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The concept of a translation-invariant permutation group
was introduced in connection with the problem of constructing
"algebras of symmetry-classes of tensors". Such a group is
of type-Zc if it has k orbits. In this paper the number of
type-k groups is shown to be the same as the number of
divisors of Xk — 1 over the two-element field.

Let £L be the group of all permutations of finite degree on the
set {1, 2, 3, •}. If σ is the permutation given by (α161)(α262) (#A),
its translate σm is defined to be the permutation

{a, + 1 &! + l)(α2 + 1 62 + 1) (αt + 1 bt + 1) .

The definition of the translate of σ is independent of the decomposition
of σ into a product of transpositions. A subgroup H of £L is said
to be translation-invariant (briefly, H is a t — i group) if whenever
σ is in H so is σ[1\

The translation-invariant groups were first introduced in [1] in
connection with the problem of generalizing the construction of the
Tensor, Grassmann and Symmetric algebras by using symmetry-classes
of tensors (see [2]). The following was proven in [1]: if H is a non-
trivial t — i group (assume H moves 1), then the orbits for the action
of H on {1, 2, 3, •} are Ziyk = {i, i + k, i + 2k, •}, 1 ^ i ^ k, for
some k Ξ> 1. The number of orbits is called the type of H. Let Si>00

(resp. Ai)OO) be the group of all (resp. even) permutations on the set
Zi>k, 1 ^ i ^ k, and let SL(fc) - SUoaX XSk>oo, A^k) - AltCΛX • • Ak>oa.

For each k ^ 1, these are t — i groups and if H is any type-& t — i

group, clearly H < S^k). Moreover, it was proven t h a t a ί - i group

contains all the even permutat ions on each of i ts orbits, i.e.,

THEOREM 1. If His a type-k t - i group then A^{k) < H< &>(&).

In this presentation we are concerned with determining the number
of type-& t — i groups for each k ^ 1. In [1] it was proven that:

THEOREM 2. There are 2n + 1 t - i groups of type-2n, n :> 0.

The above theorem was proved by looking at some special features
of the lattice of the type-& t — i groups. However, here we will show
that the number of type-& t — i groups is the same as the number
of factors of the polynomial Xk — 1 over the two-element field F2 and

539



540 J. HILLEL

thus is completely known.

2 Let k ^ 1 be fixed and let P(k) denote the power set on the
set {1, 2, •••, k}. Let A denote the symmetric-difference of sets, then
{P(k), A} is an abelian group whose zero element is the empty set φ,
and every a in P(k) satisfies aAa = φ, i.e., {P(k), A) is a ^-dimensional
vector-space over F2 and the singleton sets {i}9 1 ^ i <̂  k form a basis.

Any permutation σ in £L(&) can be written as a product σισ2 σk

where σ* is a permutation on the orbit Zith91 S i ^ fc Define jP(σ)
to be {ilf •• ,it} where σh, , ai% are those permutations among
tfi, " , <?k which have odd parity. The map F: SL(&) -+ P{k) satisfies
F(στ) = F{σ)AF(τ) for every σ and τ in SJJK), i.e., JF7 is a group homo-
morphism with Ker (F) — A^k). By Theorem 1, the usual corre-
spondence between subgroups of £L(&) which contain A^{k) and the
subgroups of P(k) sets a one-to-one correspondence between the type~&
t — ί groups and a certain subfamily of subgroups of P(k) (the t — i
mod (k) subgroups in [1]).

Consider the basis Ck = {{1}, , {k}} of the vector-space P(k) and
define a multiplication on Ck by {i} {i} = {(i + i — 1) mod (k)} for
1 ^ i ^ /j, 1 ^ j ^ Λ. Cft thus becomes a cyclic group and the multi-
plication is uniquely extendable to all of P(k), i.e.,

This multiplication endows P(k) with a commutative ring structure.
In fact, P(k) is the group-ring F2(Ck). We note that as {2} is a
generator of the group Ck, it is also a generator (in the algebraic
sense) of P{k).

PROPOSITION. The type-k t — i groups are in one-to-one correspond-
ence with the ideals of the ring P(k).

Proof. Let I be a nontrivial subgroup of P(k) which corresponds
to a t — i group H under the homomorphism F defined above. Sup-
pose a = {il9 •••, it} is in I, then F(σ) = a for some σ in H, i.e.,
σ — σ1 σk where σ{ acts on the orbit Zitk and σil9 , σit are the
permutations of odd parity. Since H is a t — i group, r = <7[1] is in
if and F(τ) is in J. Writing τ as a product rA τA where τ* acts
on Zilk9 it is easily seen that τi+1 = σiy 1 ^ i < fc and rx = σ[

fc

1]. Hence
F(r) - {& + 1) mod (Λ), . . . , (it + 1) mod (fc)} = {iu . ., i j . {2}, i.e., α . {2}
is in I whenever a is in J. As {2} generates the whole ring, it fol-
lows that / is an ideal.

Conversely, if I is an ideal of P(k) it is immediate that F~ι{I) is
a ί - i group.
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The group-ring P{k) is isomorphic to F2[X]/(Xk — 1) hence the
ideals in P(k) correspond to the divisors of Xk — 1 in F2[X]. Let
k = 2nr where (2, r) = 1, then Xk - 1 = (Xr - 1)2\ Now Xr - 1 =
ΓLir^dCX") where φd(X) are the cyclotomic polynomials. Furthermore
(see [3], Theorem 7-2-4), d̂(JSΓ) is a product of the irreducible poly-
nomials Pi(X) Pmd(X)y md = <p(d)/fd, where 9> is the Euler function
and fd is the smallest integer / such that 2f ΞΞ mod (d). Thus, if sr

is the number of irreducible divisors of Xr — 1, then sr = χ d ! r <P(d)/fd.
Letting sx = 1, we conclude:

THEOREM 3. Lei /b = 2nr where (2, r) = 1, then there are (2n + I)8*
translation-invariant groups of type-k.
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