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Let G be a finite group. A subgroup D of G is called a
2-Sylow intersection if there exist distinct Sylow 2-subgroups
Si and S2 of G such that Ώ = Si n S2 An involution of G
is called central if it is contained in a center of a Sylow
2-subgroup of G. A 2-Sylow intersection is called central if
it contains a central involution. The aim of this work is to
determine all non-abelian simple groups G which satisfy the
following condition
B: the 2-rank of all central 2-Sylow intersections is not
higher than 1, under the additional assumption that the cen-
tralizer of a central involution of G is solvable.

In 1964, M. Suzuki [5] determined all simple groups with all
2-Sylow intersections being trivial (i.e. of rank 0). Using a recent
fusion theorem by E. Shult [3, p. 62] the author proved [4] that no
additional simple groups are involved if Suzuki's condition is weakened
to read: all central 2-Sylow intersections are trivial (i e. no central
involution is contained in a 2-Sylow intersection).

This paper is a step toward the characterization of all simple
groups G which satisfy Condition B (in short GeB). We will prove
the following

THEOREM. Let G be a non-abelian simple group. Suppose that
GeB and the centralizer of a central involution z in G is solvable.
Then G is isomorphic to one of the following groups:

( i ) PSL(2,g), g = 2 * > 2 ;
(ii) Sz(g), q = 2n^8;
(iii) PSU(3, q), q = 2n > 2 and
(iv) PSL(2, q), q = 3 or 5 (mod 8), q > 5.

A finite group G is of 2-rank n if an elementary abelian 2-sub-
group of G of maximal order contains 2n elements. The 2-length of
G is denoted by 12(G). The maximal power of 2 dividing | G | is
denoted by | G |2. An involution z of G is called isolated if it belongs
to a Sylow 2-subgroup S of G and z9 e S implies z9 = z. The maximal
normal subgroup of G of odd order is denoted by 0(G). Finally the
groups Q8, Ss and S4 are the ordinary quarternion group, the sym-
metric group on 3 letters and the symmetric group on 4 letters,
respectively.

2* Properties of groups satisfying Condition B*
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LEMMA 1. Let GeB,HS- G.

( i ) If \H\2 = \G\2 then HeB.
(ii) If H<]G and \G/H\2 = \G\2 then G/HeB.

Proof, (i) is obvious. If H is a normal subgroup of G of odd
order, then the S2-subgroups of G = GjH are of the form SH/H =
S ~ S, where S is an S2-subgroup of G. Let & and S2 be S2-sub-
groups of G such that S,. Π S2 is a central 2-Sylow intersection of 2-
rank at least 2. Since ϋΓ is of odd order, there exists a 2-subgroup
D of G, such that S1Γ) S2 = DH/H= D~D. It is clear that there
exist /&!, h2e H such that £> ϋ Sf1 Π S2

2. If ziί is a central involution
of SH/H,zeS, then [z, s] eSf]H= 1 for all geS, hence zeZ(S).
Thus i) contains a central involution of G and as GeB and the
2-rank of D is at least 2, it follows that Sf1 = S£2, Sx = S2 and D is
not a 2-Sylow intersection of G. Thus GeB.

LEMMA 2. Lei GeB, HQ G and suppose that the following
assumptions hold:

( i ) H is solvable;
(ii) H\t= \G\2 and
(iii) 02(H) contains a central involution of G.

Then 12(H) - 1, unless 02(H) = Qs and H/02(H)^S3, where H = H/O(H).

Proof By Lemma 1 H and H satisfy Condition B and 02(H)
obviously contains a central involution of S. If 02(S) is cyclic or
generalized quaternion (but not ordinary quaternion), then Aut(02(ί?))
is a 2-group and therefore H/C(02(H)) is a 2-group. As H is solvable,
C(02(H)) £ 02(H) and consequently H is a 2-group, hence 12(H) = 1.

If 02(JΪ) is of 2-rank at least 2, then £Γ e 5 forces H to be 2-closed,
hence 12(H) = 1.

Suppose, finally, that 02(H) = Q8. Then H/C(02(H)) is isomorphic
to a subgroup of £4 and if H is not 2-closed then obviously 24 divides
the order of H/C(02(H)). Thus H/C(02(H))^S4 and HI02(H)~S3.

LEMMA 3. Lei GeB and suppose that S and Si are S2-subgroups
of G. Let z G Z(S) be an involution, g e G, and suppose that z9 e Slβ

Proof. Suppose that z9 is not central in &. Then Si Π C^^)
contains 2;g and a central involution of Sx. Let T be an S2-subgroup
of CG(z°) containing St Γ) Cff(«0ί a s CG{z°) 2 Sff, Γ is an S2-subgroup of
G. Since the 2-rank of D ~ Sλ Π T is at least 2 and 2) contains a
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central involution of G, it follows from our assumptions that S1 = T,
hence zaeZ(S1), a contradiction.

LEMMA 4. Let GeB and suppose that \ ΩJ,Z{S)) \ = 2, where S
is an S2-subgroup of G. Then Ωλ{Z{S)) S Z*(G), where Z*(G)/0(G) =

Proof. Let zeΩ^ZiS)); then by Lemma 3 z is an isolated in-
volution in G. It follows then by the Z*-theorem of Glauberman [2]
that ΩX{Z{S)) S Z*(G).

LEMMA 5. Let GeB, S be an S2-subgroup of G and G = Q(G)S.
Suppose that \ Ω^Ziβ)) \ > 2 and S is not normal in G. Then the
2-rank of G is at most 2.

Proof. Let G be a counterexample of minimal order. Then S
contains an elementary abelian subgroup A of order 8 such that
I A: Z(S) Π A I ̂  2. Let H = 0(G) and C = CS{H). Then C <\ S and
consequently C <] SH — G. As G is not 2-closed and GeB, we have
A ςt C. Consider AH; A is not normal in AH and | A Π Ah \ <: 2 for
all heH— N(A), as otherwise G$B. Thus A/ϊ is a counterexample
and by the minimality of G, G = AH.

Let P be a Sylow p-subgroup of H, such that A <Ξ iSΓ(P) and
A ςz! C(P); then again by the minimality of G, G = AP. As by a
theorem of Burnside A does not centralize P/Φ(P), it follows by
Lemma 1 (ii) and the minimality G that Φ(P) = 1, P is elementary
abelian. Since A acts on P in a completely reducible way, it follows
again by the minimality of G that A acts irreducibly of P and
AICA(P) acts faithfully and irreducibly on P. Thus A/CA(P) is a cyclic
group and CA(P) is a normal subgroup of G of 2-rank 2. As (^(P)
contains a central involution and G e J5, it follows that G is 2-closed,
a contradiction.

3. Proof of the theorem. Let H = CG(z). If H is 2-closed
then by Lemma 3 z belongs to a unique Sylow 2-subgroup of G.
Therefore by Theorem C of [4] G is isomorphic to one of the groups
in (i)-(iii).

Suppose now that H is not 2-closed. Let H = H/0(H) and sup-
pose that Q2{H)~Q8 and HjQ2{H)~S3. Then obviously

( * ) 2-rank H = 2-rank G = 2.

Otherwise it follows by Lemma 2 that 12(H) = 1, hence 02S2(i?) = SL,
where L = 02,(H) and S is an £2-subgroup of G. Since fZ" is not 2-
closed, S is not normal in 02,,2(J?) As G is simple, it follows by
Lemma 4 that | ΩX{Z{S)) \ > 2 and Lemma 5 then yields (*) again.
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Thus in all cases 2-rank G — 2 and by the classification theorem
of Alperin, Brauer and Gorenstein [1] only three types of 2-groups
could occur as a Sylow subgroup S of a group not mentioned in (i)-(iv):

(a) dihedral of order 8 at least,
(b) quasi-dihedral, or
(c) wreathed.
In all of these cases Z(S) is cyclic, hence by Lemma 4 G is non-

simple, a contradiction. The proof of the theorem is complete.
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