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INTRINSIC TOPOLOGIES IN TOPOLOGICAL
LATTICES AND SEMILATTICES

JiMMIE D. LAWSON

This paper demonstrates that the topology of a compact
topological lattice or semilattice can be defined intrinsically, i.e.,
in terms of the algebraic structure. Properties of various
intrinsic topologies are explored.

AS%variety of ways have been suggested for defining topologies
from the algebraic structure of a lattice (see e.g. [4] or [12]). If one
is given a topological lattice, a natural question is whether the given
topology agrees with one or more of these intrinsic topologies. Some
results of this nature may be found in [5] or [13]. In this paper we
show that the topology of a compact topological lattice or semilattice
can always be defined intrinsically; these results extend to a large
class of locally compact lattices.

A topological lattice is a lattice L equipped with a Hausdorff topo-
logy for which the operations of join and meet are continuous as
mappings from L x L into L. A topological semilattice is a (meet)
semilattice together with a Hausdorff topology for which the meet
operation is continuous.

If A is a subset of a lattice or semilattice, we define

L(A) ={y:y <2 for some x¢c A}
and
M(A) = {z:2 <z for some xeA}.

A subset B of a semilattice is an ideal if L(B) = B. A set A is
convex if ,zc A and x <y <z imply ye A. A lattice L is locally
convex if it has an open base of convex sets. A closed interval is a
set of the form

[a,0] ={z:a <2< b},

For the definition of undefined lattice properties employed in this
paper, the reader is referred to [4].
The topological closure of a set A will be denoted by A*.

1. Intrinsic topologies. The following intrinsic topologies on a
lattice L are considered in this paper.

(1) The interval topology (I). If L has a 0 and 1, the interval
topology is defined by taking as a subbase for the closed sets all sets
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{L(x): x € L} and all sets {M(x): x € L}. If L does not have universal
bounds, then a set KcC L is closed if KN J[a,d] is closed in the
interval topology of the sublattice [a, b] for all a, b with a < b.

(2) The order topology (0). A net {#,} in L is said to order-
converge to « if there exist a monotonic ascending net {t,} with z =
sup t,(t, | ) and a monotonic descending net {u,} with z = inf w,(u, | x)
such that for all «, ¢, < 2, < .. A subset A of L is closed in the
order topology if {x,} < A and z, order converges to x imply that
xe A. Note that if x, order-converges to %, then for any cofinal sub-
set of the domain directed set it remains true that z, order-converges
to x. Hence the order topology may be defined equivalently by de-
claring a set U of L open if e U and #, order-converges to x imply
2, is residually in U.

(3) The convex-order topology (CO). A subset U of L is a basic
open set for the convex-order topology if (i) U is convex and (ii) if
x, order-converges to «, € U, then g, is residually in U. Again, the
second condition is equivalent to U being open in the order topology.

We now list some easily derived properties of these intrinsic topo-
logies.

ProposITION 1. (1) The CO topology is locally convex.

(2) The 0 topology is finer than the CO topology.

(38) Any homomorphism from L to a locally convex lattice that
s continuous in the 0 topology is continuous in the CO topology.

(4) If the 0 topology is locally convex, then it agrees with the
CO topology.

PROPOSITION 2. The 0 topology is finer than the I topology.
Proof. [4, p. 251].

We shall call a topology on a lattice agreeable if (i) the topology
is locally convex and (ii) if t,{ @ or ¢, | « then ¢, converges to z in
the topology.

ProrosITiON 3. If T is an agreeable topology on a lattice L, then
the CO topology is finer than T.

Proof. Since 7 is locally convex, it suffices to show that if a
convex set U is in 7, then it is open in the CO topology. Suppose
that 2, is a net that order-converges to x¢ U. Then there exist
t. | 2, %, |  such that for all a, t, < 2, < u,. Since 7 is agreeable, t,
and u, are residually in U, and since U is convex x, is residually
in U.
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2. The interval topology in complete lattices. The interval
topology has received rather through investigation. In this section
we summarize results concerning its relationship to compact topologi-
cal lattices.

PROPOSITION 4. Let L be a complete lattice.

(1) L is compact in the interval topology.

(2) If (L,7) ts a topological lattice, then T is finer than the
interval topology.

(8) If L vs Hausdorff in the interval topology, them the order
and tnterval topology coincide.

Proof. (1) Thisis a result of O. Frink. A proof may be found
[4, p. 250].

(2) Since in a topological lattice M(x) and L(x) are closed for
each x e L, and these sets are a subbasis for the closed sets of the
interval topology, the result follows.

(3) See [3] or [15].

The next theorem contains the central results on compact topologi-
cal lattices with the interval topology.

THEOREM 5. The following are equivalent im a compact topolo-
gical lattice (L, 7):

(1) (L, I) is Hausdorf.

(2) ==0=1=CO.

(3) (L,7) has a basis of open convex sublattices.

(4) (L,7) has a base of meighborhoods at each
point of closed inmtervals.

(5) If y £ x then there exists z such that x is in the interior
of L(z) and y £ 2, and dually.

(6) Ewvery net has an order-convergent subnet.

Proof. The equivalence of 3, 4, 5 has been shown by E. B. Davies
[6, Theorem 5]. K. Atsumi has shown the equivalence of 1 and 6
[3, Theorem 3]. D. Strauss has shown the equivalence of 1 and 3
[13, Theorem 5]. Conditions 3 and 1 together with part 2 of Proposi-
tion 4 imply ¢ = I. Part 3 of Proposition 4 further implies I = 0.
Since CO is trapped between I (since I is locally convex) and 0, it
also agrees with them. Hence Conditions 3 and 1 imply 2. Condition
2 easily implies Condition 1 since 7 is Hausdorff. Hence the six con-
ditions are equivalent.

We remark that if (L, 7) is compact topological lattice of finite
breadth, then ¢ = I [5]. Hence all the equivalences of Theorem 5
apply to (L, 7). It is known that a finite-dimensional compact con-
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nected topological lattice has finite breadth [9].

For complete distributive lattices one obtains a purely algebraic
description of lattices which are topological lattices in the interval
topology.

THEOREM 6. Let L be a distributive lattice. The following are
equivalent:

(1) L is complete and completely distributive.

(2) L 1is complete and (L, I) is Hausdorf.

(8) L is complete and L can be embedded in a product of unit
intervals (under coordinatewise order) by an latiice isomorphism which
preserves all joins and all meets.

(4) L admits a topology T for which (L, t) is a compact topolo-
gical lattice with enough continuous lattice homomorphisms into the
unit interval (with usual order) to separate points.

(5) L admits a topology T for which (L, 7) is a compact topolo-
gical lattice with a basis of open convex sublattices.

Proof. Theorems 4 and 5 of [6] imply the equivalence of Condi-
tions 4 and 5. Strauss has shown the equivalence of Conditions 1
and 2 [13, Theorem 7] and the implication of Condition 3 by Condi-
tion 2 [13, Theorem 6]. It is readily seen that Condition 3 implies
that L is a closed subset in the product topology of unit intervals
(where the unit internal carries its normal topology); hence L is a
compact topological lattice in its relative topolopy. Since a product
of intervals has a basis of open convex sublattices, the intersection
of this basis with L endows L with such a basis. Hence Condition 3
implies Condition 5. That Condition 5 implies Condition 2 follows
from Theorem 5 above.

THEOREM 7. Let B be a Boolean lattice. The following are equiva-
lent:

(1) B is complete and completely distributive.

(2) B admits a topology T for which (B, T) is a compact topologi-
cal lattice.

(3) B 1is isomorphic with the Boolean lattice of subsets of some set.

(4) B s isomorphic to a product of {0,1} with 0 < 1.

(5) B s complete and (B, I) is Hausdorf.

Proof. By Theorem 6, Conditions 1 and 5 are equivalent and
imply Condition 2. Strauss has shown Condition 2 implies Condition
1 [13, Theorem 1].

Tarski has shown that Condition 1 implies Condition 3 (see [14]
or [4, p. 119]). If B is isomorphic to all subsets of a set X, then it
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can be identified with {0, 1}* by a lattice isomorphism. Hence Condi-
tion 3 implies Condition 4. Since any product of complete chains is
completely distributive [4, p. 120], Condition 4 implies Condition 1.

3. The convex-order topology. In the preceding section we
gave conditions under which a topological lattice had the interval
topology and for which all the intrinsic topologies collapsed to this
topology. The conditions for a topological lattice to have the order
or convex-order topologies are much more general.

THEOREM 8. Let (L,7) be a topological lattice with T a regular,
agreeable topology. If each xe€ L has a complete meighborhood, then
7 = CO. (A subset is complete if every increasing met in the subset
has a sup in the subset, and dually).

Proof. By Proposition 3, the CO topology is finer than z.

Conversely, let U be a basic open convex set in the CO topology.
If Ue¢r, then there exists # in U and a net {x,} converging to « in
(L, ) such that x,¢ U for all a.

Let N be a complete neighborhood of 2 in 7. Let D be the set
of all sequences {W,:n =1, 2, ...} satisfying for all =,

(i) ceW, W,=W}FCN

i) (W, vVW,)U(W,AW,)CcW.,.

If {(w,}, {V.,}eD, we define {W,} =(V,} if W,cV, for all n. It is
straightforward to verify that (D, <) is a directed set. If {W,}e D,
let W= NW,. Condition (i) implies xe Wc N and W is closed.
Condition (ii) implies W is a sublattice. Since 7 is agreeable, N is
complete, and W is closed, W has a largest element w* and a
smallest element w~.

If V is an closed neighborhood of # contained in N, then employing
the regularity of  and the continuity of Vv and A, one can construct
{V,}eD such that V= V,. Hence v"eNV,c V. Thus the net
{w*: {W,} e D} is a monotonic decreasing net which converges to z
in the z-topology. It follows from the continuity of the lattice opera-
tions that {w*} | «. Dually {w™}{«. Hence residually many of the
{w*} and {w~} are in U. Fix {W,} e D such that w*, w—e U.

For each n, pick %, ¢ {x,} N W,. If m > n, then

m

V z,¢€ k\z W, <:Y: Wk) V Waat V Way

k=n

m—3

C \k\_/ Wk> NVWhasoVWy'o CoooC W,y

Thus for all m > n, 9, = Vir.2.€ W,_,.. Since W,_,C N, W,_, is
closed, N is complete, and the sequence ¥, is monotonic increasing,
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there exists a,€ W,_, such that a, = sup{x,: k¥ = n}. The sequence
a, 18 a decreasing sequence contained in N, and hence converges to
a = inf {a,}. Since the sequence {a,} is eventually in each W, and
each W, is closed, we conclude ae W = N W,. Hence a < wt.

Dually let b, = inf{x,:k = n} and b = sup{d,}. Then w™ =< b.
Since b, < a, for all n,w" <b<a < w*. Since U is convex, a,be
U. Since a, | a and b, 1b and a, be U, there exists m such that a,,
b,e U. Since b, <2, < a, we have z,c U. However, this is in
contradiction to z, €{x,} and z,¢ U for all a.

The next lemma is a standard and easily proved result about
topological lattices (see [7] or [13]).

LEMMA 9. Let K be a compact subset of a topological lattice. If
{x,} is a monotonically increasing (decreasing) net in K, then the met
converges to its sup (inf).

THEOREM 10. Let L be a topological lattice which is (1) compact
or (ii) locally compact and connected. Then L has the convex order
topology.

Proof. If L is compact, it is well known via the work of Nachbin
[10] that L is locally convex. This fact together with Lemma 9
implies the topology on L is agreeable and L is complete. The con-
clusion then follows from Theorem 8.

If L is locally compact and connected, Anderson has shown L is
locally convex [1]. Suppose u, | . Let U be a compact neighborhood
of z. Since [z, u,] = (L A u,) V x is connected, if u, is not residually
in U, then cofinally there exists y, in the boundary of U such that
< Yo < U,. By compactness of U, we can assume by picking subnets
if necessary that {y,} converges to some y in the boundary of U.

Fix some a. If 8> a, then y; < up < u,. Thus ¥y A U, = ¥Ys
for all g > a for which y, is defined. Since y; A 4, converges to y A
u,, we have y A 4, =y, i.e., ¥y < u, for all 4, not in U. Since z =
inf {u.}, ¥y < x. Similarly, since each y, = x, by continuity of A,y =
2. Hence y = 2. But this is impossible since z is not in the boundary
of U. Thus we conclude the topology of L is agreeable. Since L is
locally compact, Lemma 9 implies each point has a complete neighbor-
hood. Hence by Theorem 8, L has the convex order topology.

It is a consequence of the preceding theorem that a lattice admits
at most one topology for which it is a compact (or locally compact
connected) topological lattice, namely the convex order topology. This
theorem also allows a nice algebraic condition for continuity of homo-
morphisms between compact (or locally compact connected) topological
lattices. It follows that any isomorphism between such lattices is a
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homeomorphism.

ProprosITION 11. Let L and K be lattices, f a homomorphism from

L into K. If w,|at,] ) implies f(us) | f&) (f(t) 11(®), then f is
continuous if L and K are given the convex order topologies.

Proof. Let U be a basic convex, open set in K. Then f(U) is
convex in L. Suppose x ¢ f~(U) and {x,} order converges to x. Then
there exists u, | , t, | « such that for all «, u, =2, =¢,. Then f(u,) =
f(x) = f(t.) and by hypothesis f(u,) | f(®) and f(t,) | f(x). Hence since
U is open f(x,) is eventually in U. Thus =z, is eventually in f~(U).
Hence f~(U) is open and f is continuous.

It is shown in [13] that if (L, 7) is a topological lattice for which
7 is a first countable regular topology for which every point has a o-
complete neighborhood, then 7 is finer than the order topology. If
further, © is agreeable, Propositions 2 and 8 show 7 is the order
topology. Since in the proof of Theorem 10, it was shown that the
topology of a locally compact connected or a compact topological
lattice is agreeable, it follows that

THEOREM 12. Let L be a compact or locally compact conmnected
topological lattice which is metrizable. Then L has the order topology.

The theorem for the compact case appears in [7] and [13]. It
is not known whether the theorem remains true without metrizability.

4, Compact semilattices. In this section we give an internal
characterization of the topology of a compact semilattice. If S is a
semilattice we say I is an ideal of S if IL(I) = I. If A is an ideal
in S, define A* by ze A" if there exists a net x, in 4 such that
2, T .

THEOREM 18. Let S be a compact topological semilattice. Amn
wdeal A of S s closed if and only if A = A*.

Proof. Suppose A is closed. If xe A, then the constant net x is
a monotonic increasing net increasing to x. Hence AcC A*. If =z,
isanet in A and z, !z, then x, converges to # in the topology of S
(a monotonically increasing net converges to its sup in a compact
topological semilattice). Hence xe A. Thus A = A*.

Conversely let A = A*. Let ye A*. Let D be the set of all
sequences {W,:n =1,2, ..., } satisfying for all =,

(i) 2ze W2, W,=W;

i)y W.A W,cW,..



600 J. D. LAWSON

If {w.,}, {V.}eD, we define {W,} ={V,} if W,cV, for all n. Then
(D, <) is a directed set. If {W,}eD, let W= NW,. Then W is
closed and is a subsemilattice. Hence W has a minimal element w™.
As in the proof of Theorem 8, {w™:{W,}e D} is a monotonically
increasing net and w1 .

Fix a specific w~ associated with a {W,}. Since y e 4*, for each
n there exists b, € W,NA. Letd,= Ans.b.. Then d, is an increasing
sequence, each 0, € A since A is an ideal, and as in the proof of Theorem
8,0,10eW. Since A = A*,dc A. Since w~ <03 and A is an ideal,
w~ e A. But since the net {w™} 1y, we conclude yc A. Hence A is
closed.

Theorem 13 makes possible an algebraic description of the closure
of an ideal in a compact topological semilattice.

COROLLARY 14. Let I be an ideal of a compact topological sems-
lattice S. Then I* = I*+.

Proof. Since I I*, we have I* < (I*)*. By Theorem 13, (I*)*=
I*. Hence It c I*. A repetition of the argument with I* replacing
I shows It C I'*,

Let yeI* and # <y. Then there exists a net {y,} in I such
that y.1v. Then 2 Ay, 12 and 2 A y,eI for all @. Thus zeI*;
hence we have shown It is an ideal. It is essentially shown in the
proof of Theorem 13 that if ye I'*, then y e (L(I*))*. Since I* is an
ideal L(I*) = I*. Thus yeI**. Hence I** = I*,

A principal application of Theorem 18 is an algebraic or intrinsie
method of defining the topology of a compact topological semilattice.
It is known that if S is a compact topological semilattice, then the
space of all closed ideals S’ of S ordered by inclusion and considered
as a subspaces of 25 is a compact distributive topological lattice;
furthemore the mapping sending s into L(s) is a topological isomor-
phism from S into S’ (see e.g. [8, Theorem 1.2]). Since the closed
ideals of S can be identified algebraically as those ideals for which
I = I and since the topology of S’ can be defined algebraically as the
convex-order topology (Theorem 10), the topology of S is determined
by its algebraic structure.

THEOREM 15. Let f be a homomorphism from a compact topologi-
cal semilattice S onto a compact topological semilattice T. If f has
the property that for x, |, f(w) 1 f(®) and for y. |y, f(y.) | (), then
f s continuous.

The proof of this theorem breaks down conveniently into several
steps.
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(i) If te T, f'(t) has a least element. Since f is a homomor-
phism f~'(t) is a semilattice. Hence it is a monotonically decreasing
net indexed by itself. Since S is compact, the net monotonically
decreases to some s. Hence by hypothesis f(s) = ¢t. Thus s is a least
element for f'(¢).

(@) If A is an ideal, f{4)" = f(4%). Suppose yef(4)*. Then
there exists a net y, |y where y.ef(4) for all @. There exists w, €
A such that f(w,) = y, for each «. There exists z,, the least element
of f'(y,); hence z, < w,. Since A is an ideal, v, cA. If a =3,
then f(x, A @) = f(®) A f(@) = Yo A\ Ys = Yo; hence @, A @€ f7'(¥.)-
Since z, is the least element of f'(y,), #. = %, A 2;,. Hence the net
%, is increasing. Since S is compact, z,]x for some xze€A*. By
hypothesis f(x,) 1 f(2), i.e., ¥. ] f(z). Thus p=f(x) e f(4*). Conversely,
let t = f(s) € f(A*). Then there exists a net s, {s, s,€ A for each a.
By hypothesis f(s,) | f(s). Hence tef(A)*. Thus f(4)" = f(4%).

(iii) f induces a homomorphism f’: S’ — T’, the lattices of closed
ideals of S and T resp. If A is a closed ideal of S, define f'(4) to
be f(A). Since f is onto, f(4) is an ideal. Also f(A)* = f(4%) = f(4);
hence f(A) is closed, i.e., f'(A)e T’. Always f(A U B) = f(4) U f(B)
and f(AN B) C f(A) N f(B). Suppose tef(4) N f(B); then there exists
ac A, be B such that f(a) =t = f(b). Let 2 be the least element of
f'@®); then x <a, £ <b. If A and B are ideals, then xe¢ AN B.
Hence t = f(x) e f(AN B). Thus f(AN B) = f(4) N f(B).

(iv) f' preserves limits of increasing and decreasing nets.

In 8" and T’ the limit of a decreasing net is just the intersection.
An argument similar to the one just given to show f’ preserves finite
intersections will show f’ also preserves arbitrary intersections. If
{4,} is an increasing net in S’, then the limit is (U 4,)* and the
limit of f(4.) is (U fA))*. Now f((U A)*) = f(U A)*") = (fU AT
(by two applications of (ii)) = (USf(A))* = (USf(4))*. Hence f’
preserves limits.

(v) The homomorphism f is continuous. Theorems 10 and 11
imply that f’ is continuous. Since S and 7T are embedded in S" and
T’, f' restricted to their images is continuous. But this restriction
of f’ is just f.

COROLLARY 16. Let h be an isomorphism from a compact topo-
logical semilattice S onto a compact topological semilattice T. Then
h is a homeomorphism. Hence a fixed semilattice admits at most one
topology for which it is a compact topological semilattice.

Proof. Clearly h and k' preserve limits of increasing and de-
creasing nets. Hence the conclusion follows from Theorem 15.
For any two compact topologies, the identity mapping must be a
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homeomorphism. Hence the two agree.

Anderson and Hunter [2] have studied some classes of groups and
semigroups in which each automorphism is continuous; this property
they call van der Waerden property. Corollary 16 shows that compact
semilattices are such semigroups.
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