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In this note investigations are made of the problem of
deciding if a given codimension one submanifold M is locally
flat in the ambient manifold N. The principal result is that
if M has a locally flat triangulation in which each closed
simplex is locally flat in N, then M is locally flat in N. This
allows one to establish for simplicial homotopy manifolds
certain local flatness criteria that had been previously known
for PL manifolds.

Our definitions are the usual ones. The reader who is unfamiliar
with the subject is referred to [2] and [3] for the basic definitions
and results preliminary to this note. We should mention two parti-
cular results that will be used repeatedly. The first is the following.
If D, and D, are locally flat (n — 1)-cells in R" that intersect in an
(n — 2)-cell that is locally flat in the boundary of each, then D, U D,
is locally flat [5]. The second concerns an m-cell D in R”, that is
locally flat mod a k-cell E that is locally flat in both Bd D and R».
If ¥ =n — 8, D may fail to be locally flat at points of E, and for
n =4, k=n— 2 it is not presently known if D has to be locally
flat. For all other possible values of n, m, k it is known that D must
be locally flat [1], [3], [4], [6].

A version of the following lemma was proved in Theorem 3.2 of
[2] for embeddings of cells in euclidean space. Since the result and
proof are local ones, the argument given there will establish the

following.

LEMMA 0. Let M be an m-manifold in the interior of an mn-
manifold and let P be a polyhedron in Bd M. Assume that the fol-
lowing conditions are satisfied:

(@ M — P is locally flat wn N;

(b) there is a locally finite triangulation T of P such that each
open simplex of T is locally flat in Bd M;

(¢ for :n a collaring of BAM in M and o a simplex of T,
AMInto x I) is locally flat in N. Then M ts locally flat in N.

We will say that the triangulation T of the manifold M is locally
flat if each open simplex of T is locally flat in M.

THEOREM 1. Let M be an (n — l)-manifold with o locally flat
triangulation T. Suppose that M is embedded in the interior of an
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n-manifold N such that each closed simplex is locally flat in N.
Then M ts locally flat in N.

Proof. Special Case I: Int M is locally flat. Since each closed
simplex of M is locally flat, we see that M is locally flat mod the
(n — 8)-skeleton of Bd M.

We let Bd M be the polyhedron P in Lemma 0, ¢ a j-simplex in
P, and » a collaring of Bd M in M. Let {B;}, be a monotone in-
creasing sequence of closed j-cells, each locally flat in ¢ (and hence
in each of M and N) and Uz, B, = Into. In case j = 0, we adopt
the convention that Int¢ = ¢. We will show that MInto x I) is
locally flat by showing that \(B; x I) is locally flat for each 4. One
easily checks that \(B; x I) is locally flat mod \(B; x 0) = B; and
that B; is locally flat in BAMB; x I) and in N. If < n — 4, we
appeal to Theorem 1.2 of [1] to conclude that \(B; x I)is locally flat.

If j =n — 8, we observe that AMB; x I) ean be pushed into one
(either) of the two (n — 2)-simplexes in Bd M that has ¢ as a face,
and that local flatness of this simplex then implies local flatness of
MB; x I). This argument is written out in detail in Lemma 8 of [3].

Special Case II: Bd M is empty.

The proof will be downward induction on the dimension of the
skeletons of M. Since each (# — 1)-simplex is locally flat, it is im-
mediate that M is locally flat mod the (n — 2)-skeleton.

For ¢ an (n — 2)-simplex, the link of ¢ in M is a o-sphere (this
follows from the fact that M is a manifold) and the star of o is the
union of two (n — 1)-simplexes having ¢ as a common face. Since
each of these (n — 1)-simplexes is locally flat, and ¢ is locally flat in
the boundary of each and in M, it follows that the star of o is locally
flat. Thus, M is locally flat at each point of Into.

For ¢ an (n — 3)-simplex, we again observe that, since M is a
manifold, the link of ¢ is a 1-sphere. We let 7 be a 1-simplex of
lko and let B be the closure of ko — z. Then Ste = o*r U d*B. o*t
is locally flat by hypothesis and ¢*B is locally flat by Special Case I
and the preceding paragraph. Hence, St must be locally flat at
each interior point. In particular, M is locally flat at each point of
Int o.

We could continue this line of proof, viewing St ¢ as the union
of two locally flat cells o*c and o*(lko — 7), as long as we knew that
lko was a PL sphere. If T were a PL triangulation of M, we would
know this for all o, but for arbitrary triangulations we only know
this for dim lko < 2 or, equivalently, dimo = n — 4. After this an-
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other type of proof would be needed. Fortunately these larger codi-
mension cases have been handled (see Theorem 6.1 of [2]). For
completeness, we will include the proof for the skeletons of dimension
=n-—4.

Suppose then that M is locally flat mod the j-skeleton, 5 < n — 4,
let o be a j-simplex and let p be an interior point of ¢. Let E be
a j-cell with xeInt Fc Ec o such that E is locally flat in . Since
locally flat cells lie trivially in some euclidean neighborhood [8], it is
easy to find two (n — 1)-cells D, and D, in M with the following
properties:

(1) D, and D, are locally flat in M and intersect the j-skeleton
only in E;

(2) DnD,=BdD,nNnBdd, =D, is an (n — 2)-cell which is
locally flat in Bd D, and Bd D,;

(3) (Ds, E) ~ (B*, BY).

From (1) and transitivity of the relation “is locally flat in” it follows
that each of D, and D, is locally flat mod F in N. Then, since
dim E < n — 4, D, and D, are locally flat in N and, hence, D, U D, is
locally flat in N, This implies that M is locally flat at p. In this
way we see that M is locally flat mod the (j — 1)-skeleton, and the
induction is complete.

General Case. Apply Special Case II to M — Bd M and then apply
Special Case I to M.

LEMMA 1. Let 0 be an (n — 1)-stmplex (topologically) embedded
in the interior of an m-manifold N, n = 4, and such that Into s
locally flat in N and each closed (n — 2)-simplex of Bdo is locally
flat in N. Then o is locally flat.

Proof. Note that (n — 2)-simplexes being locally flat will imply
that all lower dimensional simplexes are locally flat. The proof is the
same as the proof of Special Case I of Theorem 1, except that if
dim B; = n — 2, we get local flatness of M(B; x I) from Theorem 2
of [4].

COROLLARY 1. Let T be a locally flat triangulation of an (n — 1)-
manifold M and M embedded in the interior of an n~manifold N.
If n = 4, and each open (n — 1)-simplex and each closed (n — 2)-simplex
18 locally flat im N, then M s locally flat.

There is another interesting observation that comes from Theorem
1 and its proof. This deals with the question of local flatness of an
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(n — 1)-sphere Sin S", n # 4, that is known to be locally flat mod an
(n — 2)-cell E that is locally flat in both S and S*. We can establish
local flatness of S as follows. We give S the triangulation of the
boundary of an n-simplex with E being one of the (n — 2)-simplexes.
To meet the requirements of Corollary 1, we need to see that each
closed (n — 2)-simplex is locally flat. Let o be an (n — 2)-simplex
different from FE. Then ¢ and E have a common (n — 3)-face and
lie on an (n — 1)-simplex 7 that is locally flat mod Bd E. As in the
proof of Special Case I of Theorem 1, we can push ¢ across ¢ into
the locally flat cell E and conclude that o is locally flat.

Let N be an n-manifold triangulated so that the link of each
t-simplex (0 £ ¢ < n) has the homotopy of an (n — ¢ — 1)-sphere or
ball. We will then call N (with this triangulation) a simplicial homo-
topy manifold. Glaser has shown that triangulations that make N
a simplicial homotopy manifold are locally flat [7, Theorem 2]. This
fact together with Theorem 1 and Corollary 1 gives the following
extension of Theorem 12 of [3] to include simplicial homotopy
manifolds.

THEOREM 2. Let M be a simplicial homotopy (n — 1)-manifold
in the interior of an m-manifold N. (1) If n = 4, suppose that each
closed simplex of M 1is locally flat in N. (2) If n=+4, suppose that
each open (n — 1)-simplex and each closed (n — 2)-simplex of M s
locally flat in N. Then M is locally flat in N.

In codimensions three and greater, we have a better criterion
than Theorem 2 gives for codimension one embeddings. The above
mentioned result of Glaser, together with Theorem 5.3 of [1] or Theorem
6.1 of [2] gives the following.

THEOREM 3. Let M be an m-dimensional simplicial homotopy
manifold in the interior of an n-dimensional manifold N with
n—m = 3. If each open simplex of M is locally flat in N, then M
18 locally flat in N.
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