Pacific Journal of Mathematics

MULTIPLIERS OF TYPE (p, p) AND MULTIPLIERS OF THE GROUP L_p -ALGEBRAS

KELLY DENIS MCKENNON

MULTIPLIERS OF TYPE (p, p) AND MULTIPLIERS OF THE GROUP L_p -ALGEBRAS

KELLY MCKENNON

Let G be a locally compact group with left Haar measure λ and suppose $1 \leq p < \infty$. The purpose of this paper is to exhibit an isometric isomorphism ω of the Banach algebra M_p of all right multipliers on $L_p = L_p(G, \lambda)$ into the normed algebra m_p of all right multipliers on the group L_p -algebra L_p^t . When G is either commutative or compact, ω is surjective.

A function $f \in L_p$ is said to be p-temperate if

(1)
$$h*f(x) = \int_G f(t)h(t^{-1}x)d\lambda(t)$$
 exists for λ -almost all $x \in G$ whenever h is in L_p ; (2) $h*f$ is in L_p for all $h \in L_p$;

$$(2) h*f is in L_p for all h \in L_p;$$

(3)
$$\sup \{||h*f||_p: h \in L_p, ||h||_p \le 1\} < \infty.$$

It was shown in [6], Theorem 1, that $f \in L_p$ is p-temperate if

(4)
$$\sup \{ ||h * f||_p : h \in C_{\infty}, ||h||_p \leq 1 \} < \infty$$

where C_{00} denotes the set of all continuous complex-valued functions on G with compact support. The set of all p-temperate functions will be written as L_{v}^{t} . Each function $f \in C_{00}$ is in L_{v}^{t} and so L_{v}^{t} comprises a dense subspace of L_p . For $f \in L_p^t$, the number given by either (3) or (4) will be written as $||f||_p^t$. The function $||\cdot||_p^t$ so defined is a norm under which L_p^t is a normed algebra. This normed algebra will be referred to as the group L_p -algebra.

By a right multiplier on L_p^t will be meant a bounded linear operator T on L_p^t such that

(5)
$$T(f*g) = f*T(g) \quad \text{for all } f \text{ and } g \text{ in } L_p^t.$$

The set of all such T, which constitutes a normed algebra under the usual operator norm, will be written as \mathfrak{m}_{v} . Write $\mathfrak{B}p$ for the Banach algebra of all bounded linear operators on L_p . An operator $T \in \mathfrak{B}p$ is said to be a right multiplier of type (p, p) (see [3]) if

(6)
$$T(xf) = {}_{x}T(f) \quad \text{for all } f \in L_{p}$$

where $_{x}h(y) = h(xy)$ for each function h on G. The set of all such T will be written as M_p . It is a complete sub-algebra of \mathfrak{B}_p .

The group L_r -algebra was utilized in [6] to study a related algebra A_p , of which the Banach algebra of left multipliers was found to be isomorphic to M_p . The situation is reversed here. For $f \in L_p^t$, an operator W_f in \mathfrak{B}_p is defined by

$$(7) W_f(g) = g * f \text{for all } g \in L_p$$

and, consequently,

(8)
$$||W_f|| = ||f||_p^t.$$

The closure in \mathfrak{B}_p of the linear span of the set $\{W_{f*g}: f \in L_p^t, g \in C_\infty\}$ will be written as A_p . It is a Banach algebra with a minimal left approximate identity ([6], Theorem 3). Concrete interpretations of both A_p and L_p^t , in the cases where G is either commutative or compact, may be found in [6]. It will be mentioned here only that L_1^t is the group algebra L_1 and that L_2^t is the group Hilbert algebra (see [1] and [2] for example).

PROPOSITION 1. Let T be in M_p and f and g be in L_p . Then

- $(i) \quad T(f*g) = f*T(g) \qquad if \ f \in L_1;$
- (ii) T(g) is in L_p^t if g is in L_p^t ;
- (iii) T(f*g) = f*T(g) if g is in L_v^t .

Proof. Part (i) was proved in the corollary to Theorem 4 in [6]. Let g be in L_p^t . By (i),

$$\begin{split} \sup \left\{ \mid\mid h \ast T(g) \mid\mid_{p}: h \in C_{00}, \mid\mid h \mid\mid_{p} \leq 1 \right\} \\ = \sup \left\{ \mid\mid T(h \ast g) \mid\mid_{p}: h \in C_{00}, \mid\mid h \mid\mid_{p} \leq 1 \right\} \leq \mid\mid T \mid\mid \cdot \mid\mid g \mid\mid_{p}^{t}. \end{split}$$

By (4), this implies that T(g) is in L_p^t .

Let again g be in L_p^t and choose a sequence $\{f_n\}$ in C_∞ which converges to f in L_p . Then

$$\lim_n ||f_n*g - f*g||_p = 0$$
 and, in view of (ii), $\lim_n ||f_n*T(g) - f*T(g)||_p = 0$. Thus, by (i), $f*T(g) = \lim_n f_n*T(g) = \lim_n T(f_n*g) = T(f*g)$.

LEMMA 1. For each nonzero $f \in L_p$, there exists $g \in C_{\infty}$ for which $g*f \neq 0$.

Proof. See [4] 20.15.

LEMMA 2. For each $T \in m_p$ and $V \in A_p$,

$$\sup\left\{||\; T \circ V(h) \;||_p \text{: } h \in L_p^t, \;||\; h \;||_p \leqq 1\right\} \leqq ||\; T \,|| \cdot ||\, V \,||\; \text{.}$$

Proof. Write D for the set $\{W_f: f \in L_p^t, W_f \in A_p\}$. Then D is a dense subspace of A_p and, by (8), $||W_f|| = ||f||_p^t$ for all $W_f \in D$.

Hence, if $\rho' \mid D \to \mathfrak{B}p$ is defined by $\rho'(W_f) = W_{T(f)}$ for all $W_f \in D$, then ρ' is continuous. Let $\rho \mid A_p \to \mathfrak{B}_p$ be the unique continuous extension of ρ to A_p . The immediate object is to show that $\rho(V)$ and $T \circ V$ coincide on L_p^t .

Let $h \in L_p^t$ be such that $||h||_p \le 1$ and let $\{f_n\}$ be a sequence in L_p^t such the W_{f_n} is in D for each $n \in N$ and $\lim_n ||W_{f_n} - V|| = 0$. Since A_p is a subset of M_p , the operator V is in M_p and so, by Proposition 1.iii,

$$V \circ W_h(g) = V(g*h) = g*V(h) = W_{V(h)}(g)$$

for all $g \in L_p$; hence, $V \circ W_h = W_{V(h)}$. That $W_{W_{f_n}}(h) = W_{f_n} \circ W_h$ is easy to check. Thus, for each $n \in N$, (8) yields $||W_{f_n}(h) - V(h)||_p^t = ||W_{f_n} \circ W_h - V \circ W_h||$. Hence,

$$\varlimsup_{n} ||W_{f_{n}}(h) - V(h)||_{p}^{t} \leq \varlimsup_{n} ||W_{f_{n}} - V|| \circ ||W_{h}|| = 0$$
.

Consequently,

(9)
$$\lim_{n \to \infty} || T(W_{f_n}(h)) - T(V(h)) ||_p^t = 0.$$

For each $n \in N$ and $g \in L_p^t$, $W_{T(f_n)}(g) = g * T(f_n) = T(g * f_n) = T \circ W_{f_n}(g)$; hence, $\rho(W_{f_n}) = \rho'(W_{f_n}) = W_{T(f_n)} = T \circ W_{f_n}$. Consequently

$$\overline{\lim_n} \mid\mid T \circ W_{f_n} - \rho(V) \mid\mid = \lim_n \mid\mid \rho(W_{f_n}) - \rho(V) \mid\mid = 0$$
.

Thus

$$\lim_{n} || T \circ W_{f_n}(h) - [\rho(V)](h) ||_p = 0 \quad \text{and so}$$

$$\lim_{n} || g * (T \circ W_{f_n}(h)) - g * [\rho(V)](h) ||_p = 0$$

for each $g \in C_{\infty}$. But, by (9),

$$\lim_{n} ||g*(T \circ W_{f_n}(h)) - g*(T(V(h)))||_p = 0$$

for all $g \in C_{\infty}$. It follows that $g*[\rho(V)](h) = g*(T(V(h)))$ for all $g \in C_{\infty}$. By Lemma 1, this yields that

$$[\rho(V)](h) = T(V(h)).$$

Now

$$\begin{split} || \ T \circ V(h) \ ||_p &= || \ [\rho(V)](h) \ ||_p = \lim_n || \ [\rho(W_{f_n})](h) \ ||_p \\ &= \lim_n || \ h \ast T(f_n) \ ||_p \leq || \ h \ ||_p \cdot \overline{\lim}_n || \ T(f_n) \ ||_p^t \\ &\leq (\text{since} \ || \ h \ ||_p \leq 1 \ \text{ and because of (8)}) \\ &|| \ T \ || \cdot \overline{\lim}_n || f_n \ ||_p^t = || \ T \ || \cdot \overline{\lim}_n || W_{f_n} \ || = || \ T \ || \cdot || V \ || \ . \end{split}$$

PROPOSITION 2. For each $T \in m_p$, $V \in A_p$, and $f \in L_p^t$,

$$||T(V(f))||_p \leq ||T|| \cdot ||V(f)||_p$$
.

Proof. Let ε be any positive number. Since A_p is a Banach algebra with a minimal left approximate identity, Cohen's factorization theorem ([5] 32.26) implies that there exist P and S in A_p such that ||P|| = 1, $||S - V|| < \varepsilon$, and V = PS. Thus, $||S(f)||_p \le ||V(f)||_p + \varepsilon \cdot ||f||_p$ and, by Lemma 2,

$$\| T(V(f)) \|_{p} = \| T \circ P(S(f)) \|_{p}$$

$$\leq \| T \| \cdot \| P \| \cdot \| S(f) \|_{p} = \| T \| (\| V(f) \|_{p} + \varepsilon \| f \|_{p}).$$

It follows that $||T(V(f))||_p \leq ||T|| \cdot ||V(f)||_p$.

LEMMA 3. The set $\{V(f): f \in L_p^t, V \in A_p\}$ is a dense subspace of L_p .

Proof. Let ε be a positive number and g be in L_p . Choose $f \in C_{00}$ such that $||g - f||_p < \varepsilon/2$. If $\{V_\alpha\}$ is a minimal left approximate identity for A_p , it follows from [6], Lemma 3, that $\lim_{\alpha} ||V_{\alpha}(f) - f||_p = 0$. Thus, for some index α , $||V_{\alpha}(f) - f||_p < \varepsilon/2$ and so $||V_{\alpha}(f) - g||_p < \varepsilon$.

LEMMA 4. Let V be in \mathfrak{B}_p and D a dense subset of L_p such that V(h*f) = h*V(f) for all $h \in C_{00}$ and $f \in D$. Then V is in M_p .

Proof. Let x be in G. By [4] 20.15, there is a net $\{f_{\alpha}\}$ in C_{00} such that $\lim_{\alpha}||_{x}h - f_{\alpha}*h||_{p} = 0$ for all $h \in L_{p}$. It follows that $\lim_{\alpha}||V(x)| - V(f_{\alpha}*h)||_{p} = 0$ and $\lim_{\alpha}||V(x)| - f_{\alpha}*V(h)||_{p} = 0$. Hence, for $h \in D$

$$||V(xh) - xV(h)||_p = \lim_{\alpha} ||V(f_{\alpha}*h) - f_{\alpha}*V(h)||_p = \lim_{\alpha} 0$$

by the hypothesis for V. Since D is dense in L_r , V is in M_r .

THEOREM 1. Define $\omega \mid M_p \to m_p$ by letting $\omega_T(f) = T(f)$ for each $T \in M_p$ and $f \in L_p^t$. Then ω is an isometric isomorphism of M_p into m_p . Furthermore, if T is any operator in m_p , then there exists some $S \in M_p$ such that, for all $V \in A_p$ and $f \subset L_p^t$, $\omega_S(V(f)) = T(V(f))$.

Proof. That ω is well-defined follows from Proposition 1. That ω is an isomorphism is evident when it is noted that L_p^t is a dense subset of L_p .

Let T be an arbitrary element of \mathfrak{M}_p . It follows from Proposition 2 and Lemma 3 that there exists a unique operator S in \mathfrak{B}_p such that S(V(f)) = T(V(f)) for all $V \in A_p$ and $f \in L_p^t$. For $h \in C_{00}$, $V \in A_p$, and $f \in L_p^t$, Proposition 1 implies

$$S(h*V(f)) = S(V(h*f)) = T(V(h*f))$$

= $T(h*V(f)) = h*T(V(f)) = h*S(V(f))$.

By Lemmas 3 and 4, this implies that S is in M_p . Consequently, $\omega_S(V(h)) = S(V(h)) = T(V(h))$ for all $h \in L_p^t$ and $V \in A_p$.

To complete this proof, it will now suffice to show that ω is an isometry. Let T be in M_p . Let f be in L_p^t and ε a positive number. Choose $g \in L_p^t$ for which $||g||_p \leq 1$ and $||\omega_T(f)||_p^t < ||g*\omega_T(f)||_p + \varepsilon$. By Proposition 1.iii, T(g*f) = g*T(f); this means that $T \circ W_f(g) = g*\omega_T(f)$. Hence,

$$||\omega_{\scriptscriptstyle T}(f)||_{\scriptscriptstyle p}^{\scriptscriptstyle t} < ||T\circ W_{\scriptscriptstyle f}(g)|| + \varepsilon \leqq ||T|| \cdot ||W_{\scriptscriptstyle f}|| + \varepsilon$$
 .

By (8), this implies $||\omega_T(f)||_p^t \leq ||T|| \cdot ||f||_p^t$. Hence

$$||\omega_T|| \leq ||T||$$
.

On the other hand, Proposition 2 and Lemma 3 imply

$$egin{align} || \ T \ || &= \sup \left\{ || \ T(V(h)) \ ||_p \colon V \in A_p, \ h \in L^t_p, \ || \ V(h) \ ||_p \le 1
ight\} \ &= \sup \left\{ || \ \omega_T(V(h)) \ ||_p \colon V \in A_p, \ h \in L^t_p, \ || \ V(h) \ ||_p \le 1
ight\} \le || \ \omega_T \ || \ . \end{cases}$$

This proves that $||T|| = ||\omega_T||$.

Theorem 2. Let ω be as in Theorem 1 and G be either commutative or compact. Then ω is surjective.

Proof. Let T be any operator in \mathfrak{m}_p . By Theorem 1, there is an operator S in M_p for which $T(V(f)) = \omega_S(V(f))$ for all $V \in A_p$ and $f \in L_p^t$.

If G is compact, then $L_p^t = L_p$. It follows from the Hewitt-Curtis-Figa Talamanca factorization theorem ([5] 32.22) that each $h \in L_p^t$ is of the form V(f) for some $V \in A_p$ and $f \in L_p^t$. Hence, $T = \omega_s$.

Suppose now that G is commutative (not necessarily compact). Assume that there existed $h \in L_p^t$ such that $\omega_S(h) \neq T(h)$. Then Lemma 1 implies that $g*(\omega_S - T)(h) \neq 0$ for some $g \in C_{00}$. Let $\{h_n\}$ be a sequence in C_{00} for which $\lim_n ||h_n - h||_p = 0$. Then

$$||g*(\omega_{S} - T)(h)||_{p}$$

$$= ||(\omega_{S} - T)(g*h)||_{p} = ||(\omega_{S} - T)(h*g)||_{p}$$

$$= ||h*(\omega_{S} - T)(g)||_{p} = \lim_{n} ||h_{n}*(\omega_{S} - T)(g)||_{p}$$

$$= ||\lim_{n} ||(\omega_{S} - T)(h_{n}*g)||_{p} = \lim_{n} ||(\omega_{S} - T)(W_{h_{n}}(g))||_{p} = 0$$

a contradiction. Thus, $\omega_{\scriptscriptstyle S}=T$.

REFERENCES

- 1. W. Ambrose, The L²-system of a unimodular group I, Trans. Amer. Math. Soc., **65**, (1949), 27-48.
- J. Dixmier, Les C*-Algebres et Leurs Representations, Paris: Gauthier-Villars & C^{1e} 1964.
- 3. A. Figa Talamanca, Translation invariant operators in L^p, Duke Math. J., 32, (1965), 495-501.
- 4. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. 1. Berlin Springer Verlag, 1963.
- 5. _____, Abstract Harmonic Analysis, Vol. 2. Berlin, Springer Verlag, 1970.
- 6. K. McKennon, Multipliers of type (p, p), Pacific J. of Math., 43 (1972), 429-436.

Received November 15, 1971.

WASHINGTON STATE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305 J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY University of Washington Seattle, Washington 98105 RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 45, No. 1 September, 1973

William George Bade, Complementation problems for the Baire classes	1
Ian Douglas Brown, Representation of finitely generated nilpotent groups	13
Hans-Heinrich Brungs, Left Euclidean rings	27
Victor P. Camillo and John Cozzens, <i>A theorem on Noetherian hereditary rings</i>	35
James Cecil Cantrell, Codimension one embeddings of manifolds with locally flat	
triangulations	43
L. Carlitz, Enumeration of up-down permutations by number of rises	49
Thomas Ashland Chapman, Surgery and handle straightening in Hilbert cube	
manifolds	59
Roger Cook, On the fractional parts of a set of points. II	81
Samuel Harry Cox, Jr., Commutative endomorphism rings	87
Michael A. Engber, A criterion for divisoriality	93
Carl Clifton Faith, When are proper cyclics injective	97
David Finkel, Local control and factorization of the focal subgroup	113
Theodore William Gamelin and John Brady Garnett, <i>Bounded approximation by</i>	
rational functions	129
Kazimierz Goebel, On the minimal displacement of points under Lipschitzian	
mappings	151
Frederick Paul Greenleaf and Martin Allen Moskowitz, Cyclic vectors for	
representations associated with positive definite measures: nonseparable	
groups	165
Thomas Guy Hallam and Nelson Onuchic, Asymptotic relations between perturbed	
linear systems of ordinary differential equations	187
David Kent Harrison and Hoyt D. Warner, <i>Infinite primes of fields</i> and	201
completions	201
James Michael Hornell, Divisorial complete intersections	217
Jan W. Jaworowski, Equivariant extensions of maps	229
John Jobe, Dendrites, dimension, and the inverse arc function	245
Gerald William Johnson and David Lee Skoug, Feynman integrals of non-factorable	257
finite-dimensional functionals	257
Dong S. Kim, A boundary for the algebras of bounded holomorphic functions	269
Abel Klein, Renormalized products of the generalized free field and its derivatives	275
Joseph Michael Lambert, Simultaneous approximation and interpolation in L_1 and	202
C(T)	293
Kelly Denis McKennon, Multipliers of type (p, p) and multipliers of the group	207
L_p -algebras	297
semi-lattices. II	303
Donald Steven Passman, Some isolated subsets of infinite solvable groups	313
Norma Mary Piacun and Li Pi Su, Wallman compactifications on E-completely	313
regular spaces	321
Jack Ray Porter and Charles I. Votaw, $S(\alpha)$ spaces and regular Hausdorff	321
extensions	327
Gary Sampson, Two-sided L_p estimates of convolution transforms	347
Ralph Edwin Showalter, Equations with operators forming a right angle	357
Raymond Earl Smithson, Fixed points in partially ordered sets	363
Victor Snaith and John James Ucci, <i>Three remarks on symmetric products and</i>	505
symmetric maps	369
Thomas Rolf Turner, Double commutants of weighted shifts	379
George Kenneth Williams, Mappings and decompositions	387
cools III will the stappings and accompositions.	557