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Results are obtained on the existence and convergence
of certain types of rational functions which interpolate in
the roots of unity to a function / which is meromorphic in
I z I < 1 and continuous on | z | ^ 1. The theorems presented
extend results of Fejέr and Walsh and Sharma on inter-
polating polynomials.

In a recent paper [2] the first author investigated the convergence
of certain sequences of rational functions which interpolate to a
meromorphic function / . The results obtained in [2] apply, for ex-
ample, when / is analytic on \z\ ^ 1, meromorphic in \z\ < p, p > 1,
and the points of interpolation are the roots of unity.

In this paper we study the convergence of rational functions
which interpolate in the roots of unity to a function / which is
meromorphic in \z\ < 1 and continuous on \z\ ^ 1. The theorems
presented extend those of Fejer [1] and Walsh and Sharma [4] con-
cerning interpolating polynomials. The method of proof of Theorem 1
is basically that of [2].

A rational function rnu(z) is said to be of type (n, v) if it is of
the form

r^(z) = pn{z)lqv{z) , qu{z) =£ 0 ,

where pn(z) and qu(z) are polynomials of degrees at most n and v
respectively.

THEOREM 1. Let f(z) be meromorphic with precisely v poles (mul-
tiplicity included) in D: \z\ < 1 and otherwise finite and continuous
on \z\fίl. Let Όf denote the domain obtained from D by deleting
the v poles of f(z). Then for all n sufficiently large there exists a
unique rational function rnv(z) of type (n, v) which interpolates to
f(z) in the n + v + 1 roots of unity. Each rnv(z) for n large enough
has precisely v finite poles and as n —> co these poles approach re-
spectively the v poles of f(z) in D. The sequence rnv(z) converges to
f(z) throughout D', uniformly on any closed subset of D\

For the case v = 0 the above theorem is due to Fejer [1].

Proof. For any function g defined on \z\ = 1 the unique poly-
nomial of degree at most n which interpolates to g in the n + 1 roots
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of unity shall be denoted by Ln(g; z).
Let alf a2, , au be the v poles of f(z) in D and set

Q0(z) = 1 , Qk(z) = Π (z - a t ) , l ^ k ^ v ,

We shall show that for n sufficiently large the coefficients a(

k

n)

can be chosen so that Qv(z) divides the interpolating polynomial
Ln+v(qnQ»f; z). For simplicity we assume that the points as are dis-
tinct, i e., f(z) has only simple poles in D. The case of multiple poles
is left to the reader.

Clearly Q,(z)\Ln+,(qnQJ; z) if and only if

(1) Σ c ^ α ϊ 0 = dp , j = 1,2, . . . , ! ; ,

where

; a3) .

For each fc the function Qk~iQvf is analytic in D and continuous
on \z\ ^ 1, and so Fejer's theorem implies that

lim c$ = (Qk^QJ)(as) , lim d? = - (

Since α3- is a simple pole of / we have

(Q*-iQv/)(αy) = 0 , for fc > i ,

(Q*-iQ»/)(αy) ^ 0 , for fc = i .

Hence

Umdβt[cjϊ'l - Π (Qι_iQ,/)(αι) ^ 0 ,

which implies that for n sufficiently large the linear system (1) can
be solved uniquely for the coefficients af\ Furthermore since dJ-Λ) —> 0
as n—* CXD, it follows from Cramer's rule that for each k, 1 <£ k ^ v,
we have αiw) —> 0 as n —> c>o, Thus

(2) l i m g ^ ) - α ( ^ ) ,

uniformly on each bounded subset of the plane.
Now set rnv(z) Ξ Ln+v(qnQJ; z)/qn(z)Qv(z). Then by our choice of

the coefficients ak

n) we have that rnv(z) is a rational function of type
(n, v). Also from (2) it follows that for n sufficiently large qjz) is
different from zero in the n + v + 1 roots of unity and so rnv{z) must
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interpolate to f(z) in these points. It is easy to see that rnv(z) is
uniquely determined by its interpolation property. From Fejer's
theorem and (2) we have rw{z)-+f{z) as n—» oo uniformly on any
closed subset of Π.

Finally note that rnv(z) has v formal poles, namely the zeros of
qn{z), and as n —> oo these poles approach respectively the v poles of
f{z) in D. Since

lim Ln+v(qnQJ; z)/Qv(z) = Q,(z)f(z) ,
n—»oo

uniformly for z in a neighborhood of each aj9 it follows that for n
sufficiently large no zero of the polynomial Ln+v(qnQvf; z)IQv(z) is a
zero of qn(z). Thus the v formal poles of rny(z) are actual poles.
This completes the proof of Theorem 1.

Walsh and Sharma [4] have shown that for any function g(z)
analytic in \z\ < 1 and continuous on \z\ ^ 1, the sequence Ln(g; z)
converges to g(z) on \z\ — 1 in the mean of second order. Applying
this result to each of the sequences {L^iQ^Q^f; z)}, 1 S k ^ v + 1,
there follows from (2)

THEOREM 2. The sequence rnu(z) of Theorem 1 converges to f(z)
in the mean of second order on \z\ — 1.

Theorems 1 and 2 are another illustration of the close analogy
between approximation in the sense of least squares on \z\ — 1 and
interpolation in the roots of unity; compare [3, §§7.10, 9.1, 11.6], [4].1
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