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The first remark establishes that the homotopy type of a
certain space related to the m-fold symmetric product SP»S*
of the n-sphere is that of an 7' suspension space. Remark
two generalizes a well-known adjunction formula for SP2S»
due to Steenrod to a filtration of length m of SP~™S»”. The
final remark provides a group-theoretic construction of G-
maps f:(S*)™ — S* where G c S(m) acts on (S*)* by permu-
tation of its factors.

1. Joins. The join X+ Y of X and Y is the quotient space
Xx Yx I/~ where (z,¥,0)~ (x,%,0) and (x,9,1) ~ (2, y,1) for
all 2, 2'¢X and all y,y' €Y. Let (D,S) denote the unit disc and
sphere in euclidean n-space R™ with its usual inner product

x, ) = Zay, .

For any decomposition R*= W, W, of RB" into the direct sum of a
k-dimensional subspace W, and its orthogonal complement W,= W3,
let D,=DNW, and S;=SNW, ¢=1,2, be the associated discs
and spheres. As well known the map f: D, S,— D given by

sz, y,tl =sV1—ta+Vty
defines a homeomorphism of pairs
(1) (Dl*SZ’ Sl*Sz)E(D,S)-

Give V; = R", i =1, +++, n, its usual inner product <, >, Then
the formula <z, y) = 3 (&, y;); for ¥ = (&, +++, ®,), y= (¥, *++, ¥,) in
V=V, x+«+xV,= R" coincides with the usual inner product on
R*™, 8o we may apply the preceding remarks to the diagonal sub-
space W, = {veV|v, = v, = +++- = v,} and its orthogonal complement
W,={veV|2Zv,=0= W!. The full symmetric group S(m) acts
on V by permutation of its factors V;. For any subgroup H of S(m)
D, and S; are H-spaces and f an H-map inducing another homeomor-
phism of pairs

(2) (D./H * S,/H, S,/H xS,/H) = (D/H, S/H) .

As H acts trivially on W,, D,/H = D, and S,/H = S, are again the
disc and sphere. Moreover, for subgroups H,C H, of S(m) it is
easily checked that the quotient map p: D/H, — D/H, corresponds via
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(2) to the join map
id = Pyt Ex * (SZ/HI) B D1 * (SZ/IIZ) .

Recall from [7] the definition of the spaces Xy, which appear in
the geometry of the symmetric product SPS". Let h.: (D™)™— (D")™
be the permutation homeomorphism defined by z € S(m), and set

ma = (DM (S foro<li<m.

Then

X’rﬁ,l - e Tim hr(A:Ln,l)
is an S(m)-subspace of (D")™ and so X7, = f,’,i,z/S(m) is well defined.
To identify the pairs (D/S(m), S/S(m)) and (X7, Xr.) we make the
following change of norms: let V' = V as sets but set

loll" = max || v

where ||v;]|; = <v; - v>Y*. Then x— (]|x||/||«]|) - + defines a norm
preserving (non-linear) S(m)-homeomorphism V — V' establishing the
desired result (D/S(m), S/S(m)) = (X2, Xr,). Thus

(3) (D, = (S:/S(m)), S, *(S:/S(m))) and (X7, Xi..)

are homeomorphic pairs. Moreover the canonical map D" X X2, ,—
X, is the quotient map (D")™/S(m — 1) — (D")™/S(m) induced by the
inclusion homomorphism S(m — 1) — S(m) sending S(m — 1) onto the
subgroup {e} x S(m — 1) of S(m) which acts on (D)™ = D" x (D")™*
by the identity on the first factor and by the usual symmetric action
on the second factor. Combining the remark of the preceding para-
graph with the above S(m)-homeomorphism V — V'’ we see that the
canonical map D" x X ,,— X, corresponds to the join map

D, * (S/S(m — 1)) —— D, = (S,/S(m))
Our first remark establishes a conjecture stated in [7].
ProposiTioN 1.1. X7, ./ Xz 1w has the homotopy type of a

space of the form S* '+ K for K a suitable finite CW complex.
Hence X, 1/X} . . has the homotopy type of an n'" suspension.

Proof. Proposition 2.6 of [7] asserts the existence of a homotopy
equivalence

X2 Xt mea ~ BEX 073 LUC(E (X7t = Xnmh))
=y
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where «+r is given by the canonical maps
Xt x Xl — Xty X090 X Xomh — X000
+r is just the restriction of the canonical map
P Xl ) X —— X
which, as we have already noted, can be identified with the join map
id + ' Dy x (S,/S(m—1)) — D, = (S,/S(m)). Under this identification
t_he subspaces X! x Xoo U Xigh x X071, and X3 correspond to
Sy # (S,/S(m — 1)) and S, = (S,/S(m)), and so the map v corresponds
to the join map id = 4: S, = (S,/S(m — 1)) — S, = (S,/S(m)) which is the
restriction of id = +'. Hence there is a homotopy equivalence
Koms]/ Xortymea ~ E((E"7H(Sy/S(m))) U C(E"7X.710)
En—li,/_
~ E*((S)/S(m)) U CX:Z,
kv

and the result is proved.

For p-fold cyeclic products (p any prime) there is an analogous
result to 1.1 whose proof differs only slightly from the preceding.
For this let now h.: (D")? — (D")?® be the (cyclic) permutation homeo-
morphism defined by 7€ Z,C S(p) and set Az, = (D*)7? x (S* ™.
Then as before

~

X,z = U hr(AZ;Z)

TeZp

is a Z,space and X7, = )’f;j‘,z/Zp is well defined. Let Wy c (S™)!

p
be the subspace {x € (S" )" | «x; = basepoint for some i}, Z7,= (D" x
Wt and Z7, the image of Z7, under the canonical projection

(Dn)p—l X (Sn—l)l — X;L,l .

Then Z2, ,< X7, , and formula (3.3) of [8] asserts the existence of
a homeomorphism

(4) Xro 4y, = EXpT | enrett

The top cell e ?*' arises from the product D” x (D" %' and the
attaching map of (4) S x (D*"'yU D" x o[(D")'] — EX "
sends the contractible subspace

A = 8% % 3[(D*)"] U point x (D"

to the basepoint of EX!* and so factors as (E-r)op, where p is the
collapsing homotopy equivalence
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Sn-—-l * a [(Dn—-l)p—l] S'ﬂ,—-l * a [(D‘n—l)p—]]/A
and + the canonical projections
Sn—-Z X (Dn—-l)p——l X;m’—l-l R D'n—-l X a [(D-n-—l)p—-l] 5 X:,Tl

(see the proof of Prop. 2.6 of [7] with Z, replacing S(m)). By the
above X77! is homeomorphic to the join S, % (S,/Z,)— V is now R""—
and the map + can be identified via this homeomorphism with the
join map id x p: S, xS, — S, * (S,/Z,). Thus we obtain the analogous
result to 1.1.

PROPOSITION 1.2. For the p-fold cyclic product of spheres the
space X!, . [Z", . has the homotopy type of a space of the form
S**'x K for K a suitable finite CW complex. Hence X}, ,[Z}, .
has the homotopy type of an n'™ suspension.

Application of 1.2 was made in [8].

Consider again the symmetric product situation. Lemma 2.5 (iii)
of [7] provides a homeomorphism

Xt X110 = (X1t X)) U C( X+ X001

For l=m and | = m — 1 the spaces X7 ,/Xr .,.. have now been
shown to have the homotopy type of a space of the form S*x K.
It seems reasonable to expect the same to be true for the remaining
values of [, 2< I << m — 2.

2. Geometry of SP™EX. QOur second remark extends the
Steenrod adjunction formula [3]

SP*S* = E(SP:S™™) U e
to higher symmetric products SP™EX of suspension spaces. Let

I"={xeR"|0< 2 <1}

A, ={xel" |z, =1}
T.={wel"|o,Zx> - >}
p={1,1, -+, D}cI".

For i=1,2,-++,n — 1 define fi: I"—I" by fi(t, +++, &) = (&}, +++, t})
where t; = t; if j=<¢ and ¢ = {;, + t;(1 — ;;,). One shows easily
that the composite ¢, = fiofio +++ of,_. defines a relative homeo-
morphism (I, 4,) = (T,, p). The map g, is useful in studying the
quotients A;.,/A,; arising from a filtration
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(5) SP"EX = A,DA4,..D-+- DA = E(SP"X)

which we define as follows. For 2’ = [z, t] € EX call ¢ the height of

’

2’. As each element [z}, ---, 2] e SP"EX has a representative with
heights ¢, > t, > -+ > ¢, we can set A4, to be the subset of SP"EX
of all elements having representatives with at most 4 distinct heights.
The A; define a filtration (5) of SP"EX.

For any partition 7 = [i;: 45 ---: 7,] of m let A,.C A, be the set
of all points having representatives with heights ¢, > ¢, > -+« > {,, ¢,
of the m coordinates at height ¢, 7, of them at height ¢,, etc. Set
Y, = C(SP4X), Y; = (SPiiX) x I for 2<j <gq, Y, = C(SP%X) and
Y=Y, X« X Y, where

CZ)y=ZxI|Zx {1} and CZ)=2ZxIZx{0}.
Set
3C(Z) = {[z, t] e C(Z) |t = 0}, 3C(Z) = {[2,t] € C(Z) |t = 1}
and
d(SP*X x I) = SP*X x {0,1} .
This defines 0Y; for ¢t =1, ---, ¢. Finally set

aY:ng---anix---qu.

Clearly 0 is just a kind of boundary operator for cones and related
spaces.

ProOPOSITION 2.1. The map Y — SP™EX given by

[y, T, (@, T2), + oo, (@gmsy Eamr), [0, 24])
— [y, ¢V, [, &1, - -+, [, T1]

where t] is the ;™ coordinate of ¢,t, -+, t,), induces a relative homeo-

morphism (Y, 0Y) = (A,., A,_1) for each 2 < q < m and each partition
T = [4: +++: 4] of m.

The proof is straighforward.

To obtain an expression for A4,/A4, , first observe that
4,/4,, = Y (Age/Ags) »

the wedge taken over all partitions of m. Thus by 2.1 it suffices to
consider for each 7 the corresponding quotient Y/0Y.
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PROPOSITION 2.2. For w = [ii: «+<:t]and Y=Y, X «++ X Y, as
above the space Y[0Y has the same homotopy type as the space

EYSP"“X A SPiX) v E"’(SP"iX AL SPUX A SP"«X) .
3=z

Proof. Let B be a space with 6B =¢. Then the obvious
quotient map @ = CA X B X ["* X CA'—-P=FEA X B x S x EA’
induces a relative homeomorphism (Q, 0Q) = (P, P’) where

PP=FEAXBXxS"™VEAXBXxEAYVBXxS8"x EA.

So P/IP"=B x (EA N S * A EA')/B x point and the latter quotient
has the homotopy type of the wedge E(ANA)Y E(AANBAA) [5].
Therefore 2.2 is obtained by setting A = SP"X, B= [t SP% X
and A’ = SPX. -

As an illustration of the preceding analysis let us return to the
Steenrod formula for the symmetric square of a sphere. The space
Y is just CX x CX and the map CX x CX — SP’EX is

([, T.], [2, Eo]) —— [[@,, . + E.(1 — E)], [, E:]] -

The subspace X x CX U CX x X (given by ¢, =0 or ¢, =1) is mapped
to ESP*X. It is well known that there are homeomorphisms

XxCXUCXx X=X+X

and
CXxCX=CXxCXUCXxX).

Hence we obtain the adjunction formula SP*EX = ESP*X U C(X *x X)
extending the Steenrod result from spheres to suspensions.

REMARK. For X = S™*' 2.2 can be used to recompute Nakaoka’s
results [4] on the integral cohomology of SP™S™ for low values of
m.

3. Group theoretic construction of symmetric maps. Let
Hc Gc S(m) be subgroups of the symmetric group S(m) and let
S(G/H) be the symmetric group on the set of right cosets G/H.
Define a homomorphism a: G — S(G/H) by a(g)(Hg,) = Hg.9™'. Kernel
of a is just the normal subgroup B = [),.c gHg™ and so there is an
injection G/B— S(G/H). Let A denote the image of a and |G/H|
the cardinality of G/H.

ProposITION 3.1. If v: X9 X agnd w: X™— X are A and
H-maps respectively, then F: X™ — X given by
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F(x) = v(w(g, - @), w(g, - ), -+, w(g, + ®))

for gy, +++, 9, a complete set of coset representatives in G/H, is a
G-map.

Proof. As w is an H-map we have for any g€ G and any
1<i<1l=|G/H]
the existence of an he H and a unique 1 < j <! such that

w(g; + (9 - ®) =wh - (g; ) = wg, 2,

where h arises from the coset equality Hyg,9 = Hg;. Hence there
exists an element 0 € S(G/H) in A = image () satisfying

F(g-x) = vwlg, - (g-), -, w(g - (g 2)))
= V(W(Go0y *+ ¥), *++, W0 * X))
= (0« (w(g, - @), =+, w(g; * ¥)))
= v(w(g, - ), +++, w(g, - ) = F() .

The result follows.

To compute the James number of F when X = S™ note that the

degree of the composite S”—ﬁl—> (S”)’”—F—> S* (4 the diagonal map)
equals the product deg (v o 4) - deg(w o 4), since Fod=vodowod
as maps. Therefore the James number of F is easily computed from
those of v and w via the Kiinneth formula.

Applications. Let n = 2t 4+ 1 in the following four applications.

1. Let H = {id, (123), (132)} = 7, so H<]S@B) = G. Choose
v: (S™e¥— S™ to be an S(2)-map with J, = 2/¢* [2] and w: (S")*— S™
to be an H-map with J, = 3’ [8]. Then J, = 2¢®+ . 3!, However
obstruction theory can improve this result as follows. From [7] we
know that there exists a map SP"S*-— S™ of James number N if

and only if the composite X;i,m_.l—i»S ”-QQS”, is nullhomotopic
where deg fy = N. Here ¢ arises from the geometry of SP™S"
given in [7,82]. As X7 < X7, the obstructions to extending an
S(2)-map g,: (S")*— S™ to an S(3)-map g: (S*)® — S lie in the groups
H{(X},, X; ©:S™), which by Nakaoka [4] (see also [1], Lemma (4.3))
are 3-primary. Hence there exists an S(8)-map G: (S")*— S" with
J, = 2°% . 8" for some r. As the set of all possible James numbers
of S(m)-maps forms an ideal [1], there must also exist an S(3)-map
G': (8" — S” with J, = 2°?" . 3 and so we recover the main result
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of [7].

2. Let HcS(4) be the subgroup generated by {(12), (34), (13)(24)},
so |H| =8, H4 G and

B = f;]G gHg™ = {id, (14)(23), (13)(24), 12)(34)} = Z, X Z, .

Hence |B| =4 and A = S@8). Apply 3.1 with v an S(38)-map with
J, = 292 . 3 and w the H-map (S")‘{L—o—hi S* where h: (S™*— S” is
an S(2)-map with J, = 2%®), Clearly J, = 2*?** and so we obtain an
S4)-map F: (S")*—S™ with J, = 2%¢%" .3, Now an exactly
analogous argument to that of (1) shows that the obstructions to
extending an S(8)-map (S™*— S* to an S(4)-map (S")*— S™ lie in
the groups H(X/;, X7 7:S™), which again by Nakaoka are 2-primary.
Thus there is an S(4)-map of James number J = 27.2¢%".3¢ for some
r. This as above implies the existence of an S(4)-map with James
number 2¥% .3, Note it is not difficult using K-theory to show
that the James number of any S(4)-map (S")* — S™ must be a multiple
of 2%.3' (the first named author has improved this bound to 2¢¢%9.2t. 3¢
via ad hoc considerations).

3. For G = G" the Sylow p-subgroup of S(p") given by the »-
fold Wreath product of G* = Z, with itself and H=[[;_,. G < G=G"
(see [8, §2]) we have G/H = Z,. Let w be the composite

()7 D (St 2, g

where w, is a G"'-map with James number J,, and =, is projection
onto the first p™ factors of (S™*"; let +: (S*— S" be a Z,map
with James number J,. Then J; = J, +J, where F' is given by 3.1.
From a Z,map h with J, = p* [2], this result plus induction on r»
provides a G™-map Ak’ with J,, = p™. This iteration of 3.1 applied to
the G*-map & gives precisely the composite G"-map hoh? o «+e 0 h*" ™
(Sn)p'f -_— Sn.

4., For G=Z,, and H=Z,<]G we have A= Z,. In this
situation 3.1 provides a G-map F' with J, = J, -J, where w = w,om,
is the composite of a Z,-map w, and projection 7;: X™ — X". Thus
3.1 provides the construction of the “best” cyclic map of order m
from the “best” cyclic maps of prime-power orders occurring in the
prime decomposition of m. The latter are studied in [6].

In conclusion we remark that if B is the trivial subgroup, 3.1
provides no useful information at all e.g. G = S(m) for m > 5. Also
the appearance of obstruction theory in applications 1 and 2 above
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indicate the limitations of 3.1. It would appear now from the results
of [9] that the most natural approach to constructing S(m)-maps of
minimal James number is via obstruction theory using [8] and
Nakaoka’s results relating the cohomology of SP™S" to that of
iterated cyclic products of spheres.
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