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This paper initiates a study of the classes of Baire meas-
urable functions on the unit interval I from the standpoint
of the theory of spaces of continuous functions. For each
countable ordinal a, the αth Baire class 3B« has a representa-
tion as C(Ωa), where Ωa is a certain compactification of the
discrete set I. For 1 S a < β, 55rt is a closed subalgebra of $8β.
The principal result proved here is the fact that 33« is always
uncomplemented as a closed subspace of 33/3. The method of
proof relies on a detailed analysis on the canonical onto map
φ: Ωβ -> Ωa induced by the imbedding of 53« in 23β, and consists
of showing that this map admits no "averaging operator." It
depends heavily on recent results in the theory of averaging
operators due to S. Z. Ditor.

In this paper scalars and functions are real valued. However,
the arguments extend easily to the complex case. In the last section
we show how corresponding results may be obtained when / is replaced
by any uncountable compact metric space.

1* The Baire classes as function algebras* We shall start by
recalling classical definitions and facts concerning the Baire classes
of functions on the unit interval /. Let C(I) be the class of all real
continuous functions on / with supremum norm. Denote by S3,, the
class of all bounded functions which are pointwise limits of sequences
of functions in C(I), and for each countable ordinal a inductively
define 93α to be the class of all bounded functions on I which are
pointwise limits of sequences of functions in \Jβ<a$bp. We call 35α the
class of Baire functions of order a.

There is another approach to S3α. Each countable ordinal a is
even or odd as follows: 1 is odd and each limit ordinal is even; the
immediate successor of an even ordinal is odd, and of an odd ordinal
is even. Let Fo be the class of all closed subsets of /; and Fλ be
the class of countable unions of sets in Fo. For each a

( i ) Fa is the class of all countable unions of sets in \Jβ<aFβ,
if a is odd;

(ii) Fa is the class of all countable intersections of sets in
\Jβ<aFβ9 if a is even.

Correspondingly, let Go be the class of all open subsets of I, and
(?! be all countable intersections of Go sets. For each a

(iii) Ga is the class of all countable intersections of sets in \Jβ<aGβ,
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if a is odd;
(iv) Ga is the class of all countable unions of sets in \Jβ<a ̂ >

if a is even.
If a is odd (even) the class Fa(Ga) is called the additive class of

type a.
If a is odd (even) the class Ga(Fa) is called the multiplicative

class of type a.
For each a define Ha — Fa Π Ga. We call if* the class of ambig-

uous sets of type a.
The classes Fa, Gay Ha satisfy many simple relationships. In

particular, the complement of an Fa set is in Ga, etc., and Ha is a
field of sets (i.e., closed under finite unions and intersections and
complements). For a complete discussion see [4] and [6].

Now for each a denote by 2tα the class of all bounded functions
f on I such that for every real λ, the sets

all belong to the multiplicative class of type a. The following clas-
sical result ([6], page 393) connects S3α and 2tα.

THEOREM l l (Lebesgue-Hausdorff). If a is a finite ordinal,
S3α — §tα. If a is infinite, then S5α = Str+1.

We apply this theorem to characterize those subsets A of I whose
characteristic functions kA are in S3α. Observe that kA e 3tα iff A e Ha.

COROLLARY 1.2. Let A be a subset of I. Then
(a) kA 6 SSα iff Ae Ha, if a is finite.
(b) kA eS3* iff Ae Ha+1, if a is infinite.

To avoid constantly considering cases we also define the class
Ka — Ha if a is finite and Ka = Ha+1 if a is infinite.

In what follows we shall need a separation theorem ([6], page
351).

LEMMA 1.3. Let R and S be disjoint subsets of I which are of
multiplicative type a. There exist disjoint sets A and B belonging
to Ha such that

Returning to 33α, we note that it is an algebra of bounded func-
tions on / which is closed under uniform convergence ([4], page 134).
Thus S5α is a Banach algebra of bounded functions under the uniform
norm satisfying the obvious condition.
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Let Ωa be the compact set of nonzero multiplicative linear functionals
on S3α with the weak star topology. Define

By the real form of the Gelfand-Naimark theorem (Arens [1]), the
m a P X' f~*f is a n isometric algebra isomorphism of 33α onto C(Ωa).
Since evaluation at a point of / is multiplicative, there is a natural
imbedding τa\ I—>Ωa of I into Ωa determined by

Moreover, τa(I) is dense in Ωa, since if / vanishes on τa(I), f must
vanish on I. Also τa{I) is discrete in its relative topology as a subset
of Ωa, since the characteristic function of a point of I belongs to 33α.
Thus we may regard Ωa as a certain compactification of the discrete
unit interval.

Our next aim is to prove that Ωa is totally disconnected. Note
that the following statements are equivalent for a function /e35α.

(a) / takes only the values 0 and 1 on 7,
(b) f=kA where A e Ka,
(c) / takes only the values 0 and 1 on Ωa,
(d) / = kB where B is an open and closed subset of Ωa. More-

over, we have

B = τa{A), A - τ-\B n τa(I)) .

The correspondence A—»2? defines an isomorphism of the Boolean
algebra Ka of subsets of I onto the Boolean algebra Ka of all closed
and open subsets of Ωa. To prove that Ωa is totally disconnected we
must prove that Ka separates points of Ωa.

THEOREM 1.4. The space Ωa is totally disconnected.

Proof. Let ωx and ω2 be distinct points of Ωa. We can find
feC(Ωa) such that the sets

U, = {ω\f(ω) ^ 1}, U2 - {ω\f(ω) ^ 0}

are closed neighborhoods of ωx and ω2.
Define/(ί) =/(rβ(ί)), t e I. Then the sets A, = τ-ι(Ut Π r(J)), i = 1, 2

satisfy
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and thus are of multiplicative class a{a + 1) if a is finite (infinite).
By Lemma 1.3 there exist disjoint sets Wu W2 in Ka such that
Ai £ Wi. The sets F* = τa( Wt) are open and closed neighborhoods of
ωi9 They are disjoint, since otherwise their intersection contains a
point of the dense set τa(I)9 contradicting the fact that WΊ Π W2 = 0 .

2* Topological tools* In this section we collect some basic facts
concerning spaces of continuous functions and projections onto sub-
algebras. Let S and T be compact Hausdorίf spaces and φ: S —• T be
a continuous onto map. We call the elements of the collection

fibers. Then 9ΐ forms an upper semi-continuous closed set decomposi-
tion of S ([5], page 99). Define φ°: C(T)-+C(S) by the formula

(Φ°f)(s)=f(Φ(s)),feC(T),seS.

The map φ° is an isometric algebra isomorphism of C(T) onto the
subalgebra of those functions in C(S) which are constant on each set
of 81.

If the closed subalgebra φ\C{T)) is the range of a bounded pro-
jection P from C(S)9 we define the projection constant p(φ) to be the
infimum of | | P | | for all such P. We define p(φ) = + oo if φ°(C(T))
is uncomplemented. We shall need a result of S. Z. Ditor [2] (for-
mulated here in somewhat different terms) which relates p(ψ) to the
topological structure of S and φ. Suppose {ta} is a net in T converg-
ing to ίo We define the cluster set for {ta} to be

(s I for each a0 and neighborhood U of s,
lim sup {Φ~Hta)} = Jv (there exists a ^ α0 with ^~1(ία) Π ί/^ 0

The cluster set for {ta} is a nonempty compact subset of the fiber

DEFINITION 2.1. Let φ: S—> T be continuous and onto. Define

t\ there exist nets {Q, {tβ} converging) ^

to t whose cluster sets are disjoint ) f

and inductively define

(t\ there exist nets {ta}, {tβ} of points of Mln"ι))

(converging to t whose cluster sets are disjoint)

Clearly M(1) 2 M{2) 2 . The next theorem is due to S. Z.
Ditor [2].
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THEOREM 2.2. // M{n) Φ 0 , then p(φ) ̂  n. If Γln=iMin) Φ 0 , then
Φ°(C(T)) is uncomplemented in C(S).

In our application of this result to the Baire classes, matters
will be simplified by the fact that the map φ: S-+ T appearing in
that context will be irreducible (i.e., there is no proper closed subset
Sx of S such that ΦiS^ = T). In the case of irreducible maps the
set M{1) is just the set of multiple points for φ. We prove this. The
necessary lemma is a consequence of the uppersemicontinuity of 9ΐ.

LEMMA 2.3. Let φ: S-+ T be continuous and onto. The following
are equivalent.

(1) φ is irreducible.
(2) For each open set UsS, the set

V={t\φ-ι(t)&U}

is a nonempty open set in T.

(3) For each open set U in S, the set

is an open set dense in U.

PROPOSITION 2.4. If φ: S-* T is an irreducible onto map, then

Mω = {ίl^ί*) contains at least two points} .

Proof. Let sly s2 be distinct points of φ~ι(t) with open neighbor-
hoods Uu U2 with ϋι Π U2 = 0 . By Lemma 2.3 (3), there is a net
{ta} —> t0 with φ"1^) S UΊ. Similarly, there is a net {tβ} —> ί0 with
Φ~ι{tβ) S Z72. Their cluster sets must be disjoint. Thus every multiple
point lies in M(1). The converse inclusion is clear.

3* Nonexistence of complements. Let a and β be fixed count-
able ordinals with 1 ^ a < β. Then S5α is a closed subalgebra of %5β.
Under the representation of S3α as C(Ωa)9 ̂ 8β as C(Ωβ), the natural im-
bedding of 35α in 35̂  induces a canonical continuous onto map φ: Ωβ —> Ωa.
To show that 33α is uncomplemented in ?&β is equivalent to showing
that φ°(C(Ωa)) is uncomplemented in C(Ωβ). We do this by proving
that the sets M{n) £ Ωa for φ are all nonempty.

Since φ is one-to-one as a map of τβ(I) onto rα(J), and these sets
are open and dense in Ωβ and Ωa respectively, it follows from Lemma
2.3 that φ is irreducible. Thus by Proposition 2.4 M{1) is just the
set of multiple points of φ. Since S3α is a proper subalgebra of ?8β



6 WILLIAM G. BADE

(see [3]), M{1) is nonempty. We shall prove that if 2 <; a < β, then
M(1) = M(2) — •••. The case when a = 1 is more complicated.

As in Section 1, Ka denotes the Boolean algebra of open and
closed sets in Ωa. If A e Ka, Φ~~ι(A) e Kβ, and φ~ι yields an isomorphism
of Ka onto a subalgebra of Kβ. The sets in φ~ι{Ka) are just those
sets in Kβ which are unions of fibers for φ.

DEFINITIONS 3.1. (a) A set AeKβ is of countable or uncountable
type depending on whether the Borel set τj\A Π Tβ(A)) e Kβ is count-
able or uncountable.

(b) A point ωeΩa is a special multiple point for φ if the fiber
Φ~ι{ω) contains at least two distinct points all of whose open and
closed neighborhoods are of uncountable type.

We shall prove the following results.

PROPOSITION 3.2. If 1 ^ a < β, then every set in Ka of uncount-
able type contains a special multiple point for φ: Ωβ —• Ωa.

THEOREM 3.3. If 1 ^ a < β, the set Q of special multiple points
is nonempty, and

THEOREM 3.4. // 1 g a < β, then 95α is uncomplemented in SSβ.1

Theorems 2.2 and 3.3 clearly imply Theorem 3.4. The role of
Proposition 3.2 is to ensure the existence of special multiple points.
Its proof is complicated for a — 1, so we assume it now and prove
Theorem 3.3.

Proof of Theorem 3.3. Let ωQ be a special multiple point in Ωa

for φ and let ψu ψ2 be distinct points of φ~ι{a)<) all of whose Kβ neigh-
borhoods are of uncountable type. Let Bγ and B2 be in Kβ with
ψt 6 Bif i = 1, 2 and B1 Π B2 = 0 , ^ U S 2 = Ωβ. Let A be any Ka neigh-
borhood of O)Q in Ωa. The sets

C4 - B, n ^^(A), i = 1, 2 ,

are disjoint neighborhoods of ψ^ of uncountable type. Consider C t.
The uncountable Borel set

1 It would suffice to suppose β = α + 1, but this assumption does not simplify the
proof.
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contains a Cantor set Ft ([6], page 446) which is necessarily in K^Ka.
Thus the set

is of uncountable type, A £ A and ^ ( A ) S d . By Proposition 3.2
A contains a special multiple point ωx and clearly φ~~ί(ω^i^C1. A
similar argument applies to C2. Since A was arbitrary, it follows
that there exist two nets {ωξ}, {ωη} whose members are special mul-
tiple points, such that

o)ξ • α>0 , ωη • ω0

Since C1 Π C2 = 0 , the cluster sets Km sup ^(a^) and lim sup ^ ( G ) * )

are nonempty disjoint subsets of φ~ι(ω<). Since ωξ, ωη e M(1), by De-
finition 2.1 ω0 e M{2). However, now each ωξ, ωη satisfies the hypotheses
for ω0, so by the same argument ωξ, ωv e Λf(2) and ω0 e M(3), etc. Thus

To prove Proposition 3.2 we first establish

LEMMA 3.5. Let 1 ^ a < β. Every set in Ka of uncountable
type contains a multiple point.

Proof. Let A be a set in Ka of uncountable type. The Borel

set

E = τ~\A n τa(I))

contains a Cantor set F. We may write F = G U H, where G and
H are both uncountable sets lying in Kβ ~ Ka, since the Cantor set
contains Borel subsets of every Baire class relative to itself and hence
also relative to I ([3] and [6], page 351). Thus

C = τβ(G), D = τβ(H)

are disjoint sets in K? - Φ~\Ka). Let B = τa(F). Then

φ-ι{B) = C\

If φ: Φ~ι{B) —• B were one-to-one it would be a homeomorphism and
C and D would lie in φ"ι(Ka). Thus 5 (and hence A) contains a
multiple point.

Proposition 3.2 for a ^ 2 now follows from

LEMMA 3.6. Lei 2 <̂  α < /? αraZ ω0 be a multiple point for φ: Ωβ —*•
βα. ΐ/αcfe point of φ~ι{o)^) has all its Kβ neighborhoods of uncountable
type.
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Proof. Let ψeφ~\ω<) and C be a Kβ neighborhood of ψ whose
complement also intersects φ"\(ύ^. Suppose that

were countable. Then EeK2SKa and

C = Φ~ι{τa{E)) ,

which is a union of fibers. Since C intersects φ~\<o^ it must contain
it, contradicting the fact C° intersects φ^i

COROLLARY 3.7. // 2 ̂  a < β, then every multiple point is a
special multiple point, and

Q = M ( 1 ) = M(2)

To prove Proposition 3.2 for a = 1 we first need

LEMMA 3.8. Let F be a Cantor set in I. There exists a subset
B of F such that BΔC eK2~ Kx for every countable set C in I.2

Proof. We start by constructing a certain subset of I. Let
A — U?=i %n> where each Kn is a Cantor set and A is dense in I.
If U is any nonempty open set in /, Ac Π U is of second category
in U. Thus A Π U and Ac Π U are both uncountable. Let ψ: F-+I
be any continuous irreducible onto map. (Such a map exists, since
if Θ: K—> I is a continuous map from the Cantor set K onto J, there
exists a closed subset T of K such that 01 Γ is irreducible. Since
T can have no isolated points, it is homeomorphic to K.) Now take
B = ψ^ίil) £ F. Suppose V is any nonempty relatively open subset
of F. By Lemma 2.3 there exists a nonempty open set U in / such
that ψ~\U) S V. Thus 5 n 7 and Bc Π Fare both uncountable, since
they contain the sets ψ~\U(\ A) and ψ^iUΠ Ac).

Now consider F as a subset of / and BSF. Let C be any
countable set in /. Then BΔC = (J5 U A) Π D^ where A and A are
disjoint countable sets. It W is any open set in I which intersects F,

Ff) Wn(BΔC)SWf]BΠDl

Ff] Wf](BΔC)ΰSWf]Bcf]Dl

and these sets are uncountable. Thus the characteristic function of
BΔC is everywhere discontinuous on F, so BΔCίKλ ([6], page 419).
Since B is an Fσ set, BΔCeK2.

2 BΔC denotes the symmetric difference of B and C.
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Proof of Proposition 3.2 when a = 1. Let φ: Ωβ-*Ωi and let E
be any set in JSΓ1 of uncountable type. Since τ^ι(E Π ?i(I)) contains
a Cantor set, it follows from Lemma 3.8 that there exists a set
A £ Φ~\E) £ Ωβ (necessarily of uncountable type) such that AΔG eK2~
Φ~\Kι) for every set C in K2 of countable type. Let R = ψ(A) ΓΊ Φ(AC).
Then iϋ is a compact subset of E. We shall prove that R contains
a special multiple point for φ. Note that for ω e R, A Π ̂ -1(fi>) and
Ac Π ̂ -1(α>) are both nonempty. If a point ω of JB is not a special
multiple point, then there is at most one point of Φ~\a>) all of whose
Kβ neighborhoods are of uncountable type. It follows by compactness
of A Π Φ~ι(<o) and A° Π Φ~ι{ω) that there exists a neighborhood Bω of
ω in UL1 such that either Φ~ι(Bω) Π A or Φ"\Bω) Π Ac is of countable
type in K2. Suppose now that R contains no special multiple point.
By compactness, a finite number of such neighborhoods Bω cover R.
We may suppose them to be disjoint and divide them into two groups
whose unions d and C2 satisfy

(l) dnc,= 0,
(2) Λ S C i U C
(3) Φ~ι(Cd Π A and Φ~ι{C2) Π Ac are both of countable type.
The open set

W= {ω\φ~ι(ω)SA}

is dense in A by Lemma 2.3. Because

W~ P Γ S j β S d U C ί

the set

G = TΓ- (dUC.)

is open and closed in fllβ Moreover

^-(G) = A ~ ^(Cx U Q ,

because

φ-i(G) = ^(TF) - ^ ( d U C 2 ) S i - ^ ( d U CύS^(G) ,

since

A - ^(CΊ U C2) £ A - ^(iZ) - φ~\W) .

Thus the set K = A — ^"'(G) is a subset of ^(CΊ U Q , and hence
of countable type, and AAK — Φ~ι{G) eφ^K1). This contradiction
proves the existence of a special multiple point for φ in R.

The method above may also be used to prove that C(I) is uncom-
plemented in S3α for a Ξ> 1 and also that each S5α is uncomplemented
in the Banach space 35ωi = \Ja<ω^8a of all bounded Borel measurable
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functions. We shall not give the details. The fact that C{I) is un-
complemented in S3α was proved earlier by B B. Wells, Jr. in [11]
using Phillips Lemma ([9], page 525). He also proved that 95α is
uncomplemented in L(7), assuming the continuum hypothesis.

4* Final remarks* We conclude with some observations and
open problems.

1. The first observation is that our noncomplementary results
for S3α on I hold equally well when / is replaced by any uncountable
compact metric space. If M is such a space, then by a fundamental
result of Milutin ([7], [8]) there exists a linear isomorphism φ: C(M) —>
C(I) of C(M) onto C(I). If {fn}sC(M), then, by the Lebesgue
Dominated Convergence Theorem, lim^^fn(s) exists for each seM

iff l inw, ^fndμ exists for each μeC(M)* = φ*C(I)* iff l i m _ (φfn)(t)

exists for each tel. It follows easily that φ extends to an isomor-
phism of SS^M) onto SB /̂) and, inductively, of 33α(ikΓ) onto 33α(I), a<ω,.
Thus 33α(ikf) is uncomplemented in $8β(M) for 1 ^ a < β. Further,
F. K. Dashiell has shown (using the Borsuk-Dugundji Theorem) that
our results hold in any compact space containing a homeomorph of
the Cantor set.

2. A Banach space X is injectίve if it is complemented in each
Banach space Y into which it is imbedded. Theorem 3.4 and the
first remark show that none of the Banach spaces ^&a(M)9 M uncount-
able compact metric, are injective. This fact may also be proved as
a simple consequence of a theorem of H. Rosenthal [10]. Suppose
33α(Af) were injective. Since 33α(ikf) contains co(M), it follows from
RosenthaPs results that 33α(ikf) contains a subspace isomorphic to L(M).
However, this subspace has cardinality 2C, while the cardinality of
®a(M) is c.

The argument just given shows also that 33ωi(ikf), the space of
bounded Borel functions on M, is not injective. This fact does not
seem to follow from our methods.

3. We now give an example of a compact Hausdorff space A for
which C(Λ) is complemented in S8t(A), even though C(Λ) is not injec-
tive. We may represent 35ωi(/) = C(Λ) where A is a σ-stonian space.
Let τ: I—>A be the natural imbedding of I as an open dense discrete
subset of A. Let ge^A) and {fn} be a bounded sequence in C(A)
converging pointwise to g on A. Then the functions hn e ?8ωi(I) defined
by

K(t) =fMt)), t e l , n = 1,2, •••

converge pointwise to a function &e$Bωi(/). Its correspondent I in
C(A) agrees with g on τ(I) (but not on all of A unless g is continuous).
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Clearly I is independent of the sequence {/J. The map g —• I defines
a norm one projection of fδ^Λ) onto C(Λ).

4. Information concerning the spaces Ωa is very incomplete.

Question 1. Let a < β and φ: Ωβ—*Ωa be the canonical map. Is
the set of multiple point for φ closed in ΩJ

Question 2. For the map ψ: Ω^ —> Ωι can one characterize the
special multiple points?

Answers to these questions would greatly simplify the arguments
in §3.
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