partial z^2 = 4 K \boldsymbol{\cdot} (z imes z)^* (Z imes Z)$



$$(2.25) \qquad \qquad \partial^2 K / \partial z^* \partial z = 4K \cdot Z z z^* Z + 2K \cdot Z^2$$

where

$$Z = egin{pmatrix} 1/(1 \, - \, |\, z_{_1}|^2) & 0 \ & \ddots & \ 0 & 1/(1 \, - \, |\, z_{_n}|^2) \end{pmatrix}.$$

Substituting formally (2.23), (2.24), and (2.25) into (2.13) and setting

$$\mathscr{R}(z^*Zlpha)^2+|z^*Zlpha|^2=0 \,\, ext{and}\,\,lpha=irac{Z^{-1/2}Az}{|Z^{-1/2}Az|}$$

where

$$Z^{_{-1/2}}=egin{pmatrix} \sqrt{1-|z_1|^2}&0\&\ddots\&\&0&\sqrt{1-|z_n|^2}\end{pmatrix}$$
 ,

in place of the condition

$$\mathscr{R}\!\left[rac{\partial K_{\scriptscriptstyle D}(z,\,ar{z})}{\partial z}lpha
ight]=2K\!\cdot\mathscr{R}[z^*Zlpha]=0$$
 ,

we arrive at

$$(2.26) \quad \mathscr{R}igg[|Az|^2 + z^*Z \Bigl(rac{df}{dz} \Bigr)^{-1} rac{d^2f}{dz^2} (Z imes Z)^{-1/2} (Az imes Az) \Bigr] \geqq 0 \; ,$$

where the equality holds only if Az = 0.

THEOREM 2.3. Let D be the polydisk and let $f: D \to C^n$ be holomorphic, f(0) = 0 and det $(df/dz) \approx 0$ for all $z \in D$. Then f is a univalent map of D onto a convex domain if and only if the condition (2.26) is fulfilled.

Proof. If f is a convex mapping, then by Suffridge's Theorem 3 [11] $f = T(\varphi_1(z_1), \dots, \varphi_n(z_n))'$ where T is a nonsingular linear transformation and each $\varphi_j(z_j)$ is a univalent mapping from the unit disk in the plane onto convex domain in the plane. Then we have

Substituting this into the left side of (2.26), we get

(2.28)
$$\mathscr{R}\left[\sum_{j=1}^{n} A_{j}^{2} |z_{j}|^{2} \{1 + z_{j} \varphi_{j}^{\prime \prime}(z_{j}) / \varphi_{j}^{\prime}(z_{j})\}\right].$$

Hence from the hypothesis $\mathscr{R}[1 + z_j \mathcal{P}'_j(z_j)/\mathcal{P}'_j(z_j)] > 0, j = 1, \dots, n$, we get the inequality (2.26).

We will prove the converse. Fix $k, 1 \leq k \leq n$ and choose $A_k = 1, A_k = 0, h \approx k, 1 \leq h \leq n$. From (2.26)

(2.29)
$$\mathscr{R}\left[|z_k|^2 + \frac{z_k^2(1-|z_k|^2)}{\det J}\sum_{j=1}^n \frac{\overline{z}_j}{1-|z_j|^2}C_j^{k^2}\right] \ge 0$$
,

where J = df/dz and $G_j^{k^2}$ is obtained from det J by replacing the *j*th column by the column $\partial^2 f/\partial z_k^2 = (\partial^2 f_1/\partial z_k^1, \dots, \partial^2 f_n/\partial z_k^2)'$. For $l, 1 \leq l \leq n, l \approx k$, setting $|z_j| < 1/2, j \approx l, 1 \leq j \leq n, (1 - |z_k|^2)/(1 - |z_l|^2)$ tends to infinity when $|z_l| \to 1$. Then we must have always

(2.30)
$$\mathscr{R}\left[\frac{1}{\det J}\frac{z_k^2}{z_l}G_l^{k^2}\right] \ge 0$$

from the condition (2.29). Here, since it becomes 0 at $z_k = 0$, we see that $G_l^{k^2} \equiv 0$ for each $l, l \rightleftharpoons k, 1 \leq l \leq n$. Next, if we set $A_k = A_l = 1, A_m = 0, m \neq k, l$, then (2.26) becomes as follows from the above results:

$$(2.31) \qquad \mathscr{R} \left[|z_k|^2 + |z_l|^2 + \frac{|z_k|^2 z_k G_k^{k^2}}{\det J} + \frac{|z_l|^2 z_l G_l^{l^2}}{\det J} + \frac{2z_k z_l \sqrt{(1 - |z_k|^2)(1 - |z_l|^2)}}{\det J} \sum_{j=1}^n \frac{\overline{z}_j G_j^{kl}}{(1 - |z_j|^2)} \right] \ge 0.$$

For $s, 1 \leq s \leq n$, setting

$$|z_{k}| < 1/2, \, h \rightleftharpoons s, 1 \leq h \leq n, \; rac{\sqrt{(1 - |z_{k}|^{2})(1 - |z_{l}|^{2})}}{1 - |z_{s}|^{2}}$$

tends to infinity when $|z_s| \rightarrow 1$. Then we must have always

(2.32)
$$\mathscr{R}\left[\frac{1}{\det J}\frac{z_k z_l}{z_s}G_s^{kl}\right] \ge 0.$$

Since it attains to the minimum value 0 at $z_k z_l = 0$, we must have $G_s^{kl} \equiv 0$ for each s. Thus we arrive at the conditions of the Theorem 3 of Suffridge following his methods. So we can conclude that f is a convex mapping.

3. Starlike mappings. We now consider univalent functions of D which map D onto a starlike domain with respect to 0. First we set up the definition of starlikeness following Suffridge:

DEFINITION. A holomorphic mapping $f: D \to C^n$ is starlike if f is univalent, f(0) = 0 and $(1 - \tau)f \prec f$ for all $\tau \in I = [0, 1]$.

THEOREM 3.1. Let D be a bounded schlicht domain for which the kernel function $K_D(z, \overline{z})$ becomes infinite everywhere on the boundary, $\frac{K_D(0, 0) = \min_{z \in D} K_D(z, \overline{z})}{g(z)}$ at only the origin, and $K_D(z, \overline{z}) \geq K_D(g(z), \overline{g(z)})$ for any holomorphic mapping g(z) of D into D satisfying g(0) = 0. Suppose $f: D \to C^n$ is holomorphic, f(0) = 0 and det $(df/dz) \approx 0$ for all $z \in D$. Then f is starlike if and only if

(3.1)
$$\mathscr{R}\left[\frac{\partial K_{D}(z,\bar{z})}{\partial z}\left(\frac{df}{dz}\right)^{-1}f\right] > 0$$

for all $z \in D$, $z \rightleftharpoons 0$.

REMARK 2. Domains which belong to the above mentioned class \mathscr{D} satisfy the conditions of this Theorem.

Proof. If f is starlike, then all image Δ_t are starlike, that is, for all $w^{(1)} \in \partial \Delta_t$ we have $w^{(0)} = (1 - \tau)w^{(1)} \in \Delta_t$, $\tau \in I$. In fact, if we set $z^{(1)} = f^{-1}(w^{(1)})$, $K_D(z^{(1)}, \overline{z^{(1)}}) = t$ and $\psi(z) \equiv f^{-1}((1 - \tau)f(z))$, then we obtain

$$(3.2) K_{\scriptscriptstyle D}(z^{\scriptscriptstyle (1)}, \overline{z^{\scriptscriptstyle (1)}}) \geqq K_{\scriptscriptstyle D}(\psi(z^{\scriptscriptstyle (1)}), \overline{\psi(z^{\scriptscriptstyle (1)})}) = K_{\scriptscriptstyle D}(f^{-1}(w^{\scriptscriptstyle (0)}), \overline{f^{-1}(w^{\scriptscriptstyle (0)})}) ,$$

because $\psi(z)$ is a mapping of D into D and $\psi(0) = 0$. Then it holds that $f^{-1}(w^{(0)}) \in D_t$ which yields $w^{(0)} \in \mathcal{A}_t$. Now, since

$$arPsi_{\iota} \Bigl(w + arepsilon rac{\partial arPsilon_{\iota}}{\partial w^{st}} \Bigr) = 2arepsilon \Bigl| rac{\partial arPsilon_{\iota}}{\partial w^{st}} \Bigr|^{2} + 0 (arepsilon^{2}) > 0$$

when $\varepsilon > 0$ is sufficiently small and $w \in \partial \varDelta_t$, $N_w \equiv \partial \Phi_t / \partial w^*$ is the outward normal vector at the boundary point $w \in \partial \varDelta_t$. Hence $(1 - \tau)w \in \varDelta_t (w \in \partial \varDelta_t, 0 < \tau \leq 1)$ implies

(3.3)
$$\cos\left(-N_{w}, -w\right) = \mathscr{R}\left[\frac{\partial \Phi_{t}}{\partial w}w\right] / \left|\frac{\partial \Phi_{t}}{\partial w^{*}}\right| |w| > 0$$

which yields (3.1) by virtue of

$$\frac{\partial \Phi_t}{\partial w} w = \frac{\partial K}{\partial z} \left(\frac{df}{dz} \right)^{-1} f(z) \; .$$

Conversely, if (3.1) holds, then we conclude $(1 - \tau)w \in \Delta_t$, $w \in \partial \Delta_t$, $0 < \tau < \varepsilon(<1)$ for some $\varepsilon > 0$ by (3.3). Moreover, we can conclude $(1 - \tau)w \in \Delta_t$, $w \in \partial \Delta_t$, $0 < \tau \leq 1$, because, if $(1 - \tau_1)w \equiv w^{(1)} \in \partial \Delta_t$ and $(1 - \tau)w \in \Delta_t$, $0 < \tau < \tau_1$ for some $\tau_1 < 1$, then $(1 - \tau)w^{(1)} \notin \Delta_t$, $w^{(1)} \in \partial \Delta_t$ which is a contradiction. Then the image domain Δ of D becomes starlike.

COROLLARY 3.1. Let D be the unit hypersphere, and let $f: D \rightarrow C^n$ be holomorphic, f(0) = 0 and det $(df/dz) \approx 0$ for all $z \in D$. Then f(z) is starlike if and only if

(3.4)
$$\mathscr{R}\left[z^*\left(\frac{df}{dz}\right)^{-1}f\right] > 0$$

for all $z \in D$, $z \rightleftharpoons 0$.

Proof. Substituting (2.18) into (3.1), we obtain the required result.

REMARK 3. The conditions of Suffridge's Theorem 4 [11]: $f = Jw, w \in \mathscr{P}_2$ are the same as (3.4).

KEIZO KIKUCHI

References

1. S. Bergman, *The Kernel Function and Conformal Mapping*, Mathematical Surveys, Vol. V., Amer. Math. Soc., New York, (1950).

2. B. A. Fuks, Special chapters of the theory of analytic functions of several complex variables, Moscow (1963), English Translation AMS (1966).

3. R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J, (1965).

4. Kyong T. Hahn, Some properties of relative invariants on bounded domains, Duke Math. J., **34** (1967).

5. S. Higuchi, On the distribution theorem of holomorphic mappings in several complex variables, Sci. Rep. Tokyo Kyoiku D., A, Vol. 8 (1963).

6. K. Kikuchi, On starlike and convex-like domains of pseudo-conformal mappings in several complex variables, Math. Rep. Tokyo Kyoiku D., 1 (1964), 15-17.

7. _____, Various m-representative domains in several complex variables, Pacific J. Math., **33**, No. 3 (1970).

8. T. Matsuno, Star-like theorems and convex-like theorems in the complex vector space, Sci. Rep. Tokyo Kyoiku D., Sect. A, 5 (1955).

9. S. Ozaki, I. Ono and T. Umezawa, General minimum problems and representative domains, Sci. Rep. Tokyo Kyoiku D., Sect. A, 5 (1955).

10. M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math., 11 (1961), 315-324.

11. T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., **33** (1970).

Received October 21, 1972.

KANAGAWA UNIVERSITY, YOKOHAMA, JAPAN

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California 94305

C. R. HOBBY

University of Washington Seattle, Washington 98105 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH

B.H. NEUMANN

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

K. YOSHIDA

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article: additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$48.00 a year (6 Vols., 12 issues). Special rate: \$24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Pacific Journal of Mathematics Vol. 44, No. 2 June, 1973

Tsuyoshi Andô, Closed range theorems for convex sets and linear liftings	393
Richard David Bourgin, <i>Conically bounded sets in Banach spaces</i>	411
Robert Jay Buck, <i>Hausdorff dimensions for compact sets in Rⁿ</i>	421
Henry Cheng, A constructive Riemann mapping theorem	435
David Fleming Dawson, Summability of subsequences and stretchings of	
sequences	455
William Thomas Eaton, A two sided approximation theorem for 2-spheres	461
Jay Paul Fillmore and John Herman Scheuneman, <i>Fundamental groups of compact</i>	
complete locally affine complex surfaces	487
Avner Friedman, Bounded entire solutions of elliptic equations	497
Ronald Francis Gariepy, <i>Multiplicity and the area of an</i> $(n - 1)$ <i>continuous</i>	
mapping	509
Andrew M. W. Glass, Archimedean extensions of directed interpolation groups	515
Morisuke Hasumi, <i>Extreme points and unicity of extremum problems in</i> H^1 on	
polydiscs	523
Trevor Ongley Hawkes, On the Fitting length of a soluble linear group	537
Garry Arthur Helzer, Semi-primary split rings	541
Melvin Hochster, Expanded radical ideals and semiregular ideals	553
Keizō Kikuchi, Starlike and convex mappings in several complex variables	569
Charles Philip Lanski, On the relationship of a ring and the subring generated by its	
symmetric elements	581
Jimmie Don Lawson, Intrinsic topologies in topological lattices and	
semilattices	593
Roy Bruce Levow, <i>Counterexamples to conjectures of Ryser and de Oliveira</i>	603
Arthur Larry Lieberman, Some representations of the automorphism group of an	
infinite continuous homogeneous measure algebra	607
William George McArthur, G_{δ} -diagonals and metrization theorems	613
James Murdoch McPherson, Wild arcs in three-space. II. An invariant of	
non-oriented local type	619
H. Millington and Maurice Sion, <i>Inverse systems of group-valued measures</i>	637
William James Rae Mitchell, <i>Simple periodic rings</i>	651
C. Edward Moore, <i>Concrete semispaces and lexicographic separation of convex</i>	001
sets	659
Jingyal Pak, Actions of torus T^n on $(n + 1)$ -manifolds M^{n+1}	671
Merrell Lee Patrick, <i>Extensions of inequalities of the Laguerre and Turán type</i>	675
Harold L. Peterson, Jr., <i>Discontinuous characters and subgroups of finite index</i>	683
S. P. Philipp, Abel summability of conjugate integrals	693
R. B. Quintana and Charles R. B. Wright, <i>On groups of exponent four satisfying an</i>	075
Engel condition	701
Marlon C. Rayburn, <i>On Hausdorff compactifications</i>	707
Martin G. Ribe, <i>Necessary convexity conditions for the Hahn-Banach theorem in</i>	101
metrizable spaces	715
Ryōtarō Satō, On decomposition of transformations in infinite measure spaces	733
Peter Drummond Taylor, Subgradients of a convex function obtained from a	155
directional derivative	739
James William Thomas, A bifurcation theorem for k-set contractions	749
Clifford Edward Weil, A topological lemma and applications to real functions	757
Stephen Andrew Williams, A nonlinear elliptic boundary value problem	767
Pak-Ken Wong, *-actions in A*-algebras	775
$1 \text{ as ison wong, } \pi^{-u} (u) u u u u = u g c v u $	-15