Pacific Journal of

Mathematics

TWO-SIDED L, ESTIMATES OF CONVOLUTION

TRANSFORMS

GARY SAMPSON




PACIFIC JOURNAL OF MATHEMATICS
Vol. 45, No. 1, 1973

TWO-SIDED L, ESTIMATES OF
CONVOLUTION TRANSFORMS

GARY SAMPSON

Let f and g be two Lebesgue measurable functions on the
real line. Then the equation

(o) = | fvotw — vdt

defines the convolution transform of f and g. In an earlier
paper [4] we obtained sharp upper and lower estimates for the

expression
A) sup S [(Fus - % f)(@) (@)
72

where p =1, 2 and 4, with applications to Fourier transform
inequalities. This paper contains estimates of (A) for all
values of p(p=1) in the case where K = (— oo, + o). For
example, one of our theorems implies the following:

“If g¥ is bounded and has compact support for all 7, then
there exists a comstant K, 1/(p + 1) < K < (p’ + 1)»(2»V)»,
such that

(4) = Ksj [en=2(gi™ — gi) + -+ (ga™ — gn)lPd(x) .

Here g: are preassigned decreasing functions and the sym-
bol f; ~ g means

Ha: | fim)| >yt = [{x: 98 (@) >y}| forall y>0.

Introduction. In an earlier paper [4], we obtained sharp upper
and lower estimates for the expression

@ sup | W(fisfur oo )@

fi~9i

1B su
where (u) = u, u*. R. O’Neil obtained sharp upper and lower esti-
mates when (u) = % and » = 2, [3, Lemma 1.5]. Our results coincide
with his for this case.

We were able to apply our estimates for the case «(u) = %
(n-arbitrary) to classical Fourier transform inequalities of Hardy and
Littlewood.

The main problem of this paper is to determine whether or not
one can obtain the same types of upper and lower estimates for the
functions +r(u) = u?, p > 1. We have, in fact, obtained such estimates
for a class of functions + containing the class +(u) = u>. We are

347



348 GARY SAMPSON

able to prove [see Theorem 2.12 and Corollary 2.18 of this paper]
that there exist p, ¢ > 1 such that

1 1 « =1 kK= k) . x %
T ), ) - 02 - @)

< sup | (i o < L)@@
= @+ 17 [ vlo@r = o) - @2 — gD @lw |

In proving our estimates, we use as a major tool Lemma 2.4 which
contains the following inequality:

z ]

p)ios[E oo | 50+ o

All the functions f, g, -+ which appear in this paper will be non-
negative, Lebesgue measurable functions for which |{z: f(®) > 9} | < «
for every y > 0. By the statement f(z) = g(x) we mean that |{x: f(x) =

g@)}| = 0.

I. Preliminaries. The idea of considering the decreasing rear-
rangement f* and symmetrically decreasing rearrangement f of a
function f for finding sharp inequalities of convolution transforms
was first noticed by Hardy, Littlewood and Polya [1, Chapter X].
Since all our estimates are in terms of f* and f, we shall start by
defining these concepts.

DEFINITION 1.1 We say the functions f and g are equimeasurable;
we write f ~ ¢, if

[{w: (@) > y}| = [{w:g@) > y}| for all y>0.
DEFINITION 1.2 By f*(x), we denote a function such that
(i) f*(®) decreases for x>0

and
(ii) fr~f.

Further, for £ > 0 we set,

@ =1{rawa,

and finally, we set f(x) = f*@2|x}|).
In a similar manner, we can discuss the decreasing rearrange-
ment of a sequence of nonnegative numbers a,, a,, -+-, @,. That is,
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we rearrange this sequence into a decreasing sequence. The new
sequence is denoted by af, af, ---, af. This sequence is characterized
by the following two properties:

®

(1) a;

(%

af = oo = a}

and
(ii) N(a;la; > y}) = N({ai |af > y}) for all y>0.

For a given set A, N(A) stands for the number of points in A.
Therefore, if € C(—co, + o), + is increasing, and «(0) =0, we
have

Ms
M

1.3).! y(ai) .

yla;) =

&
Il

1

B
Il

1

Also, if f(=0) is a step function with compact support, then
+oo foo
S Y(f@nd(x) = —S (d(m(f, y)). Where the second term is a

Riemann-Stieltjes integral with m(f, ) = |[{z: f(®) > y}|. Now by a
limiting argument, we see that

(1.4). | vtrands = | (7 @naw

for all functions f such that m(f, ) < « for y > 0.

A nonnegative sequence <a;>*2 is said to be symmetrically decreas-
ing if goz@,=a_,=+-=2d,=0a_,= --+. It is well-known [1,
Theorom 375, p. 273] that the convolution of symmetrically decreasing
sequences is again a symmetrically decreasing sequence. The previous
statement also holds if the term “sequence” is replaced with the term

“function”.

LeEMMA 1.5.2 The function h,(x) = g,xgs* +++ x §,(®) 18 a sym~
metrically decreasing fumnction.

Let (@,), (6;) and (¢;) be given symmetrically decreasing sequences.
If a nonnegative sequence (a;) can be rearranged to equal (a;) term-
for-term, then we write (a;) ~ (@,).

Pélya [2] had asked: When is the sum S = >, ..., @.b.c,, for all
rearrangements of the a.s, bls, ¢cis (where (a;) ~ (@), (b;) ~ (), (¢;) ~
(¢;)) the greatest? Hardy and Littlewood answered this question [2]
by proving the general statement

I This equation holds without any restriction on ¥; however, we need these restrie-
tions in order for equation (1.4) to hold.

2 This is the counterpart to (1.3) for functions.

3 The proof can be found in [4].
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abe, o < Sy @b, e

r+84i4eee=0 r+8tt4e =0

They were later able to prove the theorem for functions [1, Theorem
379; p.279] which we now state.

THEOREM A (Hardy and Littlewood).*

e SR{TrO@ e f0d = | ronod.

fi~9; v—

In (1.6) if we set »*(x) = ¥{f\;, then the estimate on the right
/2

reduces to h(2)d(x). In Theorem B, we give our estimate of (1.6)
2

which has many advantages over the above estimate.

THEOREM B.} If gi* is finite for each x, then there exists o con-
stant K, 1/2° ' < K < 1, such that

Fi~9%

(1.7) .

- KuS S g — g2) - (g2 — gD)d() .

Here, K depends on w and g}, gF ---, gk.

If we set K, (@) = /@@ | do@(gr* = g1) -+ (6" — 92), then
by combining Theorem A Withac Theorem B we see that there exists
a constant K (1/2"*' < K <1) such that

(1.8)° S_'/ h(@d@) = K S:d(x)Rn(x) .

In general, the right side of (1.8) (our estimate) is easier than
the left side to determine. For example, take g¢f(z) = 1/2%, with
0 <n; < 1. Thus, we see that R,(x) plays an important role in the
solution of (1.7). In the next lemma, we state some important pro-
perties of this function.

LemMA 1.9.° If "7 (gf* — g¥) <+« (95" — g%) € L(a, o) for each
a > 0, then the function R,.(x) has the following properties:

4 The case n = 2 appears in the cited reference; however, the general case is easily

derivable from it.
5 One of the properties of R,(x) is that

=33

S Ru(x)d(x) = u S (a2} — gf) -+ (gn* — o)d() .
0

u

8 This lemma can easily be verified.
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(@ R, =0,2=0,
() R,(x) decreases, xz = 0.
@ | Roat=a ae o — g - @ = o).
0 z

@ [ R®it - aRw) = agr* — g1) -+ (03 — 9.

II. Two-sided estimates. As has been stated earlier, our main
problem here is to show that there is a constant K > 0 such that

sup [ ((fi - #) @)

fi~g5 v~

= K. S: (@ gE* — gF) o0 (gF* — gh))d(x)

where g}, ---, gF are preassingned decreasing functions and the su-
premum is taken over all f/s such that f; ~ gf. We obtain this result
for +'s that are a proper subclass of the convex functions (see Defini-
tion 2.7). Let us begin by developing properties of this class of +'s.

DEFINITION 2.1. We say that a function e V(A) on [a, b], if

1. (@ =0
2. '(t) exists for tela, 5]
3. 0= +'(t) and increases (decreases) for t¢c]a, d].

LeEmMA 2.2, If

1. yeV on [0, «)

0=7f,geL0,u] for each u>0

§0 ft)dt < So gt for w>0

Sf(@) decreases for t =10, then

[l vr@aes [ vwmiar for uzo.

Ll

Proof. First let us assume that f and g are continuous on [0, o).
Since €Y we get by the Mean-Value-Theorem

W) — ¥(O) Z F O — £0) -
Therefore,
[ wio®) - virepat = " v eo — ra)ar

and by the second Mean-Value-Theorem for integrals there is a
0 < & < u such that,
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3
= ' (7O) | lo) ~ fO1a 0.
Now we apply a limiting argument to get the general case.

LEmMMA 2.3, If 4ve VY on [0, ), then

sup | " p(fi o L)@ = S P (o @)d() -

fiNgi —00 —co

Proof. In Theorem A set 7*(¢) = Yp,.4(f), then we find that

| @ (e £ = |7 @i

—oo

where |FE/| < u.
Therefore,

[ Gie e s @i < [ @i for wzo.
By Lemma 2.2 this implies
[ H(ix e )@@ < [ v0i@)a@ for wz o,

Hence,

[, oo £ @U@ = | @) -
Thus by (L.4),

[l e 2 2@ < | v @)@ -

To say that g e L,(0, o), means
ol ={]19@ Pa@)} " < e .

We shall henceforth use the symbol || - ||, to mean the pth norm over
L,(0, ).

LEMMA 2.4. If g€ L,0, =) for p > 1, then

1
p+1

o= |1 [0 -o@|| =@+l

where 1/p + 1/p" = 1. In particular, for the case p = 2 we get that

lole= |2 0 - 0@,
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Proof. Let g.() — {g(m) gl(ggv;lgefxl <

and suppose that fe L, N L.. We see that
T A R D (D)

by simply differentiating both sides for e[y, m] and then letting
7 — 0. Therefore,

O R - (R (A AP
Since 1/p + 1/p" = 1 we have,
lonlly = sup, |, foo.ie = sup [ (77— @] |2 (g~ 0

=(p+ I)H% SO gn — g%f! .

“p

We also have that

4 1 1 z
f’lg On — gn(x){i = Hig gnf + 11 g.lls
b Jo ip fae Jo e

=@ +DIgalls -

Therefore,

g lolb= |5 o 0.6 = @+ Dilgl, foreach n.

Since g€ L,(0, «), we finally see that

talh= |2 s —g@) =@+l @>D.

P

1
(»p+ 1

The case p = 2 follows immediately from (2.5).

DEFINITION 2.6. We say that a function eV (p, q¢) on [a, b] if
there exist 1 < p and 1 < ¢ such that '?eV on [a, b] and /7€ A
on [a, b].

For example, the functions () = 2" with » > 1 belong to V (p, 9)
on [0, o] where p =» —¢ and ¢ = r + ¢ for some suitably chosen
e>0.

LEMMA 2.7. If e V(p, @) on [0, =) andg P(LHDVE < oo, then
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e b @ = [T (5 - @ i)

=@ + 17| H(FH@)dw),
where 1/p + 1/p" = 1.

Proof. First, since 4+ € VY (p, 9) on [0, =), this implies there exist
p,q¢ > 1 such that v'*eV and Y e A. Thus,

WUp(l/mS:f* ___fzk(x)) § wl/p(lh;SZf*) - ll/l’(f*(w)) .
Now by applying Jensen’s inequality we see
@8 (U] e — @) = [Ty - i) -
0 2 Jo
Now by (2.8) we get that

AR [ L SRR |

and by applying Lemma 2.4 we find

=@+ DIy () s -
Since +'7e A we have that

w2 = @) z (L) -y @)

z 2T — g @) |

T
Therefore by Lemma 2.4 we have that

I aRtal) )

z [ 2w = v )|

z () 190 e

THEOREM 2.9. If eV (p,q) on [0, =) and g: P(R(2)d(@) < oo,
then

1 1 S Tamel( Kk Ry o (ko
(pl -+ 1) (2n~1)q SO "1,/'[97 (gl gl) (g,,L gn)]d(x)

< S0 (e o= £ @)

<@+ | vloer - a) - (03 — gld@)
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where 1/p" + 1/p = 1.

Proof. By (1.8), where 1/2"* < K £ 1, we see that
S” RE@)d() < S R.(2)d(z) < 2° S RE@)d(@) for u=0.
0 0 0
Since both R, and %} are decreasing, this implies by Lemma 2.2

[ van@ie = |+ @) @@

(2.10) -
= | v @de .

Now applying Lemma 2.7 to (2.10) we see that there exist a p > 1
and g > 1 such that

1

1
@.11) s S ;

“pi@ide = (L | R - )
and
@12 ("L [ R - R@)s 0 + 0| v .

Since '7e A, this implies
,‘p,l/l](t) = St¢(1))d’v
]

where 0 < @ and is decreasing on [0, «).
Therefore for a =1,

(2.13) w(at) < a'p(t) -
Now applying (2.13) to the right side of (2.12) we conclude

e [y R -R@)s e+ ey v .

We then apply Lemma 1.9(d) and Lemma 2.3 to (2.11) and (2.14) to
obtain our result.

CorROLLARY 2.15. If
|, Ru@yd@ < o,

then
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Tl (gt — g) - e (3% — g ()

0

1 1 S
(,rl + 1) (271,-—1)7’

< sup ("7 [(fiefir oo+ L@ W)

x )
fi~og

<o+ | leort — o) -+ (@2 — gDIE)
where 1/r + 1/¥' =1 and » = 1.

Proof. Apply Theorem 2.9 with () =" and ¢ =1+ ¢, p=
r — ¢ with € > 0. Then, let ¢ go to zero.
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