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Let (X, A)bearinged space and let D be a domain in X, Let
B =B(D) ={fe AD); ||fllp < «©}. A minimal boundary for
B is defined as a unique smallest subset of D such that every
function in B attains its supremum near the set. The fol-
lowings are shown: If X is locally compact, D is relatively
compact, and B separates the points of D then there exists
a minimal boundary. Under the same assumptions, the natural
projection of the Silov boundary 03 into X is the minimal
boundary. If A is a maximum modulus algebra and the set
of frontier points for A is the minimal boundary, then any
holomorphic function which is bounded near the minimal
boundary must be bounded. Finally, if D is the spectrum of
B (with the compact open topology), then the topological
boundary of D is the set of frontier points for B.

Introduction. Let (X, A) be a ringed space; a subsheaf of rings
with identity of the sheaf of germs of continuous functions on a
Hausdorff space X. Let I'(U, A) be the set of all sections of A over
U, U is an open subset of X. Let A(U) = {feC(U): f(x) = () (x) =
J@), x€ U}, where ¢ € I'(U, A) and .f is the germ of f at 2. A func-
tion f in A(U) is called A-holomorphic or holomorphic. Let B(U) =
{fe A(U): f is bounded on U}. Then B(U) is an algebra (over C)
with identity.

Let D be an open subset of X and let D be the closure of D in
X. For 4c Dlet N(4) be the filter base of open neighborhoods of 4
in X and denote N,(4) be the trace of N(4) on D.

DerFINITION. For fe A(D), define cl £,(4) = {) cl f(W): W e N,(4)},
where cl f(W) is the closure of f(W) in the Riemann sphere C U (o},
the cluster set of f at 4, and write clty(x) for clis({x}). Define
M:(4) = sup|clt(4)| €]0, =], and write M (x) for M ({x}).

Let B = B(D). Denote B, for B with the topology of supremum
norm on D and B, for B with the topology of uniform convergence
on compact subsets of D (c.o. topology). Then B, is a Banach algebra.
Let S(B,) be the space of nonzero complex homomorphisms of B, onto
C and S(B,) be the space of nonzero continuous complex homomor-
phisms of B, onto C. Then S(B,) > S(B,), for, if ke S(B,) then there
exists a compact subset K, of D such that |a(f)| = || fl;, for all
fe B, which implies |&(f)| < || fll, for all fe B, so that heS(B,).
Endow S(B,) with the weakest topology for which each 7 is continuous,
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where f is the Gelfand representation of f on S(B,) such that f(h) =
h(f) for all he S(B,). Then S(B,) is compact. Equip S(B,) with the
relative topology of S(B,). For ze¢ D define A, (f) = f(x) for all fe B
then 7, c S(B,), moreover k, <€ S(B,), since [k (f)| = |f(®)] = ||f]|lx for
all fe B, where K is a compact subset containing {#}. Now if B
separates the points of D then it separates strongly the points of D
(in the sense of [8]), since B contains constant functions. If D is
locally compact and B separates the points then the natural embedd-
ing p of D into S(B,) is a homeomorphism (See Cor. 3.2.5 of Rickart
[8]). Henceforth, we denote o for this homeomorphism. Let w be
a continuous mapping from S(B,) into X such that 7| 0D is the in-
verse mapping of o, so that 7| D is a homeomorphism of oD onto D.

The prototype of these phenomena is the following: Let D be
a relatively compact domain in C* and B = B(D). Set S = S(B,).
With the coordinate function z,, 2, +++, 2, in B, define 7: S— C" by
w(h) = (Bh), +--,Z,(h),h e S(z(S) is the joint spectrum of z,, z,,«++,%2,.
Then 7 is continuous and it is a homeomorphism on pD. Moreover
ns(,B)c D and =S> D.

A minimal boundary.

ProposiTiON 1.

(1) Mi(4) = limy,, sup {| f(W) |: We Ny(d)}, where 4 D. For
e D, My) = f(@). |[fIl =sup.es |f(@)| = M(D) = Ms(D).

(ii) The function M,(-): D—[0, o] is upper semi-continuous.

(iii) For a closed subset 4 D, there exists a point pe 4 such
that M(4) = Mq(p).

(iv) M;,(4) < M(4)-M,(4), where 4C D.

Proof. For (i), (ii), and (iii), see Quigley [5]. (iv) is trivial.

DEFINITION 2. Let Hc A(D). We call a subset I" of D an H-set
if I" is closed in D and || f|| = M/(D) = M) for all fe H. An H-set
is minimal if it properly contains no H-set. Denote I"; for a minimal
H-get.

If H= B = B(D), "' is a minimal B-set.

ProrosiTioN 2. If D s relatively compact then a minimal H-set
exists for every Hc A(D).

Proof. See Quigley [5].

ProprosiTION 3. Let X be locally compact and B separate the
points of D. Let w be a continuous mapping from S(B,) into X such
that wop 1is the identity mapping on D. Let cl oD be the closure of
oD in S(B,). Then zm(cl oD) = D and =m(cl pD — oD) = D — D.
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Proof. Since cl oD is compact and z(cl pD) 2 D, n(cl pD) =2 D.
Let hecl oD then for any net {h,} < pD which converges to k, {n(h,)}
converges to m(h), since 7 is continuous. Since {x(h,)}< D, n(h) € D.
So 7#(clpD) < D. Hence n(cl pD) =

Let heelpD — pD and assume that z(h) e D. Take any feB.
Since f is continuous, we may choose, for arbitrary ¢’ > 0, a neigh-
borhood U of w(h); U= {xeD:|fix) — filx(h)]| <&, t=1,2,+-, n},
such that y e U implies | f(y) — f(z(h))| < ¢’. Again, since f is con-
tinuous/\on S(Bi) and kheclpD, there is y,€D Wii?h p(yoz eN={pe
S(BJ): |fil®p) — fiW)| <e,i=1,2,+--,m} such that | f(h) — f(o(y,))] < &'
Note that y,e U= x| 0D(N), so |f(y) — f(x(h) | <e'. Also f(y) =
Flo(w)) and f(z(h) = Flo@(h), so it follows that | F(h) —F(o(x(h)))| < 2¢'.
Since ¢’ is arbitrary, we have f(h) f(,o(n(h))) foy every fe B. Hence
h = o(n(k)) € pD, which is absurd. Hence n(cl oD — pD) = D — D.

THEOREM 1. Let X be locally compact and D be relatively com-~
pact in X. If B(D) separates the points of D, then the minimal B-
set I'y is unique.

Proof. Let I', and I, be minimal B-sets, and let pe/”, be an
arbitrary point of I,. We will show that every neighborhood of p
intersects I, so that pel’,., So I'yc ;. The same argument shows
that I, I',. .

Let pel',. Let W be any neighborhood of p in D and let p¢
cl oD such that (@) = p. Take a neighborhood N of @ in S(B,) = S
such that Nz (W); N = {he S: |fih) — Fi@)| <&, i=1,2, -+, n}
PutU = {weD:|fix) — a;| <é&,i=1,2,++,n}, where a; = 7,(#). Then
U=aWN)NDca(N). LetV={zeD: M;_,(v)<¢/2,7=12,---,n}
Since M;,_,. (%) = |fi(x) — a;| for xe D, VN D = U. And, since M, _,,
is upper semicontinuous, V is open in D and it is easy to see that
My, _..(p) = 0, soV is an open neighborhood of p. Note that M, (p) =
la;l. Now, since M, _, (%) <€/2 in V, we may choose a neighborhood
G of p in D such that | (f; — a)(@) | <& forallze GN D and G zN.
Then VoG aNcCW.

Sinece I', — V is closed in D and it is a proper subset of 7, it is
not a B-set. Hence there exists ¢ge B(D) such that M, (", — V) <
M) =|lgll. So M,(I",— V)|lgl|l™* <1. Choose m large enough
such that {M,(I", — V) ||g[ "}~ <e(l + ¢ || fs — as[) = 9, and set
f=g" Then MyI', = V) = Mn(I' = V) < {M,(I" = V)}" <dllgl|" =
ollflle If xeV then M, , (v) < ¢/2 so that

Mo M(@) = Myo (@) M () < —MAD) = — |1 -

It xel’, — V then My(x) < MAI', — V) < d]|fl], so that again
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M;,o M) < 1171l -

Since I, is a B-set it follows that M, .. M«(D) < (e/2) M (D) = (/2) || £
Let ¢ be any point of I, with M(q) = M, (D) = M,(D) = || f]|.
Then M; _,.(@)Ms(q) < (¢/2) ||f]l. Hence M, _,(q) <¢/2 and this is
true for all +=1,2,+--,%n. Thus geV, so VNI,# @. Hence
W NnI,+ ¢. Since I';, is closed, pel',. The proof is complete.

We call the unique minimal B-set the minimal boundary for B.

Note. Let I', be a minimal boundary for B then zel", if and
only if for every neighborhood U of x there exists fe B such that
Al = MAU) > MAD — U).

THEOREM 2. Let X be locally compact and D be relatively com-
pact in X. We assume that B separates the points of D. Then
noB is a minimal boundary.

Proof. Since M(D) = ||fll, = | Flloo = || flls for all feB, we
have 03 el pD. Let x <€ @dj then there exists & €03 such that x = zh.
Now, heay 1mphes that for arbltrary nelghborhood Nof hin S = S(B,)
there exists fe B such that I Flls = HfHN > | Flls_y. Since S — N>
pD — NN pD, we have | Fllsew Z | Flloo—snone S0 || Fllop = 1| Flls >
HJ:H&— = Hf”ppuzvnpp Hence it follows that ||prD = Hf“zvnpp >
I F lop—wnop. This is equivalent to [|fllo = [|fllzvnem > [ llp—zvnone
Since w(N N pD) is a trace of a neighborhood of & = mh on D and
a trace of any neighborhood of # on D can be written as such a form,
2 = wh belongs to a minimal boundary I';. So wo3CIl'z. On the
other hand, if W is any open set containing 703, then by the con-
tinuity of =, there exists an open set G in S containing 03 such that
7(G) EW and hence n(GNpD)SWnND. For any fe B, we have

Hf”WﬂD = H.)?”GQPD = Hf”amzw = Hf”a& = Hf”p .

If follows that M (wos) = ||f|l, for all fe B. Since 7md; is closed, it
is a B-set. Thus #dj; is a minimal boundary.

For instance: Let D be the unit open disc in C and let B(D) = H
Define a natural continuous mapping 7 of S into the closed unit disc
D by n(h) = h(z), he S and z is the coordinate function. Then the
minimal boundary I, is the unit circle and the Silov boundary 0z on
S is a proper closed subset of cl oD — pD which is totally disconnect-
ed. The image of d3 under m is the unit circle.

Next, we have a question that whether a function f with
M/(I") < o is bounded.
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PRroPoSITION 4. Suppose A = A(D) and B = B(D) have the unique
minimal boundaries I'y and I'y respectively. If I', = I'; then there
exists a function fe A which is bounded mear I'y (i.e., M(I"p) < o),
but not in B.

Proof. In general, I"'y,oI,. Take zelI', — I'y and choose a
neighborhood U of & in D such that M.(U) = ||f|| > M,(D — U) and
UNI;=¢. Then M,y < - but f¢& B.

DEFINITION. A point e D is a frontier point of D for Hc A(D)
if for each compact subset K of D with #¢ K there exists fe H such
that M,(x) > || fllx. Let Fy be the set of all frontier points of D for
H. Denote F, for A(D) and F; for B(D) respectively.

We introduce a generalized form of a theorem in Bochner and
Martin [2] (see Theorem 1, Ch. V) as follows:

PropPOSITION 5. Let X be locally compact, D be a subset of X
which is countable at o, and let D — D be first countable. Let
A = A(D) be a maximum modulus algebra and c.o. complete. Then
xve F, if and only if there is a function fe A such that M:(%) = <.
In fact, there is a single function f such that M (x) = o for all
xeF,.

Proof. Use the analogous argument as in Bochner and Martin [2].

THEOREM 3. Let X be locally compact, D be countable at <, and
D — D be first countable. Let A be a maximum modulus algebra
and c¢.o. complete. Suppose 'y ts a minimal boundary and F, = [y
then every function fe A with MAI"y) < o belongs to B.

Proof. Assume that f is unbounded then there exists a sequence
{x,} © D such that |f(x,)| — « and % — . Let x,— «then by Pro-
position 5, e F, and so x€l3. Thus oo = Mi(2) £ Mg < oo,
which is absurd. Hence fe B.

We observe that ke S(B, — S(B,) if and only if for any compact
subset K of D there exists fe B (f may depend on K) such that

| R(A) > 11 NIk

THEOREM 4. Let X be locally compact and B separate the points
of D. Let Fy be the set of all frontier points for B. If oD = S(B,)
then D — D = F,.

Proof. Let bdry S(B, = clS(B,) — S(B.). By Proposition 3,
m(bdry S(B,) = bdry D. Now if hebdry S(B,), then for any com-
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pact subset K of D, there exists fe B such that [h(f)]| > || fllx.

claim Mq(m(h)) > || fll«: Suppose My (x(k)) = ||f|lx =, then there
exists a net {x,} < D such that ||[f(z,)| —r| <1l/n as @ — 7(h). So
|f@®,) | —r. Now, let h, — h. Since 7 is continuous, f(h,,n) — 7 (0.
So f(x,) — h(f). In partlcular, | f(@,) | —h(f)|. Then it follows that
is i So bdry

D = Fj.

Note. If D is a Stein manifold of bounded type then oD = S(B,)
(see Kim [3]).
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