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Let A be a power-associative ring, and suppose that for
each ae A there exists an integer n = n(a) > 1 such that
an — α. Such a ring A is called a periodic ring. In this
paper the structure of all simple periodic rings of charac-
teristic not 2 or 3 is determined. This solves a problem posed
by Osborn [Varieties of Algebras, Advances in Mathematics, to
appear]. It follows from these results and from Osborn's that
every flexible periodic ring with no elements of additive order
2 or 3 is a Jordan ring.

Let A denote a simple periodic ring. It is shown in [1] that
every element of a periodic ring has finite additive order, and it is
known that any simple ring has a well-defined characteristic. Thus
A must be an algebra over Zp, the integers modulo p, for some
prime p. We suppose that p Φ 2 or 3 in order to use the results of
[1]. Definitions not given here may be found in [1].

Let the multiplication give in A be denoted by juxtaposition and
let the operation "o" in A be defined by aob — l/2(ab + ba) for a, be
A. The algebra formed by taking the elements of A under the same
operation of addition but under the new multiplication "o" is denoted
by A+. It is shown in [1] that A+ is a simple Jordan algebra and
that if A is not a field than A+ is a periodic Jordan algebra of capacity
2. By a Jordan algebra J of capacity 2 we mean a simple Jordan
algebra in which there exist two orthogonal idempotents elf e2 adding
to the unity quantity and having the property that the Peirce subspaces
e/i(ei) add Ji(e2) are Jordan division algebras. Periodic Jordan algebras
of capacity 2 are characterized in [1] by

PROPOSITION. Let Φ be a periodic field of characteristic not 2,

let μ be a nonsquare in Φ and let Φ2 denote the ring of 2 x 2 matrices

over Φ. Then the Jordan subalgebra of Φ+ consisting of the set

J =
a βμ

β 7
a, β,7eΦ

is a simple periodic Jordan algebra of capacity 2 over Φ. Conversely,

every simple periodic Jordan ring of capacity 2 and characteristic

not 2 is isomorphic to J for some choice of Φ.

In view of this proposition we may identify the elements of A

with 2 x 2 matrices of the form
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a βμ

β 7

over some periodic field Φ where μ is a fixed nonsquare of Φ. Let
juxtaposition of two such matrices denote the product regarding them
as elements of A, let "o" denote the product regarding them as in A+,
and let "•" denote the usual matrix product. Then by the above
proposition these products are connected by

(1) ab + ba = 2(aob) = a b + b a

for all a, be A. If e = (J J), / = (J _ J), 0 - (J ζ), then the set
{#> /> #} wίH be a vector-space basis for A+ over Φ. Since elements
of Φ do not act as scalars on the algebra A, we cannot make A an
algebra over Φ, but have to work with it as an algebra over Zp.
If {ωu ω2, •••} is a basis of Φ over Zp, then {ω^e, ω2e, , ωγf, ωtf,
•••> ^i^, ^2^, ••••} form a basis of A over iJp, and we must determine
how these different basis elements multiply together.

Since we know the multiplication in A+, we also know the pror-
duct of any two elements of A that commute. Most of our calcula-
tions will be to show that appropriate pairs of basis elements of A
commute. As any two nonzero elements of Φ may be expressed as
powers of a single element of Φ, it will suffice to determine the
products λ*eλye, λW/, λW#, λ^/λ5/, λ*/λJ'flr and λfyλty for arbitrary
XeΦ.

The element e is the identity for A+ and the power-associativity
of A implies that e is the identity for A. Hence ee = e, ef = f = fe,
and eg = g = #e. Using (1) we also have

/ / = fof = /•/ = / and ## = gog = g-g = μe .

Since A is power-associative, it satisfies the identity x2x = ##2.
Defining the notation (x, y, z) = (xy)z — x(yz) and [aj, y] = xy — yx,
this identity can be written either as (x, x, x) = 0 or [α?2, α;] = 0. The
latter form has the linearization

(2) Q(x, y, z) Ξ= [a?02/, ̂ ] + [yoz, x] + [«o», 2/] = 0

which will be of fundamental importance in subsequent calculations.
We note at this point that (2) is symmetric in all variables.

We first compute the value of λ*"eλye. Substituting x = λ<-1β, y =
λe, z = Xje in (2) and using the fact that XreoXse =• λr+sβ for r, s positive
integers, we obtain

( 3 ) [X% Xje] + [Xj+1e, X'-'e] + [λ*^-^, Xe] = 0 .

This equation is generalized in
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LEMMA 1. [X% Xje] + [Xj+ιe, X{~le] + l[Xi+j-ιe, Xe] = 0 where ί, j , I
are positive integers.

Proof. The proof is by induction on I. The case I = 1 is (3).
Now assume

(4) [λ^e, Xje] + [Xj+ιe, X^e] + l[Xi+j~\ Xe] = 0

holds. Substituting x = Xι~ι"ιe, y = Xe, z = Xi+ιe in (2) gives the relation

( 5 ) [V~ze, Xj+ιe] + [X3'+ι+1e, λ'-'-'e] + [λ'+'-'β, λβ] = 0 .

Adding (4) and (5) gives

[λ*e, Xje] + [λ i+(I+1)β, V-(*+1)e] + {I + l ^ + ^ e , λe] = 0 ,

and hence the lemma holds by induction on I.
The substitution i = p, j = (& — 1)^, Z = p in (4) gives [λ^e, X{k~1)pe] +

0 + ^[λ^^"1^, Xe] = 0. Since A has characteristic p this last equation
becomes

( 6 ) [Xpe, Xik-1)pe] = 0 .

Let n be a positive integer such that λpW = X. Replacing X by λ**""1

in (6) shows that

(7 ) [λe, λ*-"1 ]̂ = 0, k any positive integer

Since i, j , I are arbitrary positive integers in (4), (4) and (7) combine
to give [X% Xje] + [Xj+ιe, Xι~ιe] + l[Xi+j~\ Xe] = [X% Xje] + [Xj+ιe, X{~1] =

0, and setting i = i in this last equation gives

(8) [λ^, X3'e] = 0, i, j positive integers .

The value of λ*/λy/ is computed next. The substitution x = Xe,
y = z = f in (2) gives [Xeof,f] + [/<>/, λe] + [foXe, /] = 0 and the
middle commutator is [e, λe] = 0. Hence this last equation reduces to
2[λeo/, /] = [λ/, /] = 0, and replacing λ by λ* generalizes this to

(9) [λ*/, /] = 0, i a positive integer .

The substitution x = λ*"1/, y = λe, « = λ} in (2) gives

[λ7, λ'/] + [λ^+1/, V-1/] + \Xi+t-% λe] = 0

and (8) shows that the last commutator of this equation is 0. Hence
this equation reduces to [X{f, Xjf] + [λi+1/, λ*"1/] = 0, and setting
1 = 1 and using (9) reduces this last expression to

(10) [Xf, X*f] = 0, j a positive integer .
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The substitution x = λ*"1 ,̂ y = Xf, z = λy/ in (2) gives the equation

[λf-'eoXf, Xjf] + [λ/oλV, λ*-^] + [λ'/Oλ*-1*, λ/] = 0 ,

and evaluating the Jordan product in these commutators in terms of
Jordan product of 2 x 2 matrices converts this last equation to

, Xjf] + [λ'+1e, λ^e] + [λί+'-\Λ λ/] - 0

which by (8) and (10) reduces to the equation

(11) [λ*/, X'f] = 0, i, i positive integers .

We note that just as in (8), equation (11) implies

= ±.(\*f\jf + λ̂ /λ'/) = \{2xfxjf) = λ*/λ'/

The next case to calculate is the product X^X'g. The substitution
x — Xι~~ιgy y = Xe, z = Xjg in (2) gives

[X% Xjg] + [λ i + 1^, λ ^ l + [Xi+j~\μe), Xe] = 0 .

But Xi+j~ιμ and λ may be expressed as powers of a single element
of Φ. But then (7) shows that the last commutator in the above
equation vanishes and that equation thus reduces to [λV, Xjg] + [Xj+1g,
X*-1 ]̂ = o and setting i — 1 in this last equation yields

(12) [Xg, λ'</] + [λ'+1flr, g] = 0

Since the substitution x = Xe, y = z = g in (2) gives 2[Xg, g] + [μe,
Xe] = 0, (3) shows that this reduces to [λ#, g] — 0, or more generally

that [λV, g] — 0 for i a positive integer. Hence (12) reduces to

(13) [Xg, Xjg] = 0, j a positive integer .

Finally, the substitution x = λ ί-1e, y = Xg, z = Xjg in (2) gives

[Xj+ί(μe), λ w e ] + [λ i +^^, λ̂ r] = 0

and the second commutator of this equation vanishes by (8) and the
third commutator vanishes by (13) so that the equation reduces to

(14) [χ*gf Xjg] — 0, i, j positive integers .

To determine products of the form XιeXjg make the substitution
x = Xjg, y = λ*"1/, z = Xf in (1) and thus obtain

*-1/, Xf] + [λί"1/oλ/, \*g] + [XfoX'g, V"1/] = 0 .



SIMPLE PERIODIC RINGS 655

Since XrfoXsg = X*goXvf = 0 for positive integers r, s, t, v the above
equation reduces to

(15) [λ*e, λ^] = 0, i, j positive integers

To compute products of the form λ*'eλy/ substitute x = Xjf, y =
, z = λ*'""1^ in (1) to obtain

(16) [λ*e, λy/] = 0, i, i positive integers .

In remains to determine the products of the form λ\/V#. In
order to do this the information obtained from (2) and the power-
associative identity (x2x)x — x2x2 must be studied. We first prove a
preliminary lemma concerning power-associative algebras in general.

LEMMA 2. Let A be an algebra over a field of characteristic Φ 2
for which A+ is power-associative and let x2x = xx2 hold in A. Then
A is power-associative.

Proof. The partial linearization 2[xoy, x] + {x2,1/1=0 of x2x =

xx2 holds in A. Setting y = x2 gives 2[xox2, x] = 0. Hence (x2ox)x =
x(x2ox). Since x2ox = xox2 = xs we have x3x = xx3 so that x3x — (xx2)x —
x(xx2) = x(x2x). But (x2x)x = l/4[(x2x)x + (xx2)x + x(x2x) + x(xx2)] =
(α?2ox)o.τ. However (^2o.τ)ox = (xox)o(xox) because A+ is power-associa-
tive. Thus (x2x)x = (xox)o{xox) — x2x2 = x(xx2). Hence x2x2 — (x2x)x =
α;(ίc2α;) holds in A and A is power-associative.

The products XίfX3'g in A are now investigated in

L E M M A 3 . If XeΦ then

(17)

αίί products of the form KfTCg are determined in A once the
products fXkg are determined in A. Conversely if A is an algebra
such that A+ is a periodic Jordan algebra of capacity 2 and in which
(8), (11), (14), (15), (16) and (17) hold, then A is power-associative.

Proof. The substitution x — X*f, y = Xjg in 2[xoy, x] + [x2, y] =
0 yields X2ieXjg — XjgX2ie, which is just a special case of (15). The
substitution x = X{g, y = X3'f in 2[xoy, x] + [x2, y] — 0 yields a special
case of (16). Hence no information about KfX'g is obtained from the
partial linearization of xx2 = x2x. To obtain information from (2) for
XϊfX'g at least one of x, y, z must be of the form λ*/ and at least one
of the remaining two variables must be of the form Xjg. Since (2)
is symmetric in x, y, z we may assume x — X{f, y = Xg in any of
the substitutions into (2) which will be of interest. For these sub-
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stituΐions we note at the beginning t h a t XlfoX'g — 0 so that X*fXjg =
— λ^λ*/ We now consider the cases.

Case 1. x = λ*'/, 2/ = λfy, £ — λ*€ in (2) gives

(18) \K+kg, Xff] + [λί+*, λ'g] - 0

Case 2. α? = λ*/, # — Xjg, z = Xkf in (2) gives a special case of (15).
Case 3. x = Xif, y — X5g., z — Xkg in (2) gives a special case of (16)

Hence (18) is the only new relation derived from (2). But (18) expanded
out is χf+kgX?f 4- Xi+kfXjg = X'fX^g + X*gXi+kf, which by anticom-
mutativity of λ r/ and λs# becomes Vfa^gX*/ + Xi+kfX3'g) = 0. Thus
Xi+kfXjg = - λi+*flrλ*/ = XifXj+kg and setting i = 0 yields the relation
(λfc/)(λ^) =/(λ)Λ +^), which is just (17).

Formula (17) shows that once products of the form fx*g are
defined all products of the form XrfX8g, r, s positive integers, are
determined. However the substitutions that we have just made
above into (2) do not give any information about the value of the pro-
ducts fx*g themselves. We have extracted all the information that
can be extracted from (2) here. Put another way, equations (8), (11),
(14), (15), (16), and (17) imply that (2) holds, using the linearity of (2)
and the fact that any two nonzero elements of Φ are powers of a
common element. By lemma 2, if (2) holds and if A4" is power-associa-
tive, then A is power-asssociative. This establishes the last statement
of Lemma 3.

Stating the relations that we have derived in equations (8), (11),
(14), (15), (16) and (17) for our original basis {ω2e, ω2e, , ωxf, ω2f,
• , (0$, ω2g, }, we obtain

(19) [ ω ί β ' ωje] = [C°ιe' ωjf] = [C°ie' ωjg] = [0)jff ωjf]

[ω^, ωάg\ = 0 ,

(20) (cOifKωjg) = f{ω,ωάg) = - {ιosg)(ωj) .

Using (1) we obtain from (19) that

= l ω ^ β . f + f e) = -tύjOif .
Δ

Doing the same thing for each other pair of basis elements that
commute by (19), we obtain

(21)



SIMPLE PERIODIC KINGS β57

all positive integers i and j. The products of the form
can be chosen completely arbitrarily and the other products involving
/ and g determined by (20), since we have seen that (2) is satisfied
as long as (19) and (20) are satisfied. Clearly A+ is power-associative
if (21) and ωjoω^ = 0 hold, and the latter is implied by (20). We
'sum up our result as

THEOREM 1. Let Φ be a sub field of the algebraic closure of Zp the
integers modulo p for p Φ 2 or 3 and let [ωu ω2, } be a basis of Φ
over Zp. Let e, f, g be three symbols and let A be the vector space
over Zp with basis consisting of the set of symbols {ωLe9 ω2e, , ωj,
ω2f, , ω,g, ω2g, •}. // βly β2, and 7i, τ2, and δu δ2, are
any three sequence of elements of Φ, then make A into an algebra
by defining /(<*>;#) = βte + 7</ + ^g and by letting (20) and (21) hold.
Then A is a simple periodic ring. Conversely, every simple periodic
ring of characteristic not 2 or 3 either arises in this manner or is a
field.

Suppose now that our simple periodic ring A is flexible, that is,
(x, y, x) = 0 for all x,yeA. Then we can establish

THEOREM 2. Let A be a simple periodic ring of characteristic Φ
2 or 3 and let A satisfy the flexible law. Then A is a Jordan ring.

Proof. We may clearly assume that A is not a field. Let A be
as constructed in Theorem 1. For ωu ω2eΦ the substitution ωtf for
x and ω2g for y in the flexible law yields

(22) (ωjω2g)(wj) = - (ωιf)(ωιfωtg) .

The substitution x = y = ω2g, z = ωtf in the full linearization (x, y,
z) + (z, y, x) = 0 of the flexible law gives

0 = (ωlμejiωjή -

or

(23) ((o.

Let o)xfω2g = βe + 7/ + δg with β, 7, δ e Φ. Equation (22) implies
that (βe + 7/ + δg){ωj) = - (ωj)(βe + 7/ + δg) and using the fact
that φif and φ2g, φ^Φ anticommute in A, this last equation reduces
to 2u)$f + 2ω1λe = 0. Since e and / are linearly independent over
Ω we conclude that ωxβ = ω{ί = 0, so tfyat β = 7 = 0 Thus (Oxfω2g =
δg for some δ e Ω. Equation (23) shows that δgω2g = — ω2̂ δ r̂ so
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that 2ω2dμe = 0. Thus δ = 0. Hence ω1fω2g = 0 for every 0 Φ ωlt ω2 e Ω.
Since (19) holds in A we conclude that products of pairs of basis
elements of A commute. Hence the multiplication in A is the same
as in A+, so A is Jordan. This completes the proof of the theorem.

Theorem 2 may be used to establish the result that a periodic
flexible ring with no elements of additive order 2 or 3 must be a
Jordan algebra (see [1]).
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