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JOosErH M. LAMBERT

Given a dense subspace of M of a Banach space X, an
element z in X and a finite collection of linear functions in
X*, the problem of simultaneous approximation and interpo-
lation is to interpolate x at the given functionals in X* by
an element m of M, with the restriction that the norms of
2 and m be equal and their difference in norm be arbitrarily
small. A solution is given for the space L; with dense sub-
space, the simple functions in L;, and any collection of func-
tions in L.. In addition the problem is studied in the space
C(T), with any dense subalgebra and any finite collection of
linear functionals in C(T)*.

In [1] the concept of simultaneous approximation and interpolation
which preserves the norm, (SAIN), was introduced.

DEFINITION [1]. Let X be a normed linear space, M a dense
subset of X, L a finite dimensional subspace of X*. The triple
(X, M, L) has property (SAIN) if for every # in X and & > 0 there
exists y in M such that ||z — y|| <e¢, ||z]] = ||y and M=) = My) for
all A in L.

Other papers concerned with this topic are [4], [5], and [6].

In [5] it was shown that if L is any finite dimensional subspace
of 1., and if M is the subspace of I, consisting of the elements having
only finitely many nonzero components, then (I, M, L) had property
(SAIN). In this paper, we let M be the subspace of simple functions
in L,, We show (L,, M, T) has property (SAIN) for any finite dimen-
sional subspace T in L.

In [1], the space C(T) is studied, where T is a compact Hausdorff
space. One finds there

THEOREM 4.1. Let A be a dense subalgebra of C(T) and ¢, +--,t,
wn T. Then (C(T), A, {0, +++,0,,}) has property (SAIN). (3, is the
linear functional on C(T) given by point evaluation at t.)

When arbitrary linear functionals in C(T) are used, examples in
[1] show that (C(T), A, {+}) may or may not have property (SAIN)
depending on v.

In this paper we wish to find sufficient conditions on f in C(T)
and M dense in C(T) such that given {v, +++,v,} in C(T)* and e > 0
there exists m in M such that ||f — m|| <e¢, ||f]l = ||m] and
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Sfdv,,, = Smdl)i, i = 1, sy, n.

In particular one finds that if f attains its norm at most a finite
number of times, then any dense subalgebra of C(T) will satisfy these
conditions.

In this paper the following notation and terminology is used. X
is to denote a real normed linear space. X* is to denote the con-
tinuous dual of X, U(X) and S(X), the closed unit ball and its boundary
in X. A set E contained in a set F' is F-extremal if whenever ¢z -+
(1—-t¢tyisin E, with 0 <t <1 and 2,y in F then z,y are in E.
A hyperplane H supports a set K, if it bounds K and intersects K.
The real valued function sgn(-): Reals—{—1,0,1} is defined via
sgn (0) = 0 and sgn (x) = x/|x|, ® + 0. Then convex hull of a set 4
is to be denoted by co (4). All other notation will correspond to that
of [3].

1. Minimal closed U(X) extremal subsets.

DEFINITION 1.1. F'() is to denote the minimal closed U(X)-extremal
set containing z. Q(z) is the intersection of all U(X) supporting
hyperplanes at z.

THEOREM 1.1. Let X be a mormed linear space, M a dense sub-
space of X and L = span {®,, -+, P} a finite dimensional subspace of
X*, and x in S(X). If F(x) N M is dense in F(x) then given € >0
there ewists m in S(X) such that @,(x) = @;(m),t =1, -+, n and
e — mil <e.

Proof. Define the continuous function @: F(z) — R" via @(x) =
(Pu(®), +++, Pu(x)). Assume that F(z) C p7'(pi(w) for 1 =0,1, .-+, k
and that this is the largest set of linearly independent elements of L
for which this is true. If no such set exists, k = 0. In R"* we assert
the existence of m,e F(x) N M with ||z — m,|| < ¢ such that

(¢k+1(x)’ ) g)n(w)) €co (¢k+1(ma), ey ¢'n(ma) Ia € A) ’

A an arbitrary index set. If not, then in R * there exists a linear
functional 7, a linear combination of the ®,, 7 > k such that without
loss of generality z(m) <7 (x) for all m € F((x) N M such that |[[x — m|<e.
But this implies 7(m) < z(x) for all m e F(x) N M, since if there exists
my € F(x) N M with || — m,|| > ¢ then the set

{ye F@)|z@y) > (@), [ly — =l < ¢}

is F(x) relatively open and nonempty (choose a suitable combination
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of » and m, and hence contains m in F(x) N M contradicting z(m) <
z(x) with ||m — z|| <e. Since F(z) N M is dense in F(x) this implies
z(y) £ (@) Vy € F(x). Let K= {ye F(x)|r(y) =7(x)}. K is convex closed
and F(x)-extremal since tz + (L — t)y in K implies tz(z) + (1 — t)z(y) =
7(x) with 7(2) < t(x), (y) < v(®). Hence () = t(y) = v(*) and 2,y K.
Hence K is closed U(X)-extremal and K = F(x). Thus F(x) C 77(z(z)).
Since 7 is linearly independent of @, 7 = 1, - -+, k, this contradicts the
maximal choice of @, at the start of the proof. Therefore

(¢k+1(x), M) ¢n(x)) €co (@Ia—l—l(ma)y ct ey ¢n(ma) }a € A)

with ||# — m,|| <e. This yields the result by the convexity of M
and @(M).

In a recent paper of Deutsch and Lindahl [2], they showed that
in certain spaces that the set Q(x), the intersection of all U(X) sup-
porting hyperplanes at , is equal to the closure of the minimal ex-
tremal subset containing . Thus Q(x) is equal to the minimal closed
extremal subset containing x. This occurs, in particular [2, Theorem
4.2], if (T, 2, v) is a o-finite measure space, in L,(T, ¥, v). Also, this
occurs [2, Theorem 3.3] in the space C,(T), the space of continuous
functions vanishing at infinity, 7T locally compact.

THEOREM 2.1. Let (T, Z2,v) be a o-finite measure space with
L¥T, 2,v) = L.(T, 2,v). Let M be the dense subspace of L, consist-
ing of the simple functions. Then (L,, M, H) has property (SAIN)
for any finite dimensional subspace H contained in L..

Proof. Given z in S(L,). By [2, Theorem 4.2], Q(x) = {z€ S(L,)|
‘z sgn (x) = 1} and Q(x) = F(x). M is dense in @Q(x) and by Theorem
1.1 the result follows.

THEOREM 2.2. Let T be a compact Hausdorff space, C(T) the
space of real valued continuous functions on T. Let f in S(C(T)) be
such that Q(f) = Mi=, P7'(1 f1) with ®; in rea (T). If

(C(T)’ M’ {g)wl'l = 1) % n})

has property SAIN then given any finite collection p; in rea (T),
€ >0 there exists m in M such that ||f — m|| <e¢, [|fll = ||m]| and

Sfdm = gmdm .

Proof. By [2, Theorem 3.3] Q(f) = {x e C(T)|2(t) = ft) for teT
such that [f()| = 1} and Q(f) = F(f). (C(T), M,{®:li =1, -+, m})
having property (SAIN) implies F(f) N M is dense in F(f). By Theorem
1.1 the result follows.
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COROLLARY 2.1. Let f be in S(C(T)) € >0. If |f| attains is
norm finitely often them given ;1 =1, +ve, n in rca (T) there exists
p wn A (any dense subalgebra of C(T)) such that ||p — fll <e ||p]] =

1511 and {pags = {7

Proof. By [1, Theorem 4.1] quoted in the introduction of this
article ((C(T), A, {0.] f(t)] = 1}) has property (SAIN). But Q(f) =
NPT | f®)| = 1}. Hence apply Theorem 2.2.
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