
Pacific Journal of
Mathematics

ON DECOMPOSITION OF TRANSFORMATIONS IN INFINITE
MEASURE SPACES
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A decomposition theorem for a measure preserving trans-
formation T on a (7-finite and infinite measure space (Ω, &, m)
is proved and ergodic theorems are considered.

1* Introduction* A measure preserving transformation T on
(Ω, &9 m) is called of zero type, if

lim m(T~NA Π A) = 0

for any measurable set A with m(A) < °o. The transformation T is
called of positive type, if

lim sup m(T~NA Π A) > 0
JV-»oo

for any measurable set A with m(A) > 0. Krengel and Sucheston
[4] showed that every measure preserving transformation can be decom-
posed into two measure preserving transformations, acting on disjoint
invariant measurable sets, such that one of them is of zero type and
the other is of positive type. However it seems that, in order to
apply this result to ergodic theory, more detailed considerations are
necessary. In this paper, we shall improve the result by introducing
new concept of positivity and then, applying the obtained result,
extend ergodic theorems of Brunei and Keane [1] to infinite measure
spaces.

2* The decomposition theorem* A measure preserving trans-
formation T will be called of weakly positive type, if T is of positive
type and satisfies

lim-i Σi»(Γ"*An A) = 0
i\r_+oo J\J k=o

for any measurable set A with m(A) < oo. The transformation T will
be called of strongly positive type, if T satisfies

lim sup — *Σ m{T~kA f] A) > 0

for any measurable set A with m(A) > 0.

THEOREM 1. If T is a measure preserving transformation on
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(Ω, £§?, m), then Ω uniquely decomposes into three measurable sets Ωo,
Ω+ and Ω++, invariant under T, such that T restricted to Ωo is of
zero type, T restricted to Ω+ is of weakly positive type, and T restricted
to Ω++ is of strongly positive type. Moreover, Ω++ is a union of
countably many measurable sets of finite measure which are invariant
under T.

Proof. Let ^ = {Ae^; T~ιA = A and m(A) < oo}. Since m
is σ-finite, there exist countably many sets An in ̂  such that Ω++ =
\J n An is the union of ^. Let Έ c Ω++ be any measurable set of
positive measure. Then m(Έ Π A) > ε for some A e *J? and e > 0.
Hence we have

lim sup A Σ 1 m{T~k{E n A) n A) > 0 ,

from which it follows that

lim sum — Σ m(T~kE f) E) > 0 .

Thus Γ restricted to Ω++ is of strongly positive type. On the other
hand, since Ω — Ω++ contains no invariant measurable set of finite
positive measure, it follows (cf. [2, pp. 40-41] and [3]) that

(1) limλj^m(T'kAnA) = 0
;y_oo j y A;=0

for any measurable set Ac. Ω — Ω++ with m(A) < oo. This together
with [4, Theorem 2.1] implies that Ω — Ω++ decomposes into two
measurable sets Ωo and Ω+, invariant under Γ, such that T restricted
to ΩQ is of zero type and T restricted to Ω+ is of weakly positive
type. The uniqueness of such a triple of measurable sets is easily
checked, and hence we omit the details.

We note here that the part Ω++ above is nothing less than the
seat of the maximal finite equivalent invariant measure. This follows
from [5, Theorem 8].

3* An application to ergodic theorems* The following defini-
tion is due to Brunei and Keane [1].

DEFINITION. A sequence kly k2y of strictly increasing nonnega-
tive integers is called uniform, if there exist

( i ) a strictly L-stable (X, ^f, μ, φ);
(ϋ) a 7 e y / such that μ(Y) > 0 = μ(dY), where dY denotes

the boundary of Y;
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(iii) a point y e X such that ki = ki(y, Y) for each i, where k^y, Y)
is defined recursively as:

k^y, Y) = min {j ^ 0 φjy e Y) ,

ki(y, Y) = min {j > k^y, Y) φjy e Y} (i > 1)

Brunei and Keane showed in [1] that if JΓ is a measure preserving
transformation on a finite measure space then, for every uniform
sequence kl9 k2, •••, the average

N

converges in the mean and almost everywhere. In this section we
shall extend this result to σ-finite and infinite measure spaces.

THEOREM 2. Let T be a measure preserving transformation on a
σ-finite and infinite measure space (Ω, &, m). If f e L1(Ωi &y m) and
if kί9 k2, is a uniform sequence, then

(2) f*(ω) = lim±£ f(Tktω)

exists almost everywhere and /* e Lι{Ω, &9 m).

Proof. Let Ωo, Ω+ and Ω++ be as in Theorem 1. Since Ω++ is a
union of countably many invariant measurable sets of finite measure,
it follows from [1] that (2) exists almost everywhere on Ω++. The
almost everywhere convergence of (2) on Ωo (J Ω+ can be shown as follows.
Here it may and will be assumed without loss of generality that / ^ 0
and fl = ί?oUfl+. The Birkhoff individual ergodic theorem then implies
that

i m §

exists almost everywhere, g e Lι(Ω, &, m), and g is invariant under
T. Since Ω — Ωo U Ω+ by assumption, it follows that g = 0 almost
everywhere. This together with fact, established by Brunei and
and Keane [1], that uniform sequences have positive density implies
that Cesaro averages of f(Tkiω) converge almost everywhere to zero.
The proof is complete.

REMARK. It follows easily from Theorem 2 that if 1 <̂  p < oo
and / G LP(Ω, &, m), then
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exists almost everywhere and f*eLp(Ω, &, m).
The proof of the following theorem is similar to the one given

by Krengel and Sucheston [4].

THEOREM 3. Let T be a measure preserving transformation on
a σ-finite and infinite measure space (Ω, &, m). // kl9 k2, is a
uniform sequence, 1 < p < ©o, and f eLv{Ω, &, m), then

lim = o .!l
IP

Proof. Since /* = 0 almost everywhere on Ωo U Ω+, it suffices to
show, under the assumption Ω = Ωo U £?+, that

( 3 ) lim
N *=

=0.

But clearly it suffices to show (3) for / = 1A with m(A) < oo. Since

for p > q > 1, it may and will assume without loss of generality that
p < 2. Set δ = p — 1, and define

ία .̂* = ̂  i f fee {fc,;l ^ i ^ t f } ,

^N,k — 0 otherwise .

Then

! ^ Σ U 7 ^ )|Γ = \(± aN,klA(Tkω)j+δdm(ω)
liV i=i UP J \A=O /

= Σ α»,
k0

T~kA\i=0

Let ε > 0 be given. It follows from (1) that there exists a subset S
of the nonnegative integers having density zero such that

limm(T-fcAn A) = 0,

provided kgS. Choose a positive integer nQ such that \i — j] > n0

and I i — j \ ί S imply

( 4 ) m{T-ιA n < ε .

Let J9(fc, Wo) denote the set of nonnegative integers i such t h a t \i—k\^

n0. Since 0 < δ < 1, we have
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JT-kA\i=0

JT~kA\

\
JT~

\ A Σ
JT~kA\iίD(k,n

Σ
T~kA\ieD(k,nQ)

\i-k\iS

|ί-Jfc|6 5°

= Ί(N, k) + II(N, k) + ΠI(N, k) .

Since | aNΛ \ ̂  1/N, we can choose an No such that N > No implies

On the other hand if we define for any given ε1 > 0 a measurable set
G(N, k; eθ by

G(N, k; ej = j Σ aN,MTΌ)) > ε\ ,
U,i5i,*i? ) J

then

( (εf + W . ^ d m

+ m{T~kA Π G(JSΓ, Λ; ex)

+ — ,

since ε^iT^A Π G(-W, fc; e^ < ε by (4). Hence it is sufficient to show
that

lim Σ aN,kIII(N, k) = 0 .

Clearly,

Σ aN,kΠI(N, k)^± aN

^ Σ (LNJΣA <*<N,k+a) m{A)
k=0 \aeS J

Σ aN,kN_
aeS /

aίkN

An argument similar to [3] can be applied to infer that

l i m Σ ^ , / Σ aNtk+e) =0.
N-+o° k=0 \aeS J
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On the other hand, since

by [1], we have

lim ( Σ a<N,kN-«)
k

}im(
i^~ \N kN

This completes the proof.
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Keizō Kikuchi, Starlike and convex mappings in several complex variables . . . . . . . . 569
Charles Philip Lanski, On the relationship of a ring and the subring generated by its

symmetric elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Jimmie Don Lawson, Intrinsic topologies in topological lattices and

semilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Roy Bruce Levow, Counterexamples to conjectures of Ryser and de Oliveira . . . . . . . 603
Arthur Larry Lieberman, Some representations of the automorphism group of an

infinite continuous homogeneous measure algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 607
William George McArthur, Gδ-diagonals and metrization theorems . . . . . . . . . . . . . . . 613
James Murdoch McPherson, Wild arcs in three-space. II. An invariant of

non-oriented local type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
H. Millington and Maurice Sion, Inverse systems of group-valued measures . . . . . . . . 637
William James Rae Mitchell, Simple periodic rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
C. Edward Moore, Concrete semispaces and lexicographic separation of convex

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
Jingyal Pak, Actions of torus T n on (n+ 1)-manifolds Mn+1 . . . . . . . . . . . . . . . . . . . . . . 671
Merrell Lee Patrick, Extensions of inequalities of the Laguerre and Turán type . . . . . 675
Harold L. Peterson, Jr., Discontinuous characters and subgroups of finite index . . . . . 683
S. P. Philipp, Abel summability of conjugate integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
R. B. Quintana and Charles R. B. Wright, On groups of exponent four satisfying an

Engel condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Marlon C. Rayburn, On Hausdorff compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Martin G. Ribe, Necessary convexity conditions for the Hahn-Banach theorem in

metrizable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
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