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KeELLY MCKENNON

Let G be a locally compact group with left Haar measure
4 and suppose 1 =< p < co. The purpose of this paper is to
exhibit an isometric isomorphism « of the Banach algebra
M, of all right multipliers on L, = L,(G, 2) into the normed
algebra m, of all right multipliers on the group L,-algebra
L:. When G is either commutative or compact, o is surjective.

A function fe L, is said to be p-temperate if

(1) hxf(x) = SG SORE 2)dNE) exists for r-almost all
xe(G whenever b isin L,;

(2) h«f isin L, for all helL,;

(3) sup {|| haf llp: b€ Ly, [ B l; £ 1} < oo .

It was shown in [6], Theorem 1, that fe L, is p-temperate if

(4) sup {[[ h«f [l,: ke Coy [ Rl = 1} < o0

where C, denotes the set of all continuous complex-valued functions
on G with compact support. The set of all p-temperate functions
will be written as L. Each function feC, is in L} and so L} com-
prises a dense subspace of L,. For fe L’, the number given by either
(3) or (4) will be written as ||f||;%. The function || ||} so defined is
a norm under which L} is a normed algebra. This normed algebra
will be referred to as the group L.,-algebra.

By a right multiplier on L) will be meant a bounded linear
operator T on L} such that

(5) T(f+g) = f=T(g) for all f and ¢ in Lf.

The set of all such 7, which constitutes a normed algebra under the
usual operator norm, will be written as m,. Write Bp for the Banach
algebra of all bounded linear operators on L,. An operator TeBp
is said to be a right multiplier of type (p, ») (see [3]) if

(6) T(.f) = .T(f)  for all feL,

where ,i(y) = h(zy) for each function % on G. The set of all such T
will be written as M,. It is a complete sub-algebra of B,.

The group L,-algebra was utilized in [6] to study a related
algebra A4,, of which the Banach algebra of left multipliers was found
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to be isomorphic to M,. The situation is reversed here. For fe L,
an operator W, in B, is defined by

(7) Wi(g) = g+f for all ge L,
and, consequently,

(8) Wl =11F1l5 -

The closure in B, of the linear span of the set {W,,:feL: gecC.}
will be written as A,. It is a Banach algebra with a minimal left
approximate identity ([6], Theorem 3). Concrete interpretations of
both A, and Lf, in the cases where G is either commutative or com-
pact, may be found in [6]. It will be mentioned here only that L!
is the group algebra L, and that L is the group Hilbert algebra
(see [1] and [2] for example).

PROPOSITION 1. Let T be in M, and f and g be in L,. Then

(1) T(fxg) =f=T(9) if feLy

(ii) T(g) is in Lt if g s in Li;

(iii) T(f*9) = f+T(g) if g is in Lt

Proof. Part (i) was proved in the corollary to Theorem 4 in [6].
Let g be in L. By (i),

sup {[| A= T(g) lls € Coo, | 2 I, < 1}

= sup {|| T(h+g) [l,: k€ Co, | R, = 1} S I Tl| -l g1I5 -

By (4), this implies that T(g) is in L.
Let again g be in L’ and choose a sequence {f,} in C.. which con-
verges to f in L,. Then

Iiinllfﬂ*g — fxgll, = 0 and, in view of (ii),
im [|fuxT(g) — fxT(9) [l, = 0. Thus, by (i),
F+T(g) = lim £, T(g) = lim T(fyxg) = T(frg) -
LeEMMA 1. For each nonzero f€ L,, there exists g € C., for which
gxf = 0.
Proof. See [4] 20.15.

LEMMA 2. For each Tem, and Ve A,
sup{[| To V() [l,: he L, [ Rl = B} < I TV

Proof. Write D for the set {W,feL, Wy;eA,}, Then D is
a dense subspace of A, and, by 8), ||W,I|| = || fIll} for all W,e D.
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Hence, if o’ | D — Bp is defined by o'(W,) = Wy for all W, e D, then
o' is continuous. Let p|A,— B, be the unique continuous extension
of o to A,. The immediate object is to show that o(V) and TV
coincide on L:.

Let he L! be such that ||h|], <1 and let {f,} be a sequence in

L such the W, is in D for each ne N and lim,|W, — V| = 0.
Since A, is a subset of M,, the operator V is in M, and so, by Pro-
position 1.iii,

VeWi(9) = V(gxh) = g=V(h) = Wy (9)

for all geL,; hence, VoW, = Wy. That W, (h) = W0 W, is
easy to check. Thus, for each ne N, (8) yields ||W, (h) — V(b) |}, =
|W,o W, — VoW,|l. Hence,

lim ([W;, () — V() [I; < Gm [[Wy, — V{le[[Wil[=0.

Consequently,
(9) im || T(W,, () — T(V) [, = 0 .
For each ne N and ge L}, Wy, (9) = gxT(f) = T(gxfs) = ToWy.(9);
hence, o(W; ) = 0'(W;,) = Wpyy,) = ToW, . Consequently
Em || 7o W,, — o(V) || = lim || o(W,,) = o(V) || = 0 -
Thus
lim || ToW,, (k) — [0o(M)I®@ I, =0  and so
Hm [[ g+(T Wy, (R)) — g=[o(V)](R) [l, = 0

for each geC.. But, by (9),
Hm [lg+(T W;, (1) — gx(T(V(W)) [l = 0
for all geC.. It follows that gx[o(V)](k) = g+(T(V(h))) for all g € C...
By Lemma 1, this yields that
[e(M)l(h) = T(V(h) -
Now
1T V) llo = oW1 [l, = im [| [o(W,)1(R) [I5
= lim [[p+T(f) [l = thlp-@l 1 T(fa) 115

=< (since || k|, £ 1 and because of (8))
il ~Eﬁllfnll§ =||T| - lTnﬁlle,,ll =[|TIl-1IVIl.
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PROPOSITION 2. For each Tem, VeA, and feLi,
NV =UTH- VD) s -

Proof. Let & be any positive number. Since A, is a Banach
algebra with a minimal left approximate identity, Cohen’s factoriza-
tion theorem ([5] 32.26) implies that there exist P and S in A4, such
that || P|| =1, [|S— V|| <¢, and V = PS. Thus, SN, =1 V(NI +
e+||f1l, and, by Lemma 2,

I TV [ls = [ ToPESO) s
s UTH-NPI- WSO = ITHUVO [l + e 1A 1) -

It follows that [[T(V()) I, < I Tl V() l5
LEMMA 8. The set {V(f): feL:, VeA,} is a dense subspace of Ly,.

Proof. Let ¢ be a positive number and g be in L,. Choose
feCysuch that ||g — fl|, <e&/2. If {V,} is a minimal left approximate
identity for A,, it follows from [6], Lemma 3, that lim, || V.(f) — f1l, =0.
Thus, for some index «a, || V.(f) — fll» < &/2 and so [|[V.(f) — gll, < e.

LEMMA 4. Let V be in B, and D a dense subset of L, such that
V(h<f) = hxV(f) for all heCy and feD. Then V is in M,.

Proof. Let x bein G. By [4] 20.15, there is a net {f,} in C,, such
that lim, |,h — fuxh ||, = O for all he L,. It follows that lim, || V(,h) —
V{feh) ||, = 0 and lim, ||, V(k) — foxV(R) ||, = 0. Hence, for he D

I VR = V) |l = bim [ V(fush) = £x V) [, = im0
by the hypothesis for V. Since D is dense in L,, V is in M,.

THEOREM 1. Define o | M, — m, by letting w,(f) = T(f) for each
TeM, and fe L. Then w is an isometric isomorphism of M, into

m,. Furthermore, if T is any operator in m,, then there exists some
Se M, such that, for all Ve A, and fc L:, w,(V()) = T(V(f)).

Proof. That o is well-defined follows from Proposition 1. That
® is an isomorphism is evident when it is noted that L} is a dense
subset of L,.

Let T be an arbitrary element of m,. It follows from Proposi-
tion 2 and Lemma 3 that there exists a unique operator S in B, such
that S(V(f)) = T(V(f)) for all Ve A, and fe L. For heC,, VeAi,,
and fe L, Proposition 1 implies
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SExV () = S(V(hx[)) = T(V(kxS))
= T V(f)) = b= T(V(f)) = kxS(V(S)) .

By Lemmas 8 and 4, this implies that S is in M,. Consequently,
ws(V(h) = S(V(k)) = T(V(h)) for all he Lt and Ve A,.

To complete this proof, it will now suffice to show that w is an
isometry. Let T be in M,. Let f be in Lf and e a positive number.
Choose ge L}, for which ||g|, =1 and [[w(f) ], < |lgx@(f) |, + e.
By Proposition 1.iii, T(g+f) = g+T(f); this means that ToW,(g) =
gxw.(f). Hence,

oA <[T- Wil + e < ITI - [IWsll +¢.
By (8), this implies || () [l; < [Tl - [[f]l;- Hence
o | =TIl .
On the other hand, Proposition 2 and Lemma 3 imply

T = sup {[| T(V(W) |ls: Ve 4,, he L, [[V(R) I, < 1}
= sup {|| @ (VW) [l Ve A, he L, [V |, £ 1} = |l ]|

This proves that ||T|| = || o ]l.

THEOREM 2. Let w be as in Theorem 1 and G be either com-
mutative or compact. Then @ 1is surjective.

Proof. Let T be any operator in m,. By Theorem 1, there is an
operator S in M, for which T(V(f)) = ws(V(f)) for all Ve A, and
felL:.

If G is compact, then L, = L,. It follows from the Hewitt-Curtis-
Figa Talamanca factorization theorem ([5] 32.22) that each hec L) is
of the form V(f) for some Ve 4, and fe L., Hence, T = ws.

Suppose now that G is commutative (not necessarily compact).
Assume that there existed & € L, such that ws(k) = T(h). Then Lemma
1 implies that gx(ws — T)(h) =0 for some geC,. Let {r,} be a
sequence in C,, for which lim, ||k, — k]|, = 0. Then

| gx(@s — T)Y(®) I,

= || (@s — T)(g=h) ll, = [[(@s — T)(h=g) [,

= llh(@s — T)(g) l, = lim || hux(@s — T)(9) ll»

= [[lim [ (@5 — T)(haxg) |, = lim || (@5 — T) (Wi, (@) [l = 0

a contradiction. Thus, ws = T.
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