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Two problems of W. V. Vasconcelos are partially solved:
(1) The total quotient ring of a commutative noetherian ring
R is quasi-frobenius if and only if Endy; (A) is commutative
for each ideal A of R. (2) Let R be a commutative quasi-
regular ring and E a finitely presented R-module. If F is
faithful and Endz (®) is semi-prime, then F is isomorphic to
an ideal of R. Only commutative rings with unit and unital
modules are considered.

1. In [3] Vasconcelos considers problems concerning commutative
endomorphism rings. Toward the end he asks for a characterization
of rings R for which End (4) is commutative for each ideal A C R.
He conjectures the following answer for noetherian rings.

THEOREM 1.1. Let R be a mnoetherian ring with total quotient
ring T. If End, (A) is commutative for each ideal A of R then T is
guasi-frobenius.

Proof. It is sufficient to show that for each maximal ideal p of
T the local ring S = T, has Krull dimension zero and Anng(g) is a
one dimensional S/g-vector space where ¢ = pS [2, Theorem 221]. Each
ideal I of S has a commutative endomorphism ring since we can
select JC R such that J® S = I and observe that the natural map
End; (J) ®: S — Ends (J ®z S) is a ring isomorphism [1, p. 39, Proposi-
tion 11]. Also because R is noetherian ¢ = Anng (a) for some ae S
[2, Theorem 82]. Since Endy, (Anng(g)) = Ends(Anng(g)) is com-
mutative and Anng(¢q) = 0, then Anng(¢) is a one dimensional S/q-
vector space. It remains to show S is zero dimensional, i.e., ¢ is
nilpotent. Since a # 0, then there is an integer n such that a ¢ ¢
[2, Theorem 79]. Since Anng (g) is simple we must have Se = Anng (¢)
and ¢” N Sa = 0. Now we show ¢" = 0. Suppose not, choose b ¢q", b= 0.
Then Anng (b) © g = Anng(a¢). Thus the correspondence xb — za defin-
es an S-homomorphism f: Sb— Sa. Let J = Sa + Sb. This sum is
direct since SaN Sbc San g™ =0. Let u, we Endg (J) be the follow-
ing composites:

uJ — SacJ

w: J— Sb—1 SacJ.

Then ww(b) = a and wu(d) = 0 contradicting the commutativity of
Endg (/). Thus ¢* = 0, and S is zero dimensional.
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The converse to 1.1 is true also. This is because T is an injective
T-module if T is quasi-frobenius. Indeed if R is any commutative
ring whose total quotient ring T is T-injective then for A — R, End, (4)
can be viewed as a subring of End,(AT) which is a homomorphie
image of T and therefore commutative.

The next proposition gives a sufficient condition on A c R for
End (4) to be commutative.

ProprosiTION 1.2. Let R be a commutative ring and A an ideal
of R. If AN Ann (4A) = 0, then Endy (4) is commutative.

Proof. Let f,gcEnd; (A) and ¢ = fg — gf. For a, be A we have
ac(b) =c(ab) =f(g(ab)) — g(f(ab)) =f(ag(b)) — g(bf(a)) = g(b)f(a) — f(a)g(b) =0.
Hence Ac(4) = 0 implies ¢(4A) c AN Ann (A) = 0. Therefore End (4)
is commutative.

An R-algebra will be called semi-prime if it has no non-zero
nilpotent elements.

COROLLARY 1.3. If R s semi-prime then End (4A) is commutative
and semi-prime for each ideal A C R.

Proof. AN Ann (A) consists of nilpotents so End (4) is com-
mutative by 1.2. If feEnd (4) is nilpotent, say f™ = 0, then for
zedA 0= f*2") = (f(x))". Since R is semi-prime f(x) = 0 for zc A.
Thus f = 0.

If R is an integral domain, we can characterize the ideals of R
as those torsionless R-modules E having End (E) commutative. For
if xe E x + 0 there is f: E— R with f(x) # 0. Let ye E. The two
homomorphisms z — f(2)x and z — f(2)y commute. Hence f(y)x = f(x)v,
80 f(y) = 0 implies ¥y = 0. Thus f is injective.

The next section is concerned with how well the property End (4)
is semi-prime distinguishes the ideals of a semi-prime ring R from
other R-modules.

2. In [3] Vasconcelos proves that when R is noetherian and
semi-prime a finitely generated faithful R-module E with End, (E)
commutative and semi-prime is isomorphic to an ideal of R. He con-
jectures that the result may remain valid for a finitely presented E
even if R is not noetherian. I could not resolve this but generalize
his result to include those rings having an absolutely flat total quo-
tient ring (called quasi-regular rings). The methods make no use of
the commutativity of End (E). Thus in the situation considered (in
2.2 below) semi-prime implies commutativity. Although we are con-



COMMUTATIVE ENDOMORPHISM RINGS 89

sidering only commutative rings here, our generalization, unlike the
original version of the theorem, can at least be conjectured for non-
commutative rings.

This is the first step in the proof:

THEOREM 2.1. Let R be a ring and E a finitely present R-module.
If xe E is nonzero, then there exists f<c End (E) nonzero such that
f(E) C Rux.

Proof. First suppose R is noetherian. Let p be a prime minimal
over Ann (x). Then there exists y € Rx such that p = Ann (y) [2,
Theorem 86]. Localize at p. Let K = R,/p,. Since E,+ 0, E,Q K
is at least one dimensional by the Nakayama lemma [2, Theorem 78].
Thus there is a surjection 4: F,® K— K. As an R,-module, K = (Ry),.
Let g be the composite E,— E,Q K LA (Ry), C (Rx),. Since FE is
finitely presented, we have Hom; (E, R%), = Hom,, (Ep, Rzs) [1, p. 39,
Proposition 11]. Hence g = f/s for some f: E— Rx and s € R\p. Clearly,
f has the required properties. Thus the result holds when R is
noetherian. Since F is finitely presented we can use the following well

known technique to reduce to the noetherian case: Let R™ i R”fv
E—0 be a presentation of E, select bases f, e;: let A(f)) = 3 aie;
B(e;) = my, x = >, x;m; with a;;, ;€ B. Let S be the subring generat-
ed by 1 and all the 2’s and a’s. S is noetherian by the Hilbert Basis
Theorem. Let F be the S-submodule generated by the m’s. Then
F®sR=F and xe F. Since Sis noetherian there is nonzero g: F— Sz.
Tensoring with S yields a commutative diagram:

E— Se@QR— Rx

S I I

Hence we can take f to be the composite of the maps on the upper row.

For an ideal I of R let Min (I) denote the primes of B minimal
over I. For an R-module E let Ass (F) denote the Bourbaki associated
primes of FE. Thus Ass(F) is the union over xzc E of the sets
Min(Ann(zx)).

THEOREM 2.2. Let R be a semi-prime ring, E a finitely presented
R-module. If End (E) is semi-prime, then End (E) is commutative
and Ass (F) = Min(Ann (E)).

Proof. For any finitely presented R-module E Min(Ann, (E)) C
Ass (E) and the mapping End (E) — [I,es0nm Endg, (£,) induced by
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End (E) — End,, (E,) is an injective ring homomorphism. Thus it is
sufficient to establish that if pe Min(Ann (x)) and < E, then E, =
(Rz),. For then [End.(E)],= End./(E,) is commutative and
Ann, (Rz,) = Anng (E,) = [Anng(E)],. Thus by relationship between
primes of R, and primes of R contained in p we get p € Min(Ann (E)).
So let p e Min(Ann (z)),xc E. Put T=R,,q=9T, F=E, y=x/1¢F.
T is quasi-local semi-prime with maximal ideal ¢ = V'Ann, (y). By
2.1 there is nonzero f: F— F with f(F)c Ty. Let f(y) = ay. Then
a¢ q else f is nilpotent and consequently zero since End, (F') is semi-
prime. Let beq and define h = ba™'f. Then & is nilpotent since
beVAnn(y) and W(F)c Ty. Thus = 0. Hence 0= h(y) = by.
Therefore ¢ = Ann, (y). Let M = F/Ty and suppose M # qM. Then
M/qM is at least one dimensional over T/q so there is a surjection
g: M— T/qg = Ty. Let k be the composite of the natural map F— M
followed by g. Then k< End (F) and k* = 0. Since End (F') is semi-
prime we get the contradiction &k = 0 and Ty == 0. Therefore M = qM;
and thus F = Ty by Nakayama. Hence E, = (Rx), as required.

THEOREM 2.3. Let R be quasi-regular ring and E a finitely
presented R-module. If End (E) is semi-prime and if there is an
iwdeal I < R such that Ann (I) = Ann (E), then E is isomorphic to an
ideal of R.

Proof. By 2.2 Ass(E) = Min(Ann (%)) = Min(Ann (I)). Thus
each associated prime of E consists of zero divisors of R [2, Theorem
84]. Therefore the natural map F— E® T is injective where T
denotes the total quotient ring of B, Let F= E® T. End,(F)=
End; (F) ® T is semi-prime. Since T is absolutely flat, then F is a
direct sum Te, P +-- P Te, of ideals of T each of which is generated
by an idempotent e; of T [1, Exercise 18, p.64]. Let 17, he
Hom, (Te;, Te;). Define f: F— F by fle,) =0 for £+ 7 and f(e;) =
h(e). Then f*=0 and thus A = 0. Hence the idempotents e; are
mutually orthogonal and therefore F = Te, + «-« + Te, is an ideal of
T. Now multiplication by a suitable regular element will move the
image of E in F inside R.

The hypothesis on Ann, (F) in 2.3 is satified when FE is faithful.

There is some evidence that 2.3 may be valid for noncommutative
rings. For example if R is an absolutely flat semi-prime ring and E
a finitely presented right R-module (or more generally a projective
right R-module) and if End (EF) is semi-prime then FE is isomorphic
to an ideal.

Added March 12, 1973. S. Alamelu has independently obtained
Theorem 1.1. Her results will appear in the Proceedings of the
American Mathematical Society.
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