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Irreducible elements, which are not cutpoints, and meet
complemented elements are peripheral in certain compact
lattices and semilattices.

The purpose of this note is to extend the results of A. D. Wallace
[12]; i.e., to show that meet irreducible elements and meet com-
plemented elements are peripheral in certain topological lattices and
semilattices. Meet irreducible elements have played a key role in
embedding theorems for topological lattices obtained by K. A. Baker
and A. R. Stralka [2] and by the author [10].

1* Preliminaries* If S is a semilattice and xe S, then M(x) =
{ye S: x < y}; L(x) is defined dually; if x < y, then

[x, y] = M(x) n L(y) .

An element x in a semilattice S is meet irreducible if α, be S
and x = a A b imply x — a or x — b. We denote the set of all meet
irreducible elements of S by MI{S). If S has a 0, an element xeS
is meet complemented if there is a yeS such that y Φ 0 and
x Λ y = 0. The width w(X) of a partially ordered set X is the
maximum number of elements in a set of incomparable elements.

A topological semilattice S is said to have small semilattices at
x if x has a basis of neighborhoods which are subsemilattices of S;
S is a Lawson semilattice if it has small semilattices at every point.

Basic definitions, notations, and properties of Alexander co-
homology and codimension may be found in [11] and [4]. The point
x is marginal in a regular space X if and only if for any open set
U containing x, there exists an open set V containing x and contained
in U such that the natural homomorphism H*{X) —> H*(X\V) is an
isomorphism [8, Th. 1.3]. A point xeX, a topological space, is
peripheral if for any open set U containing x, there exists an open
set V containing x and contained in U such that the homomorphism
ί*: H*(X, X\V)-+(X, X\U) induced by the inclusion mapping i is
the trivial or zero homomorphism. A point is inner if it is not
peripheral.

2. Peripheral elements. J. D. Lawson and B. Madison [9, Th.
3.2] have proved that cutpoints of compact, connected spaces are
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inner points. This result and Theorem 2.1 locate all the meet ir-
reducible elements of a semilattice.

THEOREM 2.1. Let S be a compact, connected, locally connected
Lawson semilattice. If pe S is meet irreducible and is not a cut-
point of S, then p is marginal in S.

Proof. Let peU, an open subset of S. Since p is not a cut-
point of S, it is known [14, III 4.15] that there exists an open set
V containing p such that 7 c U and S\V is connected. If

then x A y e S\{p} because p is meet irreducible. Thus S\{p} is a
locally compact Lawson semilattice. Hence there exists a compact
subsemilattice WaS\{p} such that S\Vc W [6, Lemma 5.2], Since
S\V is connected, the closed semilattice B generated by S\F is a
compact, connected subsemilattice of W; B is acyclic [13]; thus
H*(S)~+H*(B) is an isomorphism. Since S\Va Ba W<z S\{p}, we
have peS\BdVdU. Therefore p is marginal in S and hence
peripheral in S [8, Th. 1.8].

COROLLARY 2.2. Let L be a compact, connected topological lat-
tice of finite codimension. If pe L is not a cutpoint of L and p is
either meet irreducible or join irreducible, then p is marginal in L.

Proof. Since L is compact and connected, its breadth is equal
to its codimension [7, Cor. 2.4]. Hence L is a Lawson semilattice
with respect to either V or Λ [7, Th. 1.1]. Finally, L is locally
connected [1, Th. 2]; therefore the conclusion follows from Theorem 2.1.

Peripheral elements need not belong to (MI(L) (J JI{L))*.
Examples may be found in P, the unit cube.

THEOREM 2.3. Let S be a compact, connected, locally connected
topological semilattice with 1. If peS and M{p)° = 0 , then M(p)
is contained in the set of peripheral elements of L.

Proof. We define F: S x S-+S by F(x, y) = x A y for all
x, ye S. Then F is continuous and F(l, x) = x for all xe S. If
s e M(p) and s is an inner point of S, then there exists an open set
U containing 1 such that for each ue U there is & ve S with u Av =
s [S, Th. 3.4]. This implies Ua M(s) c M(p) so that M(p)° Φ 0
contrary to hypothesis. Thus s is peripheral in S; since s was an
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arbitrary element of M(p), M(p) consists entirely of peripheral elements
of S.

As noted above a compact, connected topological lattice L is
locally connected and has a 1; thus if M(p)° = 0 in such a lattice,
then M(p) consists of peripheral elements of L.

The set of peripheral elements of a topological space need not be
closed [8, p. 261]. However, we have the following.

COROLLARY 2.4. Let L be a compact, connected topological lat-
tice of finite codimension. If A = {xeL: M(x)° = 0}, then each
element of A* is peripheral in L.

Proof. Let x 6 A* and suppose that x is an inner point of L.
Let {xa} be a net in A which converges to x. Then {xa V x) also
converges to x, and since M(xa V x) c M(xa), we must have

M(xa V x)° = 0 .

Thus {#α V a ; } c i . By Theorem 2.3 and our assumption that x is
inner, M(x)° Φ 0 . Since the codimension of L is finite we may
choose an inner point y of L such that yeM(x)° [8, Th. 2.6]; thus y
is also an inner point of M(x) [8, Th. 1.4]. Since x is the zero of
M(x) and y is inner in Λf(α?), it follows from the proof of Thorem 2.3
that there must be an open subset U of M(x) which contains x and
such that u e U implies u < y. The net {xa V x] converges to x and
{xa V x} a M(x); therefore there exists an a such that xaVxeU.
Hence xa V x < y\ therefore y e M(xa V x) which implies

M(y) c M(xa V x) .

But M(y)° c M(?/) c ikf(>α V x) and ik%)° ^ 0 since ?/ is an inner
point of L. Thus M(xaVx)°Φ0 contrary to xaVxeA. This
contradiction completes the proof.

The set A* of Corollary 2.4 has some interesting properties not
necessarily held by either the set of all peripheral elements or by
the set of all meet irreducible elements of a lattice.

PROPOSITION 2.5. Let L and A* be as in Corollary 2.4.
(1) x < y and x e A* imply y e A*.
(2) A* is connected.
(3) If the breadth of L, 6(L), is two then A* consists of meet

irreducible elements of L.
(4) If b(L) — 2 and w(MI(L)) — n9 then A* is the union of at

most n compact, connected chains.
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(5) If A* is a sublattice of L, then A* = ilί(AA*) and b(A*) =
cd{A*) < b(L) = cd(L).

Proof. (1) Clearly A is an increasing set; hence A* is also.

(2) For each xeA*, M(x) is a connected subset of A* which
contains 1. Thus A* is connected.

(3) Let xeA*. Since M{x)aA* and 6(L) = 2, b(M(x)) =
c(Z(Λf(αO) = 1 [8, Th. 3.2], Thus x = a A b implies x = α or a? = 6.

(4) Since A*cMI(L), w(A*) < ti. Hence by Dilworth's theorem
[5, Th. 1.1], A* is the union of n or fewer chains. These chains
may be chosen to be compact and connected.

(5) If A* is a sublattice of L, then z ~ A A* belongs to A*
and A* = M(z). As noted above b(A*) = cd(A*) < cd(L) = b(L).

If b(L) > 2, then M(x) c A* need not imply M(x) is a chain;
examples may be found in J3, the unit cube.

Let L = P\{(x, y): 0<x< 1/4, 3/4 < y < 1}. Then L i s a com-
pact, connected, distributive topological lattice of breadth two and
A* is a proper subset of MI(L).

EXAMPLE 2.6. Let

L - {(&<): 0 < α?4 < 1} U {(a?4): - 1 < x< < 0} c Π R, ,
ί = l

i?ί the set of real numbers for i — 1, 2, . With the order and
topology inherited from ΠΓ=i Rn i.e., (α?<) < (y<) if and only if χi < ^
for i — 1, 2, •• , L is a compact, connected topological lattice. Since
P = (Pi) with Pi — 0 for i = 1, 2, is a cutpoint of L, p is an
inner point of L. Any (#<) e L with 0 < ^ < 1 for infinitely many i
has the property that M({Xi))° is empty. Thus

pe{(α><): Λf((α?4))° - 0 } * .

THEOREM 2.7. Lei L be a compact, connected topological lattice.
If a, be L and a is a meet complement for b, then [0, a] and [0, b]
are contained in the set of peripheral elements of L.

Proof. We define F: L x L —+L by F(x, y) — x\/ y for all
x, yeL. Then F is continuous and F(0,y) = # for all yeL. Let
# G (0, α] = [0, α]\{0}; then xΛb*ζaΛb = 0 which implies x Λ 6 = 0.
If a; is not peripheral in L, then there exists an open set U contain-
ing 0 such that for each s e U there is a t e L for which s V ί — α;
[8, Th. 3.4]. Since [0, 6] = b A L, it is connected; thus Z7Π(0, b\φ®.
Let s 6 U Π (0, 6] and let t e L be such that s V t = x. Then s < x
and s < 6; thus s < & Λ δ = 0 which implies s = 0 contrary to
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se (0, δ] Hence x is peripheral in L. That 0 is peripheral is a con-
sequence of Theorem 2.3. Thus each element of [0, a] is peripheral
in L. The proof for [0, b] is similar.

The following corollaries are immediate.

COROLLARY 2.8. Let L be a compact, connected topologίcal lattice.
If a, be L are not related, then [a, a V 6], [b, a V b], [a A δ, a], αmϊ
[α Λ δ, δ] are contained in the set of peripheral elements of

[a A δ, a V δ] .

COROLLARY 2.9. Lei L be a compact, connected topological lattice.
If for pe L there is a qe L such that q is not related to p and
either pe M(p A q)°, or peL(p V q)°, then p is peripheral in L.

3* Questions. 3.1. It is known [8, Ex. 1.9] that peripheral
elements of topological spaces need not be marginal. Is this true for
compact, connected lattices?

3.2. If B is the set of all peripheral (marginal) elements of a
compact lattice L, is B closed in L?
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